MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  geo2lim Structured version   Visualization version   GIF version

Theorem geo2lim 15845
Description: The value of the infinite geometric series 2โ†‘-1 + 2โ†‘-2 +... , multiplied by a constant. (Contributed by Mario Carneiro, 15-Jun-2014.)
Hypothesis
Ref Expression
geo2lim.1 ๐น = (๐‘˜ โˆˆ โ„• โ†ฆ (๐ด / (2โ†‘๐‘˜)))
Assertion
Ref Expression
geo2lim (๐ด โˆˆ โ„‚ โ†’ seq1( + , ๐น) โ‡ ๐ด)
Distinct variable group:   ๐ด,๐‘˜
Allowed substitution hint:   ๐น(๐‘˜)

Proof of Theorem geo2lim
Dummy variables ๐‘— ๐‘› are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnuz 12887 . . 3 โ„• = (โ„คโ‰ฅโ€˜1)
2 1zzd 12615 . . 3 (๐ด โˆˆ โ„‚ โ†’ 1 โˆˆ โ„ค)
3 halfcn 12449 . . . . . . 7 (1 / 2) โˆˆ โ„‚
43a1i 11 . . . . . 6 (๐ด โˆˆ โ„‚ โ†’ (1 / 2) โˆˆ โ„‚)
5 halfre 12448 . . . . . . . . 9 (1 / 2) โˆˆ โ„
6 halfge0 12451 . . . . . . . . 9 0 โ‰ค (1 / 2)
7 absid 15267 . . . . . . . . 9 (((1 / 2) โˆˆ โ„ โˆง 0 โ‰ค (1 / 2)) โ†’ (absโ€˜(1 / 2)) = (1 / 2))
85, 6, 7mp2an 691 . . . . . . . 8 (absโ€˜(1 / 2)) = (1 / 2)
9 halflt1 12452 . . . . . . . 8 (1 / 2) < 1
108, 9eqbrtri 5163 . . . . . . 7 (absโ€˜(1 / 2)) < 1
1110a1i 11 . . . . . 6 (๐ด โˆˆ โ„‚ โ†’ (absโ€˜(1 / 2)) < 1)
124, 11expcnv 15834 . . . . 5 (๐ด โˆˆ โ„‚ โ†’ (๐‘˜ โˆˆ โ„•0 โ†ฆ ((1 / 2)โ†‘๐‘˜)) โ‡ 0)
13 id 22 . . . . 5 (๐ด โˆˆ โ„‚ โ†’ ๐ด โˆˆ โ„‚)
14 geo2lim.1 . . . . . . 7 ๐น = (๐‘˜ โˆˆ โ„• โ†ฆ (๐ด / (2โ†‘๐‘˜)))
15 nnex 12240 . . . . . . . 8 โ„• โˆˆ V
1615mptex 7229 . . . . . . 7 (๐‘˜ โˆˆ โ„• โ†ฆ (๐ด / (2โ†‘๐‘˜))) โˆˆ V
1714, 16eqeltri 2824 . . . . . 6 ๐น โˆˆ V
1817a1i 11 . . . . 5 (๐ด โˆˆ โ„‚ โ†’ ๐น โˆˆ V)
19 nnnn0 12501 . . . . . . . . 9 (๐‘— โˆˆ โ„• โ†’ ๐‘— โˆˆ โ„•0)
2019adantl 481 . . . . . . . 8 ((๐ด โˆˆ โ„‚ โˆง ๐‘— โˆˆ โ„•) โ†’ ๐‘— โˆˆ โ„•0)
21 oveq2 7422 . . . . . . . . 9 (๐‘˜ = ๐‘— โ†’ ((1 / 2)โ†‘๐‘˜) = ((1 / 2)โ†‘๐‘—))
22 eqid 2727 . . . . . . . . 9 (๐‘˜ โˆˆ โ„•0 โ†ฆ ((1 / 2)โ†‘๐‘˜)) = (๐‘˜ โˆˆ โ„•0 โ†ฆ ((1 / 2)โ†‘๐‘˜))
23 ovex 7447 . . . . . . . . 9 ((1 / 2)โ†‘๐‘—) โˆˆ V
2421, 22, 23fvmpt 6999 . . . . . . . 8 (๐‘— โˆˆ โ„•0 โ†’ ((๐‘˜ โˆˆ โ„•0 โ†ฆ ((1 / 2)โ†‘๐‘˜))โ€˜๐‘—) = ((1 / 2)โ†‘๐‘—))
2520, 24syl 17 . . . . . . 7 ((๐ด โˆˆ โ„‚ โˆง ๐‘— โˆˆ โ„•) โ†’ ((๐‘˜ โˆˆ โ„•0 โ†ฆ ((1 / 2)โ†‘๐‘˜))โ€˜๐‘—) = ((1 / 2)โ†‘๐‘—))
26 2cn 12309 . . . . . . . 8 2 โˆˆ โ„‚
27 2ne0 12338 . . . . . . . 8 2 โ‰  0
28 nnz 12601 . . . . . . . . 9 (๐‘— โˆˆ โ„• โ†’ ๐‘— โˆˆ โ„ค)
2928adantl 481 . . . . . . . 8 ((๐ด โˆˆ โ„‚ โˆง ๐‘— โˆˆ โ„•) โ†’ ๐‘— โˆˆ โ„ค)
30 exprec 14092 . . . . . . . 8 ((2 โˆˆ โ„‚ โˆง 2 โ‰  0 โˆง ๐‘— โˆˆ โ„ค) โ†’ ((1 / 2)โ†‘๐‘—) = (1 / (2โ†‘๐‘—)))
3126, 27, 29, 30mp3an12i 1462 . . . . . . 7 ((๐ด โˆˆ โ„‚ โˆง ๐‘— โˆˆ โ„•) โ†’ ((1 / 2)โ†‘๐‘—) = (1 / (2โ†‘๐‘—)))
3225, 31eqtrd 2767 . . . . . 6 ((๐ด โˆˆ โ„‚ โˆง ๐‘— โˆˆ โ„•) โ†’ ((๐‘˜ โˆˆ โ„•0 โ†ฆ ((1 / 2)โ†‘๐‘˜))โ€˜๐‘—) = (1 / (2โ†‘๐‘—)))
33 2nn 12307 . . . . . . . . 9 2 โˆˆ โ„•
34 nnexpcl 14063 . . . . . . . . 9 ((2 โˆˆ โ„• โˆง ๐‘— โˆˆ โ„•0) โ†’ (2โ†‘๐‘—) โˆˆ โ„•)
3533, 20, 34sylancr 586 . . . . . . . 8 ((๐ด โˆˆ โ„‚ โˆง ๐‘— โˆˆ โ„•) โ†’ (2โ†‘๐‘—) โˆˆ โ„•)
3635nnrecred 12285 . . . . . . 7 ((๐ด โˆˆ โ„‚ โˆง ๐‘— โˆˆ โ„•) โ†’ (1 / (2โ†‘๐‘—)) โˆˆ โ„)
3736recnd 11264 . . . . . 6 ((๐ด โˆˆ โ„‚ โˆง ๐‘— โˆˆ โ„•) โ†’ (1 / (2โ†‘๐‘—)) โˆˆ โ„‚)
3832, 37eqeltrd 2828 . . . . 5 ((๐ด โˆˆ โ„‚ โˆง ๐‘— โˆˆ โ„•) โ†’ ((๐‘˜ โˆˆ โ„•0 โ†ฆ ((1 / 2)โ†‘๐‘˜))โ€˜๐‘—) โˆˆ โ„‚)
39 simpl 482 . . . . . . 7 ((๐ด โˆˆ โ„‚ โˆง ๐‘— โˆˆ โ„•) โ†’ ๐ด โˆˆ โ„‚)
4035nncnd 12250 . . . . . . 7 ((๐ด โˆˆ โ„‚ โˆง ๐‘— โˆˆ โ„•) โ†’ (2โ†‘๐‘—) โˆˆ โ„‚)
4135nnne0d 12284 . . . . . . 7 ((๐ด โˆˆ โ„‚ โˆง ๐‘— โˆˆ โ„•) โ†’ (2โ†‘๐‘—) โ‰  0)
4239, 40, 41divrecd 12015 . . . . . 6 ((๐ด โˆˆ โ„‚ โˆง ๐‘— โˆˆ โ„•) โ†’ (๐ด / (2โ†‘๐‘—)) = (๐ด ยท (1 / (2โ†‘๐‘—))))
43 oveq2 7422 . . . . . . . . 9 (๐‘˜ = ๐‘— โ†’ (2โ†‘๐‘˜) = (2โ†‘๐‘—))
4443oveq2d 7430 . . . . . . . 8 (๐‘˜ = ๐‘— โ†’ (๐ด / (2โ†‘๐‘˜)) = (๐ด / (2โ†‘๐‘—)))
45 ovex 7447 . . . . . . . 8 (๐ด / (2โ†‘๐‘—)) โˆˆ V
4644, 14, 45fvmpt 6999 . . . . . . 7 (๐‘— โˆˆ โ„• โ†’ (๐นโ€˜๐‘—) = (๐ด / (2โ†‘๐‘—)))
4746adantl 481 . . . . . 6 ((๐ด โˆˆ โ„‚ โˆง ๐‘— โˆˆ โ„•) โ†’ (๐นโ€˜๐‘—) = (๐ด / (2โ†‘๐‘—)))
4832oveq2d 7430 . . . . . 6 ((๐ด โˆˆ โ„‚ โˆง ๐‘— โˆˆ โ„•) โ†’ (๐ด ยท ((๐‘˜ โˆˆ โ„•0 โ†ฆ ((1 / 2)โ†‘๐‘˜))โ€˜๐‘—)) = (๐ด ยท (1 / (2โ†‘๐‘—))))
4942, 47, 483eqtr4d 2777 . . . . 5 ((๐ด โˆˆ โ„‚ โˆง ๐‘— โˆˆ โ„•) โ†’ (๐นโ€˜๐‘—) = (๐ด ยท ((๐‘˜ โˆˆ โ„•0 โ†ฆ ((1 / 2)โ†‘๐‘˜))โ€˜๐‘—)))
501, 2, 12, 13, 18, 38, 49climmulc2 15605 . . . 4 (๐ด โˆˆ โ„‚ โ†’ ๐น โ‡ (๐ด ยท 0))
51 mul01 11415 . . . 4 (๐ด โˆˆ โ„‚ โ†’ (๐ด ยท 0) = 0)
5250, 51breqtrd 5168 . . 3 (๐ด โˆˆ โ„‚ โ†’ ๐น โ‡ 0)
53 seqex 13992 . . . 4 seq1( + , ๐น) โˆˆ V
5453a1i 11 . . 3 (๐ด โˆˆ โ„‚ โ†’ seq1( + , ๐น) โˆˆ V)
5539, 40, 41divcld 12012 . . . 4 ((๐ด โˆˆ โ„‚ โˆง ๐‘— โˆˆ โ„•) โ†’ (๐ด / (2โ†‘๐‘—)) โˆˆ โ„‚)
5647, 55eqeltrd 2828 . . 3 ((๐ด โˆˆ โ„‚ โˆง ๐‘— โˆˆ โ„•) โ†’ (๐นโ€˜๐‘—) โˆˆ โ„‚)
5747oveq2d 7430 . . . 4 ((๐ด โˆˆ โ„‚ โˆง ๐‘— โˆˆ โ„•) โ†’ (๐ด โˆ’ (๐นโ€˜๐‘—)) = (๐ด โˆ’ (๐ด / (2โ†‘๐‘—))))
58 geo2sum 15843 . . . . 5 ((๐‘— โˆˆ โ„• โˆง ๐ด โˆˆ โ„‚) โ†’ ฮฃ๐‘› โˆˆ (1...๐‘—)(๐ด / (2โ†‘๐‘›)) = (๐ด โˆ’ (๐ด / (2โ†‘๐‘—))))
5958ancoms 458 . . . 4 ((๐ด โˆˆ โ„‚ โˆง ๐‘— โˆˆ โ„•) โ†’ ฮฃ๐‘› โˆˆ (1...๐‘—)(๐ด / (2โ†‘๐‘›)) = (๐ด โˆ’ (๐ด / (2โ†‘๐‘—))))
60 elfznn 13554 . . . . . . 7 (๐‘› โˆˆ (1...๐‘—) โ†’ ๐‘› โˆˆ โ„•)
6160adantl 481 . . . . . 6 (((๐ด โˆˆ โ„‚ โˆง ๐‘— โˆˆ โ„•) โˆง ๐‘› โˆˆ (1...๐‘—)) โ†’ ๐‘› โˆˆ โ„•)
62 oveq2 7422 . . . . . . . 8 (๐‘˜ = ๐‘› โ†’ (2โ†‘๐‘˜) = (2โ†‘๐‘›))
6362oveq2d 7430 . . . . . . 7 (๐‘˜ = ๐‘› โ†’ (๐ด / (2โ†‘๐‘˜)) = (๐ด / (2โ†‘๐‘›)))
64 ovex 7447 . . . . . . 7 (๐ด / (2โ†‘๐‘›)) โˆˆ V
6563, 14, 64fvmpt 6999 . . . . . 6 (๐‘› โˆˆ โ„• โ†’ (๐นโ€˜๐‘›) = (๐ด / (2โ†‘๐‘›)))
6661, 65syl 17 . . . . 5 (((๐ด โˆˆ โ„‚ โˆง ๐‘— โˆˆ โ„•) โˆง ๐‘› โˆˆ (1...๐‘—)) โ†’ (๐นโ€˜๐‘›) = (๐ด / (2โ†‘๐‘›)))
67 simpr 484 . . . . . 6 ((๐ด โˆˆ โ„‚ โˆง ๐‘— โˆˆ โ„•) โ†’ ๐‘— โˆˆ โ„•)
6867, 1eleqtrdi 2838 . . . . 5 ((๐ด โˆˆ โ„‚ โˆง ๐‘— โˆˆ โ„•) โ†’ ๐‘— โˆˆ (โ„คโ‰ฅโ€˜1))
69 simpll 766 . . . . . 6 (((๐ด โˆˆ โ„‚ โˆง ๐‘— โˆˆ โ„•) โˆง ๐‘› โˆˆ (1...๐‘—)) โ†’ ๐ด โˆˆ โ„‚)
70 nnnn0 12501 . . . . . . . . 9 (๐‘› โˆˆ โ„• โ†’ ๐‘› โˆˆ โ„•0)
71 nnexpcl 14063 . . . . . . . . 9 ((2 โˆˆ โ„• โˆง ๐‘› โˆˆ โ„•0) โ†’ (2โ†‘๐‘›) โˆˆ โ„•)
7233, 70, 71sylancr 586 . . . . . . . 8 (๐‘› โˆˆ โ„• โ†’ (2โ†‘๐‘›) โˆˆ โ„•)
7361, 72syl 17 . . . . . . 7 (((๐ด โˆˆ โ„‚ โˆง ๐‘— โˆˆ โ„•) โˆง ๐‘› โˆˆ (1...๐‘—)) โ†’ (2โ†‘๐‘›) โˆˆ โ„•)
7473nncnd 12250 . . . . . 6 (((๐ด โˆˆ โ„‚ โˆง ๐‘— โˆˆ โ„•) โˆง ๐‘› โˆˆ (1...๐‘—)) โ†’ (2โ†‘๐‘›) โˆˆ โ„‚)
7573nnne0d 12284 . . . . . 6 (((๐ด โˆˆ โ„‚ โˆง ๐‘— โˆˆ โ„•) โˆง ๐‘› โˆˆ (1...๐‘—)) โ†’ (2โ†‘๐‘›) โ‰  0)
7669, 74, 75divcld 12012 . . . . 5 (((๐ด โˆˆ โ„‚ โˆง ๐‘— โˆˆ โ„•) โˆง ๐‘› โˆˆ (1...๐‘—)) โ†’ (๐ด / (2โ†‘๐‘›)) โˆˆ โ„‚)
7766, 68, 76fsumser 15700 . . . 4 ((๐ด โˆˆ โ„‚ โˆง ๐‘— โˆˆ โ„•) โ†’ ฮฃ๐‘› โˆˆ (1...๐‘—)(๐ด / (2โ†‘๐‘›)) = (seq1( + , ๐น)โ€˜๐‘—))
7857, 59, 773eqtr2rd 2774 . . 3 ((๐ด โˆˆ โ„‚ โˆง ๐‘— โˆˆ โ„•) โ†’ (seq1( + , ๐น)โ€˜๐‘—) = (๐ด โˆ’ (๐นโ€˜๐‘—)))
791, 2, 52, 13, 54, 56, 78climsubc2 15607 . 2 (๐ด โˆˆ โ„‚ โ†’ seq1( + , ๐น) โ‡ (๐ด โˆ’ 0))
80 subid1 11502 . 2 (๐ด โˆˆ โ„‚ โ†’ (๐ด โˆ’ 0) = ๐ด)
8179, 80breqtrd 5168 1 (๐ด โˆˆ โ„‚ โ†’ seq1( + , ๐น) โ‡ ๐ด)
Colors of variables: wff setvar class
Syntax hints:   โ†’ wi 4   โˆง wa 395   = wceq 1534   โˆˆ wcel 2099   โ‰  wne 2935  Vcvv 3469   class class class wbr 5142   โ†ฆ cmpt 5225  โ€˜cfv 6542  (class class class)co 7414  โ„‚cc 11128  โ„cr 11129  0cc0 11130  1c1 11131   + caddc 11133   ยท cmul 11135   < clt 11270   โ‰ค cle 11271   โˆ’ cmin 11466   / cdiv 11893  โ„•cn 12234  2c2 12289  โ„•0cn0 12494  โ„คcz 12580  โ„คโ‰ฅcuz 12844  ...cfz 13508  seqcseq 13990  โ†‘cexp 14050  abscabs 15205   โ‡ cli 15452  ฮฃcsu 15656
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734  ax-inf2 9656  ax-cnex 11186  ax-resscn 11187  ax-1cn 11188  ax-icn 11189  ax-addcl 11190  ax-addrcl 11191  ax-mulcl 11192  ax-mulrcl 11193  ax-mulcom 11194  ax-addass 11195  ax-mulass 11196  ax-distr 11197  ax-i2m1 11198  ax-1ne0 11199  ax-1rid 11200  ax-rnegex 11201  ax-rrecex 11202  ax-cnre 11203  ax-pre-lttri 11204  ax-pre-lttrn 11205  ax-pre-ltadd 11206  ax-pre-mulgt0 11207  ax-pre-sup 11208
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-nel 3042  df-ral 3057  df-rex 3066  df-rmo 3371  df-reu 3372  df-rab 3428  df-v 3471  df-sbc 3775  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-int 4945  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-se 5628  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-isom 6551  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-om 7865  df-1st 7987  df-2nd 7988  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-er 8718  df-pm 8839  df-en 8956  df-dom 8957  df-sdom 8958  df-fin 8959  df-sup 9457  df-inf 9458  df-oi 9525  df-card 9954  df-pnf 11272  df-mnf 11273  df-xr 11274  df-ltxr 11275  df-le 11276  df-sub 11468  df-neg 11469  df-div 11894  df-nn 12235  df-2 12297  df-3 12298  df-n0 12495  df-z 12581  df-uz 12845  df-rp 12999  df-fz 13509  df-fzo 13652  df-fl 13781  df-seq 13991  df-exp 14051  df-hash 14314  df-cj 15070  df-re 15071  df-im 15072  df-sqrt 15206  df-abs 15207  df-clim 15456  df-rlim 15457  df-sum 15657
This theorem is referenced by:  omssubadd  33856  sge0ad2en  45742
  Copyright terms: Public domain W3C validator