MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lt0neg2d Structured version   Visualization version   GIF version

Theorem lt0neg2d 11533
Description: Comparison of a number and its negative to zero. (Contributed by Mario Carneiro, 27-May-2016.)
Hypothesis
Ref Expression
leidd.1 (𝜑𝐴 ∈ ℝ)
Assertion
Ref Expression
lt0neg2d (𝜑 → (0 < 𝐴 ↔ -𝐴 < 0))

Proof of Theorem lt0neg2d
StepHypRef Expression
1 leidd.1 . 2 (𝜑𝐴 ∈ ℝ)
2 lt0neg2 11470 . 2 (𝐴 ∈ ℝ → (0 < 𝐴 ↔ -𝐴 < 0))
31, 2syl 17 1 (𝜑 → (0 < 𝐴 ↔ -𝐴 < 0))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wcel 2106   class class class wbr 5074  cr 10858  0cc0 10859   < clt 10997  -cneg 11194
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5222  ax-nul 5229  ax-pow 5287  ax-pr 5351  ax-un 7579  ax-resscn 10916  ax-1cn 10917  ax-icn 10918  ax-addcl 10919  ax-addrcl 10920  ax-mulcl 10921  ax-mulrcl 10922  ax-mulcom 10923  ax-addass 10924  ax-mulass 10925  ax-distr 10926  ax-i2m1 10927  ax-1ne0 10928  ax-1rid 10929  ax-rnegex 10930  ax-rrecex 10931  ax-cnre 10932  ax-pre-lttri 10933  ax-pre-lttrn 10934  ax-pre-ltadd 10935
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3071  df-rab 3073  df-v 3432  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4258  df-if 4461  df-pw 4536  df-sn 4563  df-pr 4565  df-op 4569  df-uni 4841  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5485  df-po 5499  df-so 5500  df-xp 5591  df-rel 5592  df-cnv 5593  df-co 5594  df-dm 5595  df-rn 5596  df-res 5597  df-ima 5598  df-iota 6385  df-fun 6429  df-fn 6430  df-f 6431  df-f1 6432  df-fo 6433  df-f1o 6434  df-fv 6435  df-riota 7225  df-ov 7271  df-oprab 7272  df-mpo 7273  df-er 8486  df-en 8722  df-dom 8723  df-sdom 8724  df-pnf 10999  df-mnf 11000  df-xr 11001  df-ltxr 11002  df-le 11003  df-sub 11195  df-neg 11196
This theorem is referenced by:  mul2lt0rlt0  12820  mulgnegnn  18702  volivth  24759  sincosq2sgn  25644  sincosq3sgn  25645  tanord  25682  argimgt0  25755  atanlogaddlem  26051  eldmgm  26159  dmlogdmgm  26161  padicabvcxp  26768  oexpreposd  40307  neglt  42782  fourierdlem103  43709  etransclem23  43757
  Copyright terms: Public domain W3C validator