MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  geo2lim Structured version   Visualization version   GIF version

Theorem geo2lim 14813
Description: The value of the infinite geometric series 2↑-1 + 2↑-2 +... , multiplied by a constant. (Contributed by Mario Carneiro, 15-Jun-2014.)
Hypothesis
Ref Expression
geo2lim.1 𝐹 = (𝑘 ∈ ℕ ↦ (𝐴 / (2↑𝑘)))
Assertion
Ref Expression
geo2lim (𝐴 ∈ ℂ → seq1( + , 𝐹) ⇝ 𝐴)
Distinct variable group:   𝐴,𝑘
Allowed substitution hint:   𝐹(𝑘)

Proof of Theorem geo2lim
Dummy variables 𝑗 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnuz 11925 . . 3 ℕ = (ℤ‘1)
2 1zzd 11610 . . 3 (𝐴 ∈ ℂ → 1 ∈ ℤ)
3 halfcn 11449 . . . . . . 7 (1 / 2) ∈ ℂ
43a1i 11 . . . . . 6 (𝐴 ∈ ℂ → (1 / 2) ∈ ℂ)
5 halfre 11448 . . . . . . . . 9 (1 / 2) ∈ ℝ
6 0re 10242 . . . . . . . . . 10 0 ∈ ℝ
7 halfgt0 11450 . . . . . . . . . 10 0 < (1 / 2)
86, 5, 7ltleii 10362 . . . . . . . . 9 0 ≤ (1 / 2)
9 absid 14244 . . . . . . . . 9 (((1 / 2) ∈ ℝ ∧ 0 ≤ (1 / 2)) → (abs‘(1 / 2)) = (1 / 2))
105, 8, 9mp2an 672 . . . . . . . 8 (abs‘(1 / 2)) = (1 / 2)
11 halflt1 11452 . . . . . . . 8 (1 / 2) < 1
1210, 11eqbrtri 4807 . . . . . . 7 (abs‘(1 / 2)) < 1
1312a1i 11 . . . . . 6 (𝐴 ∈ ℂ → (abs‘(1 / 2)) < 1)
144, 13expcnv 14803 . . . . 5 (𝐴 ∈ ℂ → (𝑘 ∈ ℕ0 ↦ ((1 / 2)↑𝑘)) ⇝ 0)
15 id 22 . . . . 5 (𝐴 ∈ ℂ → 𝐴 ∈ ℂ)
16 geo2lim.1 . . . . . . 7 𝐹 = (𝑘 ∈ ℕ ↦ (𝐴 / (2↑𝑘)))
17 nnex 11228 . . . . . . . 8 ℕ ∈ V
1817mptex 6630 . . . . . . 7 (𝑘 ∈ ℕ ↦ (𝐴 / (2↑𝑘))) ∈ V
1916, 18eqeltri 2846 . . . . . 6 𝐹 ∈ V
2019a1i 11 . . . . 5 (𝐴 ∈ ℂ → 𝐹 ∈ V)
21 nnnn0 11501 . . . . . . . . 9 (𝑗 ∈ ℕ → 𝑗 ∈ ℕ0)
2221adantl 467 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ) → 𝑗 ∈ ℕ0)
23 oveq2 6801 . . . . . . . . 9 (𝑘 = 𝑗 → ((1 / 2)↑𝑘) = ((1 / 2)↑𝑗))
24 eqid 2771 . . . . . . . . 9 (𝑘 ∈ ℕ0 ↦ ((1 / 2)↑𝑘)) = (𝑘 ∈ ℕ0 ↦ ((1 / 2)↑𝑘))
25 ovex 6823 . . . . . . . . 9 ((1 / 2)↑𝑗) ∈ V
2623, 24, 25fvmpt 6424 . . . . . . . 8 (𝑗 ∈ ℕ0 → ((𝑘 ∈ ℕ0 ↦ ((1 / 2)↑𝑘))‘𝑗) = ((1 / 2)↑𝑗))
2722, 26syl 17 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ) → ((𝑘 ∈ ℕ0 ↦ ((1 / 2)↑𝑘))‘𝑗) = ((1 / 2)↑𝑗))
28 nnz 11601 . . . . . . . . 9 (𝑗 ∈ ℕ → 𝑗 ∈ ℤ)
2928adantl 467 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ) → 𝑗 ∈ ℤ)
30 2cn 11293 . . . . . . . . 9 2 ∈ ℂ
31 2ne0 11315 . . . . . . . . 9 2 ≠ 0
32 exprec 13108 . . . . . . . . 9 ((2 ∈ ℂ ∧ 2 ≠ 0 ∧ 𝑗 ∈ ℤ) → ((1 / 2)↑𝑗) = (1 / (2↑𝑗)))
3330, 31, 32mp3an12 1562 . . . . . . . 8 (𝑗 ∈ ℤ → ((1 / 2)↑𝑗) = (1 / (2↑𝑗)))
3429, 33syl 17 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ) → ((1 / 2)↑𝑗) = (1 / (2↑𝑗)))
3527, 34eqtrd 2805 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ) → ((𝑘 ∈ ℕ0 ↦ ((1 / 2)↑𝑘))‘𝑗) = (1 / (2↑𝑗)))
36 2nn 11387 . . . . . . . . 9 2 ∈ ℕ
37 nnexpcl 13080 . . . . . . . . 9 ((2 ∈ ℕ ∧ 𝑗 ∈ ℕ0) → (2↑𝑗) ∈ ℕ)
3836, 22, 37sylancr 575 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ) → (2↑𝑗) ∈ ℕ)
3938nnrecred 11268 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ) → (1 / (2↑𝑗)) ∈ ℝ)
4039recnd 10270 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ) → (1 / (2↑𝑗)) ∈ ℂ)
4135, 40eqeltrd 2850 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ) → ((𝑘 ∈ ℕ0 ↦ ((1 / 2)↑𝑘))‘𝑗) ∈ ℂ)
42 simpl 468 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ) → 𝐴 ∈ ℂ)
4338nncnd 11238 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ) → (2↑𝑗) ∈ ℂ)
4438nnne0d 11267 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ) → (2↑𝑗) ≠ 0)
4542, 43, 44divrecd 11006 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ) → (𝐴 / (2↑𝑗)) = (𝐴 · (1 / (2↑𝑗))))
46 oveq2 6801 . . . . . . . . 9 (𝑘 = 𝑗 → (2↑𝑘) = (2↑𝑗))
4746oveq2d 6809 . . . . . . . 8 (𝑘 = 𝑗 → (𝐴 / (2↑𝑘)) = (𝐴 / (2↑𝑗)))
48 ovex 6823 . . . . . . . 8 (𝐴 / (2↑𝑗)) ∈ V
4947, 16, 48fvmpt 6424 . . . . . . 7 (𝑗 ∈ ℕ → (𝐹𝑗) = (𝐴 / (2↑𝑗)))
5049adantl 467 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ) → (𝐹𝑗) = (𝐴 / (2↑𝑗)))
5135oveq2d 6809 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ) → (𝐴 · ((𝑘 ∈ ℕ0 ↦ ((1 / 2)↑𝑘))‘𝑗)) = (𝐴 · (1 / (2↑𝑗))))
5245, 50, 513eqtr4d 2815 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ) → (𝐹𝑗) = (𝐴 · ((𝑘 ∈ ℕ0 ↦ ((1 / 2)↑𝑘))‘𝑗)))
531, 2, 14, 15, 20, 41, 52climmulc2 14575 . . . 4 (𝐴 ∈ ℂ → 𝐹 ⇝ (𝐴 · 0))
54 mul01 10417 . . . 4 (𝐴 ∈ ℂ → (𝐴 · 0) = 0)
5553, 54breqtrd 4812 . . 3 (𝐴 ∈ ℂ → 𝐹 ⇝ 0)
56 seqex 13010 . . . 4 seq1( + , 𝐹) ∈ V
5756a1i 11 . . 3 (𝐴 ∈ ℂ → seq1( + , 𝐹) ∈ V)
5842, 43, 44divcld 11003 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ) → (𝐴 / (2↑𝑗)) ∈ ℂ)
5950, 58eqeltrd 2850 . . 3 ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ) → (𝐹𝑗) ∈ ℂ)
6050oveq2d 6809 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ) → (𝐴 − (𝐹𝑗)) = (𝐴 − (𝐴 / (2↑𝑗))))
61 geo2sum 14811 . . . . 5 ((𝑗 ∈ ℕ ∧ 𝐴 ∈ ℂ) → Σ𝑛 ∈ (1...𝑗)(𝐴 / (2↑𝑛)) = (𝐴 − (𝐴 / (2↑𝑗))))
6261ancoms 455 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ) → Σ𝑛 ∈ (1...𝑗)(𝐴 / (2↑𝑛)) = (𝐴 − (𝐴 / (2↑𝑗))))
63 elfznn 12577 . . . . . . 7 (𝑛 ∈ (1...𝑗) → 𝑛 ∈ ℕ)
6463adantl 467 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑗)) → 𝑛 ∈ ℕ)
65 oveq2 6801 . . . . . . . 8 (𝑘 = 𝑛 → (2↑𝑘) = (2↑𝑛))
6665oveq2d 6809 . . . . . . 7 (𝑘 = 𝑛 → (𝐴 / (2↑𝑘)) = (𝐴 / (2↑𝑛)))
67 ovex 6823 . . . . . . 7 (𝐴 / (2↑𝑛)) ∈ V
6866, 16, 67fvmpt 6424 . . . . . 6 (𝑛 ∈ ℕ → (𝐹𝑛) = (𝐴 / (2↑𝑛)))
6964, 68syl 17 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑗)) → (𝐹𝑛) = (𝐴 / (2↑𝑛)))
70 simpr 471 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ) → 𝑗 ∈ ℕ)
7170, 1syl6eleq 2860 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ) → 𝑗 ∈ (ℤ‘1))
72 simpll 750 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑗)) → 𝐴 ∈ ℂ)
73 nnnn0 11501 . . . . . . . . 9 (𝑛 ∈ ℕ → 𝑛 ∈ ℕ0)
74 nnexpcl 13080 . . . . . . . . 9 ((2 ∈ ℕ ∧ 𝑛 ∈ ℕ0) → (2↑𝑛) ∈ ℕ)
7536, 73, 74sylancr 575 . . . . . . . 8 (𝑛 ∈ ℕ → (2↑𝑛) ∈ ℕ)
7664, 75syl 17 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑗)) → (2↑𝑛) ∈ ℕ)
7776nncnd 11238 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑗)) → (2↑𝑛) ∈ ℂ)
7876nnne0d 11267 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑗)) → (2↑𝑛) ≠ 0)
7972, 77, 78divcld 11003 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑗)) → (𝐴 / (2↑𝑛)) ∈ ℂ)
8069, 71, 79fsumser 14669 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ) → Σ𝑛 ∈ (1...𝑗)(𝐴 / (2↑𝑛)) = (seq1( + , 𝐹)‘𝑗))
8160, 62, 803eqtr2rd 2812 . . 3 ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ) → (seq1( + , 𝐹)‘𝑗) = (𝐴 − (𝐹𝑗)))
821, 2, 55, 15, 57, 59, 81climsubc2 14577 . 2 (𝐴 ∈ ℂ → seq1( + , 𝐹) ⇝ (𝐴 − 0))
83 subid1 10503 . 2 (𝐴 ∈ ℂ → (𝐴 − 0) = 𝐴)
8482, 83breqtrd 4812 1 (𝐴 ∈ ℂ → seq1( + , 𝐹) ⇝ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382   = wceq 1631  wcel 2145  wne 2943  Vcvv 3351   class class class wbr 4786  cmpt 4863  cfv 6031  (class class class)co 6793  cc 10136  cr 10137  0cc0 10138  1c1 10139   + caddc 10141   · cmul 10143   < clt 10276  cle 10277  cmin 10468   / cdiv 10886  cn 11222  2c2 11272  0cn0 11494  cz 11579  cuz 11888  ...cfz 12533  seqcseq 13008  cexp 13067  abscabs 14182  cli 14423  Σcsu 14624
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4904  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096  ax-inf2 8702  ax-cnex 10194  ax-resscn 10195  ax-1cn 10196  ax-icn 10197  ax-addcl 10198  ax-addrcl 10199  ax-mulcl 10200  ax-mulrcl 10201  ax-mulcom 10202  ax-addass 10203  ax-mulass 10204  ax-distr 10205  ax-i2m1 10206  ax-1ne0 10207  ax-1rid 10208  ax-rnegex 10209  ax-rrecex 10210  ax-cnre 10211  ax-pre-lttri 10212  ax-pre-lttrn 10213  ax-pre-ltadd 10214  ax-pre-mulgt0 10215  ax-pre-sup 10216
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-fal 1637  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-int 4612  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-se 5209  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-isom 6040  df-riota 6754  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-om 7213  df-1st 7315  df-2nd 7316  df-wrecs 7559  df-recs 7621  df-rdg 7659  df-1o 7713  df-oadd 7717  df-er 7896  df-pm 8012  df-en 8110  df-dom 8111  df-sdom 8112  df-fin 8113  df-sup 8504  df-inf 8505  df-oi 8571  df-card 8965  df-pnf 10278  df-mnf 10279  df-xr 10280  df-ltxr 10281  df-le 10282  df-sub 10470  df-neg 10471  df-div 10887  df-nn 11223  df-2 11281  df-3 11282  df-n0 11495  df-z 11580  df-uz 11889  df-rp 12036  df-fz 12534  df-fzo 12674  df-fl 12801  df-seq 13009  df-exp 13068  df-hash 13322  df-cj 14047  df-re 14048  df-im 14049  df-sqrt 14183  df-abs 14184  df-clim 14427  df-rlim 14428  df-sum 14625
This theorem is referenced by:  omssubadd  30702  sge0ad2en  41165
  Copyright terms: Public domain W3C validator