MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  geo2lim Structured version   Visualization version   GIF version

Theorem geo2lim 15767
Description: The value of the infinite geometric series 2โ†‘-1 + 2โ†‘-2 +... , multiplied by a constant. (Contributed by Mario Carneiro, 15-Jun-2014.)
Hypothesis
Ref Expression
geo2lim.1 ๐น = (๐‘˜ โˆˆ โ„• โ†ฆ (๐ด / (2โ†‘๐‘˜)))
Assertion
Ref Expression
geo2lim (๐ด โˆˆ โ„‚ โ†’ seq1( + , ๐น) โ‡ ๐ด)
Distinct variable group:   ๐ด,๐‘˜
Allowed substitution hint:   ๐น(๐‘˜)

Proof of Theorem geo2lim
Dummy variables ๐‘— ๐‘› are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnuz 12813 . . 3 โ„• = (โ„คโ‰ฅโ€˜1)
2 1zzd 12541 . . 3 (๐ด โˆˆ โ„‚ โ†’ 1 โˆˆ โ„ค)
3 halfcn 12375 . . . . . . 7 (1 / 2) โˆˆ โ„‚
43a1i 11 . . . . . 6 (๐ด โˆˆ โ„‚ โ†’ (1 / 2) โˆˆ โ„‚)
5 halfre 12374 . . . . . . . . 9 (1 / 2) โˆˆ โ„
6 halfge0 12377 . . . . . . . . 9 0 โ‰ค (1 / 2)
7 absid 15188 . . . . . . . . 9 (((1 / 2) โˆˆ โ„ โˆง 0 โ‰ค (1 / 2)) โ†’ (absโ€˜(1 / 2)) = (1 / 2))
85, 6, 7mp2an 691 . . . . . . . 8 (absโ€˜(1 / 2)) = (1 / 2)
9 halflt1 12378 . . . . . . . 8 (1 / 2) < 1
108, 9eqbrtri 5131 . . . . . . 7 (absโ€˜(1 / 2)) < 1
1110a1i 11 . . . . . 6 (๐ด โˆˆ โ„‚ โ†’ (absโ€˜(1 / 2)) < 1)
124, 11expcnv 15756 . . . . 5 (๐ด โˆˆ โ„‚ โ†’ (๐‘˜ โˆˆ โ„•0 โ†ฆ ((1 / 2)โ†‘๐‘˜)) โ‡ 0)
13 id 22 . . . . 5 (๐ด โˆˆ โ„‚ โ†’ ๐ด โˆˆ โ„‚)
14 geo2lim.1 . . . . . . 7 ๐น = (๐‘˜ โˆˆ โ„• โ†ฆ (๐ด / (2โ†‘๐‘˜)))
15 nnex 12166 . . . . . . . 8 โ„• โˆˆ V
1615mptex 7178 . . . . . . 7 (๐‘˜ โˆˆ โ„• โ†ฆ (๐ด / (2โ†‘๐‘˜))) โˆˆ V
1714, 16eqeltri 2834 . . . . . 6 ๐น โˆˆ V
1817a1i 11 . . . . 5 (๐ด โˆˆ โ„‚ โ†’ ๐น โˆˆ V)
19 nnnn0 12427 . . . . . . . . 9 (๐‘— โˆˆ โ„• โ†’ ๐‘— โˆˆ โ„•0)
2019adantl 483 . . . . . . . 8 ((๐ด โˆˆ โ„‚ โˆง ๐‘— โˆˆ โ„•) โ†’ ๐‘— โˆˆ โ„•0)
21 oveq2 7370 . . . . . . . . 9 (๐‘˜ = ๐‘— โ†’ ((1 / 2)โ†‘๐‘˜) = ((1 / 2)โ†‘๐‘—))
22 eqid 2737 . . . . . . . . 9 (๐‘˜ โˆˆ โ„•0 โ†ฆ ((1 / 2)โ†‘๐‘˜)) = (๐‘˜ โˆˆ โ„•0 โ†ฆ ((1 / 2)โ†‘๐‘˜))
23 ovex 7395 . . . . . . . . 9 ((1 / 2)โ†‘๐‘—) โˆˆ V
2421, 22, 23fvmpt 6953 . . . . . . . 8 (๐‘— โˆˆ โ„•0 โ†’ ((๐‘˜ โˆˆ โ„•0 โ†ฆ ((1 / 2)โ†‘๐‘˜))โ€˜๐‘—) = ((1 / 2)โ†‘๐‘—))
2520, 24syl 17 . . . . . . 7 ((๐ด โˆˆ โ„‚ โˆง ๐‘— โˆˆ โ„•) โ†’ ((๐‘˜ โˆˆ โ„•0 โ†ฆ ((1 / 2)โ†‘๐‘˜))โ€˜๐‘—) = ((1 / 2)โ†‘๐‘—))
26 2cn 12235 . . . . . . . 8 2 โˆˆ โ„‚
27 2ne0 12264 . . . . . . . 8 2 โ‰  0
28 nnz 12527 . . . . . . . . 9 (๐‘— โˆˆ โ„• โ†’ ๐‘— โˆˆ โ„ค)
2928adantl 483 . . . . . . . 8 ((๐ด โˆˆ โ„‚ โˆง ๐‘— โˆˆ โ„•) โ†’ ๐‘— โˆˆ โ„ค)
30 exprec 14016 . . . . . . . 8 ((2 โˆˆ โ„‚ โˆง 2 โ‰  0 โˆง ๐‘— โˆˆ โ„ค) โ†’ ((1 / 2)โ†‘๐‘—) = (1 / (2โ†‘๐‘—)))
3126, 27, 29, 30mp3an12i 1466 . . . . . . 7 ((๐ด โˆˆ โ„‚ โˆง ๐‘— โˆˆ โ„•) โ†’ ((1 / 2)โ†‘๐‘—) = (1 / (2โ†‘๐‘—)))
3225, 31eqtrd 2777 . . . . . 6 ((๐ด โˆˆ โ„‚ โˆง ๐‘— โˆˆ โ„•) โ†’ ((๐‘˜ โˆˆ โ„•0 โ†ฆ ((1 / 2)โ†‘๐‘˜))โ€˜๐‘—) = (1 / (2โ†‘๐‘—)))
33 2nn 12233 . . . . . . . . 9 2 โˆˆ โ„•
34 nnexpcl 13987 . . . . . . . . 9 ((2 โˆˆ โ„• โˆง ๐‘— โˆˆ โ„•0) โ†’ (2โ†‘๐‘—) โˆˆ โ„•)
3533, 20, 34sylancr 588 . . . . . . . 8 ((๐ด โˆˆ โ„‚ โˆง ๐‘— โˆˆ โ„•) โ†’ (2โ†‘๐‘—) โˆˆ โ„•)
3635nnrecred 12211 . . . . . . 7 ((๐ด โˆˆ โ„‚ โˆง ๐‘— โˆˆ โ„•) โ†’ (1 / (2โ†‘๐‘—)) โˆˆ โ„)
3736recnd 11190 . . . . . 6 ((๐ด โˆˆ โ„‚ โˆง ๐‘— โˆˆ โ„•) โ†’ (1 / (2โ†‘๐‘—)) โˆˆ โ„‚)
3832, 37eqeltrd 2838 . . . . 5 ((๐ด โˆˆ โ„‚ โˆง ๐‘— โˆˆ โ„•) โ†’ ((๐‘˜ โˆˆ โ„•0 โ†ฆ ((1 / 2)โ†‘๐‘˜))โ€˜๐‘—) โˆˆ โ„‚)
39 simpl 484 . . . . . . 7 ((๐ด โˆˆ โ„‚ โˆง ๐‘— โˆˆ โ„•) โ†’ ๐ด โˆˆ โ„‚)
4035nncnd 12176 . . . . . . 7 ((๐ด โˆˆ โ„‚ โˆง ๐‘— โˆˆ โ„•) โ†’ (2โ†‘๐‘—) โˆˆ โ„‚)
4135nnne0d 12210 . . . . . . 7 ((๐ด โˆˆ โ„‚ โˆง ๐‘— โˆˆ โ„•) โ†’ (2โ†‘๐‘—) โ‰  0)
4239, 40, 41divrecd 11941 . . . . . 6 ((๐ด โˆˆ โ„‚ โˆง ๐‘— โˆˆ โ„•) โ†’ (๐ด / (2โ†‘๐‘—)) = (๐ด ยท (1 / (2โ†‘๐‘—))))
43 oveq2 7370 . . . . . . . . 9 (๐‘˜ = ๐‘— โ†’ (2โ†‘๐‘˜) = (2โ†‘๐‘—))
4443oveq2d 7378 . . . . . . . 8 (๐‘˜ = ๐‘— โ†’ (๐ด / (2โ†‘๐‘˜)) = (๐ด / (2โ†‘๐‘—)))
45 ovex 7395 . . . . . . . 8 (๐ด / (2โ†‘๐‘—)) โˆˆ V
4644, 14, 45fvmpt 6953 . . . . . . 7 (๐‘— โˆˆ โ„• โ†’ (๐นโ€˜๐‘—) = (๐ด / (2โ†‘๐‘—)))
4746adantl 483 . . . . . 6 ((๐ด โˆˆ โ„‚ โˆง ๐‘— โˆˆ โ„•) โ†’ (๐นโ€˜๐‘—) = (๐ด / (2โ†‘๐‘—)))
4832oveq2d 7378 . . . . . 6 ((๐ด โˆˆ โ„‚ โˆง ๐‘— โˆˆ โ„•) โ†’ (๐ด ยท ((๐‘˜ โˆˆ โ„•0 โ†ฆ ((1 / 2)โ†‘๐‘˜))โ€˜๐‘—)) = (๐ด ยท (1 / (2โ†‘๐‘—))))
4942, 47, 483eqtr4d 2787 . . . . 5 ((๐ด โˆˆ โ„‚ โˆง ๐‘— โˆˆ โ„•) โ†’ (๐นโ€˜๐‘—) = (๐ด ยท ((๐‘˜ โˆˆ โ„•0 โ†ฆ ((1 / 2)โ†‘๐‘˜))โ€˜๐‘—)))
501, 2, 12, 13, 18, 38, 49climmulc2 15526 . . . 4 (๐ด โˆˆ โ„‚ โ†’ ๐น โ‡ (๐ด ยท 0))
51 mul01 11341 . . . 4 (๐ด โˆˆ โ„‚ โ†’ (๐ด ยท 0) = 0)
5250, 51breqtrd 5136 . . 3 (๐ด โˆˆ โ„‚ โ†’ ๐น โ‡ 0)
53 seqex 13915 . . . 4 seq1( + , ๐น) โˆˆ V
5453a1i 11 . . 3 (๐ด โˆˆ โ„‚ โ†’ seq1( + , ๐น) โˆˆ V)
5539, 40, 41divcld 11938 . . . 4 ((๐ด โˆˆ โ„‚ โˆง ๐‘— โˆˆ โ„•) โ†’ (๐ด / (2โ†‘๐‘—)) โˆˆ โ„‚)
5647, 55eqeltrd 2838 . . 3 ((๐ด โˆˆ โ„‚ โˆง ๐‘— โˆˆ โ„•) โ†’ (๐นโ€˜๐‘—) โˆˆ โ„‚)
5747oveq2d 7378 . . . 4 ((๐ด โˆˆ โ„‚ โˆง ๐‘— โˆˆ โ„•) โ†’ (๐ด โˆ’ (๐นโ€˜๐‘—)) = (๐ด โˆ’ (๐ด / (2โ†‘๐‘—))))
58 geo2sum 15765 . . . . 5 ((๐‘— โˆˆ โ„• โˆง ๐ด โˆˆ โ„‚) โ†’ ฮฃ๐‘› โˆˆ (1...๐‘—)(๐ด / (2โ†‘๐‘›)) = (๐ด โˆ’ (๐ด / (2โ†‘๐‘—))))
5958ancoms 460 . . . 4 ((๐ด โˆˆ โ„‚ โˆง ๐‘— โˆˆ โ„•) โ†’ ฮฃ๐‘› โˆˆ (1...๐‘—)(๐ด / (2โ†‘๐‘›)) = (๐ด โˆ’ (๐ด / (2โ†‘๐‘—))))
60 elfznn 13477 . . . . . . 7 (๐‘› โˆˆ (1...๐‘—) โ†’ ๐‘› โˆˆ โ„•)
6160adantl 483 . . . . . 6 (((๐ด โˆˆ โ„‚ โˆง ๐‘— โˆˆ โ„•) โˆง ๐‘› โˆˆ (1...๐‘—)) โ†’ ๐‘› โˆˆ โ„•)
62 oveq2 7370 . . . . . . . 8 (๐‘˜ = ๐‘› โ†’ (2โ†‘๐‘˜) = (2โ†‘๐‘›))
6362oveq2d 7378 . . . . . . 7 (๐‘˜ = ๐‘› โ†’ (๐ด / (2โ†‘๐‘˜)) = (๐ด / (2โ†‘๐‘›)))
64 ovex 7395 . . . . . . 7 (๐ด / (2โ†‘๐‘›)) โˆˆ V
6563, 14, 64fvmpt 6953 . . . . . 6 (๐‘› โˆˆ โ„• โ†’ (๐นโ€˜๐‘›) = (๐ด / (2โ†‘๐‘›)))
6661, 65syl 17 . . . . 5 (((๐ด โˆˆ โ„‚ โˆง ๐‘— โˆˆ โ„•) โˆง ๐‘› โˆˆ (1...๐‘—)) โ†’ (๐นโ€˜๐‘›) = (๐ด / (2โ†‘๐‘›)))
67 simpr 486 . . . . . 6 ((๐ด โˆˆ โ„‚ โˆง ๐‘— โˆˆ โ„•) โ†’ ๐‘— โˆˆ โ„•)
6867, 1eleqtrdi 2848 . . . . 5 ((๐ด โˆˆ โ„‚ โˆง ๐‘— โˆˆ โ„•) โ†’ ๐‘— โˆˆ (โ„คโ‰ฅโ€˜1))
69 simpll 766 . . . . . 6 (((๐ด โˆˆ โ„‚ โˆง ๐‘— โˆˆ โ„•) โˆง ๐‘› โˆˆ (1...๐‘—)) โ†’ ๐ด โˆˆ โ„‚)
70 nnnn0 12427 . . . . . . . . 9 (๐‘› โˆˆ โ„• โ†’ ๐‘› โˆˆ โ„•0)
71 nnexpcl 13987 . . . . . . . . 9 ((2 โˆˆ โ„• โˆง ๐‘› โˆˆ โ„•0) โ†’ (2โ†‘๐‘›) โˆˆ โ„•)
7233, 70, 71sylancr 588 . . . . . . . 8 (๐‘› โˆˆ โ„• โ†’ (2โ†‘๐‘›) โˆˆ โ„•)
7361, 72syl 17 . . . . . . 7 (((๐ด โˆˆ โ„‚ โˆง ๐‘— โˆˆ โ„•) โˆง ๐‘› โˆˆ (1...๐‘—)) โ†’ (2โ†‘๐‘›) โˆˆ โ„•)
7473nncnd 12176 . . . . . 6 (((๐ด โˆˆ โ„‚ โˆง ๐‘— โˆˆ โ„•) โˆง ๐‘› โˆˆ (1...๐‘—)) โ†’ (2โ†‘๐‘›) โˆˆ โ„‚)
7573nnne0d 12210 . . . . . 6 (((๐ด โˆˆ โ„‚ โˆง ๐‘— โˆˆ โ„•) โˆง ๐‘› โˆˆ (1...๐‘—)) โ†’ (2โ†‘๐‘›) โ‰  0)
7669, 74, 75divcld 11938 . . . . 5 (((๐ด โˆˆ โ„‚ โˆง ๐‘— โˆˆ โ„•) โˆง ๐‘› โˆˆ (1...๐‘—)) โ†’ (๐ด / (2โ†‘๐‘›)) โˆˆ โ„‚)
7766, 68, 76fsumser 15622 . . . 4 ((๐ด โˆˆ โ„‚ โˆง ๐‘— โˆˆ โ„•) โ†’ ฮฃ๐‘› โˆˆ (1...๐‘—)(๐ด / (2โ†‘๐‘›)) = (seq1( + , ๐น)โ€˜๐‘—))
7857, 59, 773eqtr2rd 2784 . . 3 ((๐ด โˆˆ โ„‚ โˆง ๐‘— โˆˆ โ„•) โ†’ (seq1( + , ๐น)โ€˜๐‘—) = (๐ด โˆ’ (๐นโ€˜๐‘—)))
791, 2, 52, 13, 54, 56, 78climsubc2 15528 . 2 (๐ด โˆˆ โ„‚ โ†’ seq1( + , ๐น) โ‡ (๐ด โˆ’ 0))
80 subid1 11428 . 2 (๐ด โˆˆ โ„‚ โ†’ (๐ด โˆ’ 0) = ๐ด)
8179, 80breqtrd 5136 1 (๐ด โˆˆ โ„‚ โ†’ seq1( + , ๐น) โ‡ ๐ด)
Colors of variables: wff setvar class
Syntax hints:   โ†’ wi 4   โˆง wa 397   = wceq 1542   โˆˆ wcel 2107   โ‰  wne 2944  Vcvv 3448   class class class wbr 5110   โ†ฆ cmpt 5193  โ€˜cfv 6501  (class class class)co 7362  โ„‚cc 11056  โ„cr 11057  0cc0 11058  1c1 11059   + caddc 11061   ยท cmul 11063   < clt 11196   โ‰ค cle 11197   โˆ’ cmin 11392   / cdiv 11819  โ„•cn 12160  2c2 12215  โ„•0cn0 12420  โ„คcz 12506  โ„คโ‰ฅcuz 12770  ...cfz 13431  seqcseq 13913  โ†‘cexp 13974  abscabs 15126   โ‡ cli 15373  ฮฃcsu 15577
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2708  ax-rep 5247  ax-sep 5261  ax-nul 5268  ax-pow 5325  ax-pr 5389  ax-un 7677  ax-inf2 9584  ax-cnex 11114  ax-resscn 11115  ax-1cn 11116  ax-icn 11117  ax-addcl 11118  ax-addrcl 11119  ax-mulcl 11120  ax-mulrcl 11121  ax-mulcom 11122  ax-addass 11123  ax-mulass 11124  ax-distr 11125  ax-i2m1 11126  ax-1ne0 11127  ax-1rid 11128  ax-rnegex 11129  ax-rrecex 11130  ax-cnre 11131  ax-pre-lttri 11132  ax-pre-lttrn 11133  ax-pre-ltadd 11134  ax-pre-mulgt0 11135  ax-pre-sup 11136
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3066  df-rex 3075  df-rmo 3356  df-reu 3357  df-rab 3411  df-v 3450  df-sbc 3745  df-csb 3861  df-dif 3918  df-un 3920  df-in 3922  df-ss 3932  df-pss 3934  df-nul 4288  df-if 4492  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4871  df-int 4913  df-iun 4961  df-br 5111  df-opab 5173  df-mpt 5194  df-tr 5228  df-id 5536  df-eprel 5542  df-po 5550  df-so 5551  df-fr 5593  df-se 5594  df-we 5595  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6258  df-ord 6325  df-on 6326  df-lim 6327  df-suc 6328  df-iota 6453  df-fun 6503  df-fn 6504  df-f 6505  df-f1 6506  df-fo 6507  df-f1o 6508  df-fv 6509  df-isom 6510  df-riota 7318  df-ov 7365  df-oprab 7366  df-mpo 7367  df-om 7808  df-1st 7926  df-2nd 7927  df-frecs 8217  df-wrecs 8248  df-recs 8322  df-rdg 8361  df-1o 8417  df-er 8655  df-pm 8775  df-en 8891  df-dom 8892  df-sdom 8893  df-fin 8894  df-sup 9385  df-inf 9386  df-oi 9453  df-card 9882  df-pnf 11198  df-mnf 11199  df-xr 11200  df-ltxr 11201  df-le 11202  df-sub 11394  df-neg 11395  df-div 11820  df-nn 12161  df-2 12223  df-3 12224  df-n0 12421  df-z 12507  df-uz 12771  df-rp 12923  df-fz 13432  df-fzo 13575  df-fl 13704  df-seq 13914  df-exp 13975  df-hash 14238  df-cj 14991  df-re 14992  df-im 14993  df-sqrt 15127  df-abs 15128  df-clim 15377  df-rlim 15378  df-sum 15578
This theorem is referenced by:  omssubadd  32940  sge0ad2en  44746
  Copyright terms: Public domain W3C validator