![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dochocsp | Structured version Visualization version GIF version |
Description: The span of an orthocomplement equals the orthocomplement of the span. (Contributed by NM, 7-Aug-2014.) |
Ref | Expression |
---|---|
dochsp.h | ⊢ 𝐻 = (LHyp‘𝐾) |
dochsp.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
dochsp.o | ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) |
dochsp.v | ⊢ 𝑉 = (Base‘𝑈) |
dochsp.n | ⊢ 𝑁 = (LSpan‘𝑈) |
dochsp.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
dochsp.x | ⊢ (𝜑 → 𝑋 ⊆ 𝑉) |
Ref | Expression |
---|---|
dochocsp | ⊢ (𝜑 → ( ⊥ ‘(𝑁‘𝑋)) = ( ⊥ ‘𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dochsp.k | . . 3 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
2 | dochsp.h | . . . . 5 ⊢ 𝐻 = (LHyp‘𝐾) | |
3 | dochsp.u | . . . . 5 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
4 | 2, 3, 1 | dvhlmod 37184 | . . . 4 ⊢ (𝜑 → 𝑈 ∈ LMod) |
5 | dochsp.x | . . . 4 ⊢ (𝜑 → 𝑋 ⊆ 𝑉) | |
6 | dochsp.v | . . . . 5 ⊢ 𝑉 = (Base‘𝑈) | |
7 | dochsp.n | . . . . 5 ⊢ 𝑁 = (LSpan‘𝑈) | |
8 | 6, 7 | lspssv 19341 | . . . 4 ⊢ ((𝑈 ∈ LMod ∧ 𝑋 ⊆ 𝑉) → (𝑁‘𝑋) ⊆ 𝑉) |
9 | 4, 5, 8 | syl2anc 581 | . . 3 ⊢ (𝜑 → (𝑁‘𝑋) ⊆ 𝑉) |
10 | 6, 7 | lspssid 19343 | . . . 4 ⊢ ((𝑈 ∈ LMod ∧ 𝑋 ⊆ 𝑉) → 𝑋 ⊆ (𝑁‘𝑋)) |
11 | 4, 5, 10 | syl2anc 581 | . . 3 ⊢ (𝜑 → 𝑋 ⊆ (𝑁‘𝑋)) |
12 | dochsp.o | . . . 4 ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) | |
13 | 2, 3, 6, 12 | dochss 37439 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑁‘𝑋) ⊆ 𝑉 ∧ 𝑋 ⊆ (𝑁‘𝑋)) → ( ⊥ ‘(𝑁‘𝑋)) ⊆ ( ⊥ ‘𝑋)) |
14 | 1, 9, 11, 13 | syl3anc 1496 | . 2 ⊢ (𝜑 → ( ⊥ ‘(𝑁‘𝑋)) ⊆ ( ⊥ ‘𝑋)) |
15 | eqid 2824 | . . . . . 6 ⊢ ((DIsoH‘𝐾)‘𝑊) = ((DIsoH‘𝐾)‘𝑊) | |
16 | 2, 15, 3, 6, 12 | dochcl 37427 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ⊆ 𝑉) → ( ⊥ ‘𝑋) ∈ ran ((DIsoH‘𝐾)‘𝑊)) |
17 | 1, 5, 16 | syl2anc 581 | . . . 4 ⊢ (𝜑 → ( ⊥ ‘𝑋) ∈ ran ((DIsoH‘𝐾)‘𝑊)) |
18 | 2, 15, 12 | dochoc 37441 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ( ⊥ ‘𝑋) ∈ ran ((DIsoH‘𝐾)‘𝑊)) → ( ⊥ ‘( ⊥ ‘( ⊥ ‘𝑋))) = ( ⊥ ‘𝑋)) |
19 | 1, 17, 18 | syl2anc 581 | . . 3 ⊢ (𝜑 → ( ⊥ ‘( ⊥ ‘( ⊥ ‘𝑋))) = ( ⊥ ‘𝑋)) |
20 | 2, 3, 6, 12 | dochssv 37429 | . . . . . 6 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ⊆ 𝑉) → ( ⊥ ‘𝑋) ⊆ 𝑉) |
21 | 1, 5, 20 | syl2anc 581 | . . . . 5 ⊢ (𝜑 → ( ⊥ ‘𝑋) ⊆ 𝑉) |
22 | 2, 3, 6, 12 | dochssv 37429 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ( ⊥ ‘𝑋) ⊆ 𝑉) → ( ⊥ ‘( ⊥ ‘𝑋)) ⊆ 𝑉) |
23 | 1, 21, 22 | syl2anc 581 | . . . 4 ⊢ (𝜑 → ( ⊥ ‘( ⊥ ‘𝑋)) ⊆ 𝑉) |
24 | 2, 3, 12, 6, 7, 1, 5 | dochspss 37452 | . . . 4 ⊢ (𝜑 → (𝑁‘𝑋) ⊆ ( ⊥ ‘( ⊥ ‘𝑋))) |
25 | 2, 3, 6, 12 | dochss 37439 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ( ⊥ ‘( ⊥ ‘𝑋)) ⊆ 𝑉 ∧ (𝑁‘𝑋) ⊆ ( ⊥ ‘( ⊥ ‘𝑋))) → ( ⊥ ‘( ⊥ ‘( ⊥ ‘𝑋))) ⊆ ( ⊥ ‘(𝑁‘𝑋))) |
26 | 1, 23, 24, 25 | syl3anc 1496 | . . 3 ⊢ (𝜑 → ( ⊥ ‘( ⊥ ‘( ⊥ ‘𝑋))) ⊆ ( ⊥ ‘(𝑁‘𝑋))) |
27 | 19, 26 | eqsstr3d 3864 | . 2 ⊢ (𝜑 → ( ⊥ ‘𝑋) ⊆ ( ⊥ ‘(𝑁‘𝑋))) |
28 | 14, 27 | eqssd 3843 | 1 ⊢ (𝜑 → ( ⊥ ‘(𝑁‘𝑋)) = ( ⊥ ‘𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 = wceq 1658 ∈ wcel 2166 ⊆ wss 3797 ran crn 5342 ‘cfv 6122 Basecbs 16221 LModclmod 19218 LSpanclspn 19329 HLchlt 35424 LHypclh 36058 DVecHcdvh 37152 DIsoHcdih 37302 ocHcoch 37421 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-8 2168 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-13 2390 ax-ext 2802 ax-rep 4993 ax-sep 5004 ax-nul 5012 ax-pow 5064 ax-pr 5126 ax-un 7208 ax-cnex 10307 ax-resscn 10308 ax-1cn 10309 ax-icn 10310 ax-addcl 10311 ax-addrcl 10312 ax-mulcl 10313 ax-mulrcl 10314 ax-mulcom 10315 ax-addass 10316 ax-mulass 10317 ax-distr 10318 ax-i2m1 10319 ax-1ne0 10320 ax-1rid 10321 ax-rnegex 10322 ax-rrecex 10323 ax-cnre 10324 ax-pre-lttri 10325 ax-pre-lttrn 10326 ax-pre-ltadd 10327 ax-pre-mulgt0 10328 ax-riotaBAD 35027 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-3or 1114 df-3an 1115 df-tru 1662 df-fal 1672 df-ex 1881 df-nf 1885 df-sb 2070 df-mo 2604 df-eu 2639 df-clab 2811 df-cleq 2817 df-clel 2820 df-nfc 2957 df-ne 2999 df-nel 3102 df-ral 3121 df-rex 3122 df-reu 3123 df-rmo 3124 df-rab 3125 df-v 3415 df-sbc 3662 df-csb 3757 df-dif 3800 df-un 3802 df-in 3804 df-ss 3811 df-pss 3813 df-nul 4144 df-if 4306 df-pw 4379 df-sn 4397 df-pr 4399 df-tp 4401 df-op 4403 df-uni 4658 df-int 4697 df-iun 4741 df-iin 4742 df-br 4873 df-opab 4935 df-mpt 4952 df-tr 4975 df-id 5249 df-eprel 5254 df-po 5262 df-so 5263 df-fr 5300 df-we 5302 df-xp 5347 df-rel 5348 df-cnv 5349 df-co 5350 df-dm 5351 df-rn 5352 df-res 5353 df-ima 5354 df-pred 5919 df-ord 5965 df-on 5966 df-lim 5967 df-suc 5968 df-iota 6085 df-fun 6124 df-fn 6125 df-f 6126 df-f1 6127 df-fo 6128 df-f1o 6129 df-fv 6130 df-riota 6865 df-ov 6907 df-oprab 6908 df-mpt2 6909 df-om 7326 df-1st 7427 df-2nd 7428 df-tpos 7616 df-undef 7663 df-wrecs 7671 df-recs 7733 df-rdg 7771 df-1o 7825 df-oadd 7829 df-er 8008 df-map 8123 df-en 8222 df-dom 8223 df-sdom 8224 df-fin 8225 df-pnf 10392 df-mnf 10393 df-xr 10394 df-ltxr 10395 df-le 10396 df-sub 10586 df-neg 10587 df-nn 11350 df-2 11413 df-3 11414 df-4 11415 df-5 11416 df-6 11417 df-n0 11618 df-z 11704 df-uz 11968 df-fz 12619 df-struct 16223 df-ndx 16224 df-slot 16225 df-base 16227 df-sets 16228 df-ress 16229 df-plusg 16317 df-mulr 16318 df-sca 16320 df-vsca 16321 df-0g 16454 df-proset 17280 df-poset 17298 df-plt 17310 df-lub 17326 df-glb 17327 df-join 17328 df-meet 17329 df-p0 17391 df-p1 17392 df-lat 17398 df-clat 17460 df-mgm 17594 df-sgrp 17636 df-mnd 17647 df-submnd 17688 df-grp 17778 df-minusg 17779 df-sbg 17780 df-subg 17941 df-cntz 18099 df-lsm 18401 df-cmn 18547 df-abl 18548 df-mgp 18843 df-ur 18855 df-ring 18902 df-oppr 18976 df-dvdsr 18994 df-unit 18995 df-invr 19025 df-dvr 19036 df-drng 19104 df-lmod 19220 df-lss 19288 df-lsp 19330 df-lvec 19461 df-lsatoms 35050 df-oposet 35250 df-ol 35252 df-oml 35253 df-covers 35340 df-ats 35341 df-atl 35372 df-cvlat 35396 df-hlat 35425 df-llines 35572 df-lplanes 35573 df-lvols 35574 df-lines 35575 df-psubsp 35577 df-pmap 35578 df-padd 35870 df-lhyp 36062 df-laut 36063 df-ldil 36178 df-ltrn 36179 df-trl 36233 df-tendo 36829 df-edring 36831 df-disoa 37103 df-dvech 37153 df-dib 37213 df-dic 37247 df-dih 37303 df-doch 37422 |
This theorem is referenced by: dochspocN 37454 dochocsn 37455 dochsncom 37456 dochnel 37467 djhlsmcl 37488 dochsnshp 37527 dochsnkr 37546 dochsnkr2cl 37548 lcfl7lem 37573 lcfl8 37576 lclkrlem2a 37581 lclkrlem2c 37583 lclkrlem2e 37585 lclkrlem2p 37596 lclkrlem2v 37602 lcfrlem14 37630 lcfrlem23 37639 mapdval4N 37706 mapdsn 37715 hdmapglem7a 38001 hdmapoc 38005 |
Copyright terms: Public domain | W3C validator |