MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  geo2lim Structured version   Visualization version   GIF version

Theorem geo2lim 15760
Description: The value of the infinite geometric series 2↑-1 + 2↑-2 +... , multiplied by a constant. (Contributed by Mario Carneiro, 15-Jun-2014.)
Hypothesis
Ref Expression
geo2lim.1 𝐹 = (𝑘 ∈ ℕ ↦ (𝐴 / (2↑𝑘)))
Assertion
Ref Expression
geo2lim (𝐴 ∈ ℂ → seq1( + , 𝐹) ⇝ 𝐴)
Distinct variable group:   𝐴,𝑘
Allowed substitution hint:   𝐹(𝑘)

Proof of Theorem geo2lim
Dummy variables 𝑗 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnuz 12806 . . 3 ℕ = (ℤ‘1)
2 1zzd 12534 . . 3 (𝐴 ∈ ℂ → 1 ∈ ℤ)
3 halfcn 12368 . . . . . . 7 (1 / 2) ∈ ℂ
43a1i 11 . . . . . 6 (𝐴 ∈ ℂ → (1 / 2) ∈ ℂ)
5 halfre 12367 . . . . . . . . 9 (1 / 2) ∈ ℝ
6 halfge0 12370 . . . . . . . . 9 0 ≤ (1 / 2)
7 absid 15181 . . . . . . . . 9 (((1 / 2) ∈ ℝ ∧ 0 ≤ (1 / 2)) → (abs‘(1 / 2)) = (1 / 2))
85, 6, 7mp2an 690 . . . . . . . 8 (abs‘(1 / 2)) = (1 / 2)
9 halflt1 12371 . . . . . . . 8 (1 / 2) < 1
108, 9eqbrtri 5126 . . . . . . 7 (abs‘(1 / 2)) < 1
1110a1i 11 . . . . . 6 (𝐴 ∈ ℂ → (abs‘(1 / 2)) < 1)
124, 11expcnv 15749 . . . . 5 (𝐴 ∈ ℂ → (𝑘 ∈ ℕ0 ↦ ((1 / 2)↑𝑘)) ⇝ 0)
13 id 22 . . . . 5 (𝐴 ∈ ℂ → 𝐴 ∈ ℂ)
14 geo2lim.1 . . . . . . 7 𝐹 = (𝑘 ∈ ℕ ↦ (𝐴 / (2↑𝑘)))
15 nnex 12159 . . . . . . . 8 ℕ ∈ V
1615mptex 7173 . . . . . . 7 (𝑘 ∈ ℕ ↦ (𝐴 / (2↑𝑘))) ∈ V
1714, 16eqeltri 2834 . . . . . 6 𝐹 ∈ V
1817a1i 11 . . . . 5 (𝐴 ∈ ℂ → 𝐹 ∈ V)
19 nnnn0 12420 . . . . . . . . 9 (𝑗 ∈ ℕ → 𝑗 ∈ ℕ0)
2019adantl 482 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ) → 𝑗 ∈ ℕ0)
21 oveq2 7365 . . . . . . . . 9 (𝑘 = 𝑗 → ((1 / 2)↑𝑘) = ((1 / 2)↑𝑗))
22 eqid 2736 . . . . . . . . 9 (𝑘 ∈ ℕ0 ↦ ((1 / 2)↑𝑘)) = (𝑘 ∈ ℕ0 ↦ ((1 / 2)↑𝑘))
23 ovex 7390 . . . . . . . . 9 ((1 / 2)↑𝑗) ∈ V
2421, 22, 23fvmpt 6948 . . . . . . . 8 (𝑗 ∈ ℕ0 → ((𝑘 ∈ ℕ0 ↦ ((1 / 2)↑𝑘))‘𝑗) = ((1 / 2)↑𝑗))
2520, 24syl 17 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ) → ((𝑘 ∈ ℕ0 ↦ ((1 / 2)↑𝑘))‘𝑗) = ((1 / 2)↑𝑗))
26 2cn 12228 . . . . . . . 8 2 ∈ ℂ
27 2ne0 12257 . . . . . . . 8 2 ≠ 0
28 nnz 12520 . . . . . . . . 9 (𝑗 ∈ ℕ → 𝑗 ∈ ℤ)
2928adantl 482 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ) → 𝑗 ∈ ℤ)
30 exprec 14009 . . . . . . . 8 ((2 ∈ ℂ ∧ 2 ≠ 0 ∧ 𝑗 ∈ ℤ) → ((1 / 2)↑𝑗) = (1 / (2↑𝑗)))
3126, 27, 29, 30mp3an12i 1465 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ) → ((1 / 2)↑𝑗) = (1 / (2↑𝑗)))
3225, 31eqtrd 2776 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ) → ((𝑘 ∈ ℕ0 ↦ ((1 / 2)↑𝑘))‘𝑗) = (1 / (2↑𝑗)))
33 2nn 12226 . . . . . . . . 9 2 ∈ ℕ
34 nnexpcl 13980 . . . . . . . . 9 ((2 ∈ ℕ ∧ 𝑗 ∈ ℕ0) → (2↑𝑗) ∈ ℕ)
3533, 20, 34sylancr 587 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ) → (2↑𝑗) ∈ ℕ)
3635nnrecred 12204 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ) → (1 / (2↑𝑗)) ∈ ℝ)
3736recnd 11183 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ) → (1 / (2↑𝑗)) ∈ ℂ)
3832, 37eqeltrd 2838 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ) → ((𝑘 ∈ ℕ0 ↦ ((1 / 2)↑𝑘))‘𝑗) ∈ ℂ)
39 simpl 483 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ) → 𝐴 ∈ ℂ)
4035nncnd 12169 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ) → (2↑𝑗) ∈ ℂ)
4135nnne0d 12203 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ) → (2↑𝑗) ≠ 0)
4239, 40, 41divrecd 11934 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ) → (𝐴 / (2↑𝑗)) = (𝐴 · (1 / (2↑𝑗))))
43 oveq2 7365 . . . . . . . . 9 (𝑘 = 𝑗 → (2↑𝑘) = (2↑𝑗))
4443oveq2d 7373 . . . . . . . 8 (𝑘 = 𝑗 → (𝐴 / (2↑𝑘)) = (𝐴 / (2↑𝑗)))
45 ovex 7390 . . . . . . . 8 (𝐴 / (2↑𝑗)) ∈ V
4644, 14, 45fvmpt 6948 . . . . . . 7 (𝑗 ∈ ℕ → (𝐹𝑗) = (𝐴 / (2↑𝑗)))
4746adantl 482 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ) → (𝐹𝑗) = (𝐴 / (2↑𝑗)))
4832oveq2d 7373 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ) → (𝐴 · ((𝑘 ∈ ℕ0 ↦ ((1 / 2)↑𝑘))‘𝑗)) = (𝐴 · (1 / (2↑𝑗))))
4942, 47, 483eqtr4d 2786 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ) → (𝐹𝑗) = (𝐴 · ((𝑘 ∈ ℕ0 ↦ ((1 / 2)↑𝑘))‘𝑗)))
501, 2, 12, 13, 18, 38, 49climmulc2 15519 . . . 4 (𝐴 ∈ ℂ → 𝐹 ⇝ (𝐴 · 0))
51 mul01 11334 . . . 4 (𝐴 ∈ ℂ → (𝐴 · 0) = 0)
5250, 51breqtrd 5131 . . 3 (𝐴 ∈ ℂ → 𝐹 ⇝ 0)
53 seqex 13908 . . . 4 seq1( + , 𝐹) ∈ V
5453a1i 11 . . 3 (𝐴 ∈ ℂ → seq1( + , 𝐹) ∈ V)
5539, 40, 41divcld 11931 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ) → (𝐴 / (2↑𝑗)) ∈ ℂ)
5647, 55eqeltrd 2838 . . 3 ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ) → (𝐹𝑗) ∈ ℂ)
5747oveq2d 7373 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ) → (𝐴 − (𝐹𝑗)) = (𝐴 − (𝐴 / (2↑𝑗))))
58 geo2sum 15758 . . . . 5 ((𝑗 ∈ ℕ ∧ 𝐴 ∈ ℂ) → Σ𝑛 ∈ (1...𝑗)(𝐴 / (2↑𝑛)) = (𝐴 − (𝐴 / (2↑𝑗))))
5958ancoms 459 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ) → Σ𝑛 ∈ (1...𝑗)(𝐴 / (2↑𝑛)) = (𝐴 − (𝐴 / (2↑𝑗))))
60 elfznn 13470 . . . . . . 7 (𝑛 ∈ (1...𝑗) → 𝑛 ∈ ℕ)
6160adantl 482 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑗)) → 𝑛 ∈ ℕ)
62 oveq2 7365 . . . . . . . 8 (𝑘 = 𝑛 → (2↑𝑘) = (2↑𝑛))
6362oveq2d 7373 . . . . . . 7 (𝑘 = 𝑛 → (𝐴 / (2↑𝑘)) = (𝐴 / (2↑𝑛)))
64 ovex 7390 . . . . . . 7 (𝐴 / (2↑𝑛)) ∈ V
6563, 14, 64fvmpt 6948 . . . . . 6 (𝑛 ∈ ℕ → (𝐹𝑛) = (𝐴 / (2↑𝑛)))
6661, 65syl 17 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑗)) → (𝐹𝑛) = (𝐴 / (2↑𝑛)))
67 simpr 485 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ) → 𝑗 ∈ ℕ)
6867, 1eleqtrdi 2848 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ) → 𝑗 ∈ (ℤ‘1))
69 simpll 765 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑗)) → 𝐴 ∈ ℂ)
70 nnnn0 12420 . . . . . . . . 9 (𝑛 ∈ ℕ → 𝑛 ∈ ℕ0)
71 nnexpcl 13980 . . . . . . . . 9 ((2 ∈ ℕ ∧ 𝑛 ∈ ℕ0) → (2↑𝑛) ∈ ℕ)
7233, 70, 71sylancr 587 . . . . . . . 8 (𝑛 ∈ ℕ → (2↑𝑛) ∈ ℕ)
7361, 72syl 17 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑗)) → (2↑𝑛) ∈ ℕ)
7473nncnd 12169 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑗)) → (2↑𝑛) ∈ ℂ)
7573nnne0d 12203 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑗)) → (2↑𝑛) ≠ 0)
7669, 74, 75divcld 11931 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑗)) → (𝐴 / (2↑𝑛)) ∈ ℂ)
7766, 68, 76fsumser 15615 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ) → Σ𝑛 ∈ (1...𝑗)(𝐴 / (2↑𝑛)) = (seq1( + , 𝐹)‘𝑗))
7857, 59, 773eqtr2rd 2783 . . 3 ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ) → (seq1( + , 𝐹)‘𝑗) = (𝐴 − (𝐹𝑗)))
791, 2, 52, 13, 54, 56, 78climsubc2 15521 . 2 (𝐴 ∈ ℂ → seq1( + , 𝐹) ⇝ (𝐴 − 0))
80 subid1 11421 . 2 (𝐴 ∈ ℂ → (𝐴 − 0) = 𝐴)
8179, 80breqtrd 5131 1 (𝐴 ∈ ℂ → seq1( + , 𝐹) ⇝ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wcel 2106  wne 2943  Vcvv 3445   class class class wbr 5105  cmpt 5188  cfv 6496  (class class class)co 7357  cc 11049  cr 11050  0cc0 11051  1c1 11052   + caddc 11054   · cmul 11056   < clt 11189  cle 11190  cmin 11385   / cdiv 11812  cn 12153  2c2 12208  0cn0 12413  cz 12499  cuz 12763  ...cfz 13424  seqcseq 13906  cexp 13967  abscabs 15119  cli 15366  Σcsu 15570
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-inf2 9577  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-er 8648  df-pm 8768  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-sup 9378  df-inf 9379  df-oi 9446  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-n0 12414  df-z 12500  df-uz 12764  df-rp 12916  df-fz 13425  df-fzo 13568  df-fl 13697  df-seq 13907  df-exp 13968  df-hash 14231  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-clim 15370  df-rlim 15371  df-sum 15571
This theorem is referenced by:  omssubadd  32900  sge0ad2en  44662
  Copyright terms: Public domain W3C validator