Step | Hyp | Ref
| Expression |
1 | | nnuz 12550 |
. . 3
⊢ ℕ =
(ℤ≥‘1) |
2 | | 1zzd 12281 |
. . 3
⊢ (𝐴 ∈ ℂ → 1 ∈
ℤ) |
3 | | halfcn 12118 |
. . . . . . 7
⊢ (1 / 2)
∈ ℂ |
4 | 3 | a1i 11 |
. . . . . 6
⊢ (𝐴 ∈ ℂ → (1 / 2)
∈ ℂ) |
5 | | halfre 12117 |
. . . . . . . . 9
⊢ (1 / 2)
∈ ℝ |
6 | | halfge0 12120 |
. . . . . . . . 9
⊢ 0 ≤ (1
/ 2) |
7 | | absid 14936 |
. . . . . . . . 9
⊢ (((1 / 2)
∈ ℝ ∧ 0 ≤ (1 / 2)) → (abs‘(1 / 2)) = (1 /
2)) |
8 | 5, 6, 7 | mp2an 688 |
. . . . . . . 8
⊢
(abs‘(1 / 2)) = (1 / 2) |
9 | | halflt1 12121 |
. . . . . . . 8
⊢ (1 / 2)
< 1 |
10 | 8, 9 | eqbrtri 5091 |
. . . . . . 7
⊢
(abs‘(1 / 2)) < 1 |
11 | 10 | a1i 11 |
. . . . . 6
⊢ (𝐴 ∈ ℂ →
(abs‘(1 / 2)) < 1) |
12 | 4, 11 | expcnv 15504 |
. . . . 5
⊢ (𝐴 ∈ ℂ → (𝑘 ∈ ℕ0
↦ ((1 / 2)↑𝑘))
⇝ 0) |
13 | | id 22 |
. . . . 5
⊢ (𝐴 ∈ ℂ → 𝐴 ∈
ℂ) |
14 | | geo2lim.1 |
. . . . . . 7
⊢ 𝐹 = (𝑘 ∈ ℕ ↦ (𝐴 / (2↑𝑘))) |
15 | | nnex 11909 |
. . . . . . . 8
⊢ ℕ
∈ V |
16 | 15 | mptex 7081 |
. . . . . . 7
⊢ (𝑘 ∈ ℕ ↦ (𝐴 / (2↑𝑘))) ∈ V |
17 | 14, 16 | eqeltri 2835 |
. . . . . 6
⊢ 𝐹 ∈ V |
18 | 17 | a1i 11 |
. . . . 5
⊢ (𝐴 ∈ ℂ → 𝐹 ∈ V) |
19 | | nnnn0 12170 |
. . . . . . . . 9
⊢ (𝑗 ∈ ℕ → 𝑗 ∈
ℕ0) |
20 | 19 | adantl 481 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ) → 𝑗 ∈
ℕ0) |
21 | | oveq2 7263 |
. . . . . . . . 9
⊢ (𝑘 = 𝑗 → ((1 / 2)↑𝑘) = ((1 / 2)↑𝑗)) |
22 | | eqid 2738 |
. . . . . . . . 9
⊢ (𝑘 ∈ ℕ0
↦ ((1 / 2)↑𝑘)) =
(𝑘 ∈
ℕ0 ↦ ((1 / 2)↑𝑘)) |
23 | | ovex 7288 |
. . . . . . . . 9
⊢ ((1 /
2)↑𝑗) ∈
V |
24 | 21, 22, 23 | fvmpt 6857 |
. . . . . . . 8
⊢ (𝑗 ∈ ℕ0
→ ((𝑘 ∈
ℕ0 ↦ ((1 / 2)↑𝑘))‘𝑗) = ((1 / 2)↑𝑗)) |
25 | 20, 24 | syl 17 |
. . . . . . 7
⊢ ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ) → ((𝑘 ∈ ℕ0
↦ ((1 / 2)↑𝑘))‘𝑗) = ((1 / 2)↑𝑗)) |
26 | | 2cn 11978 |
. . . . . . . 8
⊢ 2 ∈
ℂ |
27 | | 2ne0 12007 |
. . . . . . . 8
⊢ 2 ≠
0 |
28 | | nnz 12272 |
. . . . . . . . 9
⊢ (𝑗 ∈ ℕ → 𝑗 ∈
ℤ) |
29 | 28 | adantl 481 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ) → 𝑗 ∈
ℤ) |
30 | | exprec 13752 |
. . . . . . . 8
⊢ ((2
∈ ℂ ∧ 2 ≠ 0 ∧ 𝑗 ∈ ℤ) → ((1 / 2)↑𝑗) = (1 / (2↑𝑗))) |
31 | 26, 27, 29, 30 | mp3an12i 1463 |
. . . . . . 7
⊢ ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ) → ((1 /
2)↑𝑗) = (1 /
(2↑𝑗))) |
32 | 25, 31 | eqtrd 2778 |
. . . . . 6
⊢ ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ) → ((𝑘 ∈ ℕ0
↦ ((1 / 2)↑𝑘))‘𝑗) = (1 / (2↑𝑗))) |
33 | | 2nn 11976 |
. . . . . . . . 9
⊢ 2 ∈
ℕ |
34 | | nnexpcl 13723 |
. . . . . . . . 9
⊢ ((2
∈ ℕ ∧ 𝑗
∈ ℕ0) → (2↑𝑗) ∈ ℕ) |
35 | 33, 20, 34 | sylancr 586 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ) →
(2↑𝑗) ∈
ℕ) |
36 | 35 | nnrecred 11954 |
. . . . . . 7
⊢ ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ) → (1 /
(2↑𝑗)) ∈
ℝ) |
37 | 36 | recnd 10934 |
. . . . . 6
⊢ ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ) → (1 /
(2↑𝑗)) ∈
ℂ) |
38 | 32, 37 | eqeltrd 2839 |
. . . . 5
⊢ ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ) → ((𝑘 ∈ ℕ0
↦ ((1 / 2)↑𝑘))‘𝑗) ∈ ℂ) |
39 | | simpl 482 |
. . . . . . 7
⊢ ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ) → 𝐴 ∈
ℂ) |
40 | 35 | nncnd 11919 |
. . . . . . 7
⊢ ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ) →
(2↑𝑗) ∈
ℂ) |
41 | 35 | nnne0d 11953 |
. . . . . . 7
⊢ ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ) →
(2↑𝑗) ≠
0) |
42 | 39, 40, 41 | divrecd 11684 |
. . . . . 6
⊢ ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ) → (𝐴 / (2↑𝑗)) = (𝐴 · (1 / (2↑𝑗)))) |
43 | | oveq2 7263 |
. . . . . . . . 9
⊢ (𝑘 = 𝑗 → (2↑𝑘) = (2↑𝑗)) |
44 | 43 | oveq2d 7271 |
. . . . . . . 8
⊢ (𝑘 = 𝑗 → (𝐴 / (2↑𝑘)) = (𝐴 / (2↑𝑗))) |
45 | | ovex 7288 |
. . . . . . . 8
⊢ (𝐴 / (2↑𝑗)) ∈ V |
46 | 44, 14, 45 | fvmpt 6857 |
. . . . . . 7
⊢ (𝑗 ∈ ℕ → (𝐹‘𝑗) = (𝐴 / (2↑𝑗))) |
47 | 46 | adantl 481 |
. . . . . 6
⊢ ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ) → (𝐹‘𝑗) = (𝐴 / (2↑𝑗))) |
48 | 32 | oveq2d 7271 |
. . . . . 6
⊢ ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ) → (𝐴 · ((𝑘 ∈ ℕ0 ↦ ((1 /
2)↑𝑘))‘𝑗)) = (𝐴 · (1 / (2↑𝑗)))) |
49 | 42, 47, 48 | 3eqtr4d 2788 |
. . . . 5
⊢ ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ) → (𝐹‘𝑗) = (𝐴 · ((𝑘 ∈ ℕ0 ↦ ((1 /
2)↑𝑘))‘𝑗))) |
50 | 1, 2, 12, 13, 18, 38, 49 | climmulc2 15274 |
. . . 4
⊢ (𝐴 ∈ ℂ → 𝐹 ⇝ (𝐴 · 0)) |
51 | | mul01 11084 |
. . . 4
⊢ (𝐴 ∈ ℂ → (𝐴 · 0) =
0) |
52 | 50, 51 | breqtrd 5096 |
. . 3
⊢ (𝐴 ∈ ℂ → 𝐹 ⇝ 0) |
53 | | seqex 13651 |
. . . 4
⊢ seq1( + ,
𝐹) ∈
V |
54 | 53 | a1i 11 |
. . 3
⊢ (𝐴 ∈ ℂ → seq1( + ,
𝐹) ∈
V) |
55 | 39, 40, 41 | divcld 11681 |
. . . 4
⊢ ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ) → (𝐴 / (2↑𝑗)) ∈ ℂ) |
56 | 47, 55 | eqeltrd 2839 |
. . 3
⊢ ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ) → (𝐹‘𝑗) ∈ ℂ) |
57 | 47 | oveq2d 7271 |
. . . 4
⊢ ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ) → (𝐴 − (𝐹‘𝑗)) = (𝐴 − (𝐴 / (2↑𝑗)))) |
58 | | geo2sum 15513 |
. . . . 5
⊢ ((𝑗 ∈ ℕ ∧ 𝐴 ∈ ℂ) →
Σ𝑛 ∈ (1...𝑗)(𝐴 / (2↑𝑛)) = (𝐴 − (𝐴 / (2↑𝑗)))) |
59 | 58 | ancoms 458 |
. . . 4
⊢ ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ) →
Σ𝑛 ∈ (1...𝑗)(𝐴 / (2↑𝑛)) = (𝐴 − (𝐴 / (2↑𝑗)))) |
60 | | elfznn 13214 |
. . . . . . 7
⊢ (𝑛 ∈ (1...𝑗) → 𝑛 ∈ ℕ) |
61 | 60 | adantl 481 |
. . . . . 6
⊢ (((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑗)) → 𝑛 ∈ ℕ) |
62 | | oveq2 7263 |
. . . . . . . 8
⊢ (𝑘 = 𝑛 → (2↑𝑘) = (2↑𝑛)) |
63 | 62 | oveq2d 7271 |
. . . . . . 7
⊢ (𝑘 = 𝑛 → (𝐴 / (2↑𝑘)) = (𝐴 / (2↑𝑛))) |
64 | | ovex 7288 |
. . . . . . 7
⊢ (𝐴 / (2↑𝑛)) ∈ V |
65 | 63, 14, 64 | fvmpt 6857 |
. . . . . 6
⊢ (𝑛 ∈ ℕ → (𝐹‘𝑛) = (𝐴 / (2↑𝑛))) |
66 | 61, 65 | syl 17 |
. . . . 5
⊢ (((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑗)) → (𝐹‘𝑛) = (𝐴 / (2↑𝑛))) |
67 | | simpr 484 |
. . . . . 6
⊢ ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ) → 𝑗 ∈
ℕ) |
68 | 67, 1 | eleqtrdi 2849 |
. . . . 5
⊢ ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ) → 𝑗 ∈
(ℤ≥‘1)) |
69 | | simpll 763 |
. . . . . 6
⊢ (((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑗)) → 𝐴 ∈ ℂ) |
70 | | nnnn0 12170 |
. . . . . . . . 9
⊢ (𝑛 ∈ ℕ → 𝑛 ∈
ℕ0) |
71 | | nnexpcl 13723 |
. . . . . . . . 9
⊢ ((2
∈ ℕ ∧ 𝑛
∈ ℕ0) → (2↑𝑛) ∈ ℕ) |
72 | 33, 70, 71 | sylancr 586 |
. . . . . . . 8
⊢ (𝑛 ∈ ℕ →
(2↑𝑛) ∈
ℕ) |
73 | 61, 72 | syl 17 |
. . . . . . 7
⊢ (((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑗)) → (2↑𝑛) ∈ ℕ) |
74 | 73 | nncnd 11919 |
. . . . . 6
⊢ (((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑗)) → (2↑𝑛) ∈ ℂ) |
75 | 73 | nnne0d 11953 |
. . . . . 6
⊢ (((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑗)) → (2↑𝑛) ≠ 0) |
76 | 69, 74, 75 | divcld 11681 |
. . . . 5
⊢ (((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑗)) → (𝐴 / (2↑𝑛)) ∈ ℂ) |
77 | 66, 68, 76 | fsumser 15370 |
. . . 4
⊢ ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ) →
Σ𝑛 ∈ (1...𝑗)(𝐴 / (2↑𝑛)) = (seq1( + , 𝐹)‘𝑗)) |
78 | 57, 59, 77 | 3eqtr2rd 2785 |
. . 3
⊢ ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ) → (seq1( +
, 𝐹)‘𝑗) = (𝐴 − (𝐹‘𝑗))) |
79 | 1, 2, 52, 13, 54, 56, 78 | climsubc2 15276 |
. 2
⊢ (𝐴 ∈ ℂ → seq1( + ,
𝐹) ⇝ (𝐴 − 0)) |
80 | | subid1 11171 |
. 2
⊢ (𝐴 ∈ ℂ → (𝐴 − 0) = 𝐴) |
81 | 79, 80 | breqtrd 5096 |
1
⊢ (𝐴 ∈ ℂ → seq1( + ,
𝐹) ⇝ 𝐴) |