MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  geo2lim Structured version   Visualization version   GIF version

Theorem geo2lim 15825
Description: The value of the infinite geometric series 2โ†‘-1 + 2โ†‘-2 +... , multiplied by a constant. (Contributed by Mario Carneiro, 15-Jun-2014.)
Hypothesis
Ref Expression
geo2lim.1 ๐น = (๐‘˜ โˆˆ โ„• โ†ฆ (๐ด / (2โ†‘๐‘˜)))
Assertion
Ref Expression
geo2lim (๐ด โˆˆ โ„‚ โ†’ seq1( + , ๐น) โ‡ ๐ด)
Distinct variable group:   ๐ด,๐‘˜
Allowed substitution hint:   ๐น(๐‘˜)

Proof of Theorem geo2lim
Dummy variables ๐‘— ๐‘› are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnuz 12869 . . 3 โ„• = (โ„คโ‰ฅโ€˜1)
2 1zzd 12597 . . 3 (๐ด โˆˆ โ„‚ โ†’ 1 โˆˆ โ„ค)
3 halfcn 12431 . . . . . . 7 (1 / 2) โˆˆ โ„‚
43a1i 11 . . . . . 6 (๐ด โˆˆ โ„‚ โ†’ (1 / 2) โˆˆ โ„‚)
5 halfre 12430 . . . . . . . . 9 (1 / 2) โˆˆ โ„
6 halfge0 12433 . . . . . . . . 9 0 โ‰ค (1 / 2)
7 absid 15247 . . . . . . . . 9 (((1 / 2) โˆˆ โ„ โˆง 0 โ‰ค (1 / 2)) โ†’ (absโ€˜(1 / 2)) = (1 / 2))
85, 6, 7mp2an 688 . . . . . . . 8 (absโ€˜(1 / 2)) = (1 / 2)
9 halflt1 12434 . . . . . . . 8 (1 / 2) < 1
108, 9eqbrtri 5168 . . . . . . 7 (absโ€˜(1 / 2)) < 1
1110a1i 11 . . . . . 6 (๐ด โˆˆ โ„‚ โ†’ (absโ€˜(1 / 2)) < 1)
124, 11expcnv 15814 . . . . 5 (๐ด โˆˆ โ„‚ โ†’ (๐‘˜ โˆˆ โ„•0 โ†ฆ ((1 / 2)โ†‘๐‘˜)) โ‡ 0)
13 id 22 . . . . 5 (๐ด โˆˆ โ„‚ โ†’ ๐ด โˆˆ โ„‚)
14 geo2lim.1 . . . . . . 7 ๐น = (๐‘˜ โˆˆ โ„• โ†ฆ (๐ด / (2โ†‘๐‘˜)))
15 nnex 12222 . . . . . . . 8 โ„• โˆˆ V
1615mptex 7226 . . . . . . 7 (๐‘˜ โˆˆ โ„• โ†ฆ (๐ด / (2โ†‘๐‘˜))) โˆˆ V
1714, 16eqeltri 2827 . . . . . 6 ๐น โˆˆ V
1817a1i 11 . . . . 5 (๐ด โˆˆ โ„‚ โ†’ ๐น โˆˆ V)
19 nnnn0 12483 . . . . . . . . 9 (๐‘— โˆˆ โ„• โ†’ ๐‘— โˆˆ โ„•0)
2019adantl 480 . . . . . . . 8 ((๐ด โˆˆ โ„‚ โˆง ๐‘— โˆˆ โ„•) โ†’ ๐‘— โˆˆ โ„•0)
21 oveq2 7419 . . . . . . . . 9 (๐‘˜ = ๐‘— โ†’ ((1 / 2)โ†‘๐‘˜) = ((1 / 2)โ†‘๐‘—))
22 eqid 2730 . . . . . . . . 9 (๐‘˜ โˆˆ โ„•0 โ†ฆ ((1 / 2)โ†‘๐‘˜)) = (๐‘˜ โˆˆ โ„•0 โ†ฆ ((1 / 2)โ†‘๐‘˜))
23 ovex 7444 . . . . . . . . 9 ((1 / 2)โ†‘๐‘—) โˆˆ V
2421, 22, 23fvmpt 6997 . . . . . . . 8 (๐‘— โˆˆ โ„•0 โ†’ ((๐‘˜ โˆˆ โ„•0 โ†ฆ ((1 / 2)โ†‘๐‘˜))โ€˜๐‘—) = ((1 / 2)โ†‘๐‘—))
2520, 24syl 17 . . . . . . 7 ((๐ด โˆˆ โ„‚ โˆง ๐‘— โˆˆ โ„•) โ†’ ((๐‘˜ โˆˆ โ„•0 โ†ฆ ((1 / 2)โ†‘๐‘˜))โ€˜๐‘—) = ((1 / 2)โ†‘๐‘—))
26 2cn 12291 . . . . . . . 8 2 โˆˆ โ„‚
27 2ne0 12320 . . . . . . . 8 2 โ‰  0
28 nnz 12583 . . . . . . . . 9 (๐‘— โˆˆ โ„• โ†’ ๐‘— โˆˆ โ„ค)
2928adantl 480 . . . . . . . 8 ((๐ด โˆˆ โ„‚ โˆง ๐‘— โˆˆ โ„•) โ†’ ๐‘— โˆˆ โ„ค)
30 exprec 14073 . . . . . . . 8 ((2 โˆˆ โ„‚ โˆง 2 โ‰  0 โˆง ๐‘— โˆˆ โ„ค) โ†’ ((1 / 2)โ†‘๐‘—) = (1 / (2โ†‘๐‘—)))
3126, 27, 29, 30mp3an12i 1463 . . . . . . 7 ((๐ด โˆˆ โ„‚ โˆง ๐‘— โˆˆ โ„•) โ†’ ((1 / 2)โ†‘๐‘—) = (1 / (2โ†‘๐‘—)))
3225, 31eqtrd 2770 . . . . . 6 ((๐ด โˆˆ โ„‚ โˆง ๐‘— โˆˆ โ„•) โ†’ ((๐‘˜ โˆˆ โ„•0 โ†ฆ ((1 / 2)โ†‘๐‘˜))โ€˜๐‘—) = (1 / (2โ†‘๐‘—)))
33 2nn 12289 . . . . . . . . 9 2 โˆˆ โ„•
34 nnexpcl 14044 . . . . . . . . 9 ((2 โˆˆ โ„• โˆง ๐‘— โˆˆ โ„•0) โ†’ (2โ†‘๐‘—) โˆˆ โ„•)
3533, 20, 34sylancr 585 . . . . . . . 8 ((๐ด โˆˆ โ„‚ โˆง ๐‘— โˆˆ โ„•) โ†’ (2โ†‘๐‘—) โˆˆ โ„•)
3635nnrecred 12267 . . . . . . 7 ((๐ด โˆˆ โ„‚ โˆง ๐‘— โˆˆ โ„•) โ†’ (1 / (2โ†‘๐‘—)) โˆˆ โ„)
3736recnd 11246 . . . . . 6 ((๐ด โˆˆ โ„‚ โˆง ๐‘— โˆˆ โ„•) โ†’ (1 / (2โ†‘๐‘—)) โˆˆ โ„‚)
3832, 37eqeltrd 2831 . . . . 5 ((๐ด โˆˆ โ„‚ โˆง ๐‘— โˆˆ โ„•) โ†’ ((๐‘˜ โˆˆ โ„•0 โ†ฆ ((1 / 2)โ†‘๐‘˜))โ€˜๐‘—) โˆˆ โ„‚)
39 simpl 481 . . . . . . 7 ((๐ด โˆˆ โ„‚ โˆง ๐‘— โˆˆ โ„•) โ†’ ๐ด โˆˆ โ„‚)
4035nncnd 12232 . . . . . . 7 ((๐ด โˆˆ โ„‚ โˆง ๐‘— โˆˆ โ„•) โ†’ (2โ†‘๐‘—) โˆˆ โ„‚)
4135nnne0d 12266 . . . . . . 7 ((๐ด โˆˆ โ„‚ โˆง ๐‘— โˆˆ โ„•) โ†’ (2โ†‘๐‘—) โ‰  0)
4239, 40, 41divrecd 11997 . . . . . 6 ((๐ด โˆˆ โ„‚ โˆง ๐‘— โˆˆ โ„•) โ†’ (๐ด / (2โ†‘๐‘—)) = (๐ด ยท (1 / (2โ†‘๐‘—))))
43 oveq2 7419 . . . . . . . . 9 (๐‘˜ = ๐‘— โ†’ (2โ†‘๐‘˜) = (2โ†‘๐‘—))
4443oveq2d 7427 . . . . . . . 8 (๐‘˜ = ๐‘— โ†’ (๐ด / (2โ†‘๐‘˜)) = (๐ด / (2โ†‘๐‘—)))
45 ovex 7444 . . . . . . . 8 (๐ด / (2โ†‘๐‘—)) โˆˆ V
4644, 14, 45fvmpt 6997 . . . . . . 7 (๐‘— โˆˆ โ„• โ†’ (๐นโ€˜๐‘—) = (๐ด / (2โ†‘๐‘—)))
4746adantl 480 . . . . . 6 ((๐ด โˆˆ โ„‚ โˆง ๐‘— โˆˆ โ„•) โ†’ (๐นโ€˜๐‘—) = (๐ด / (2โ†‘๐‘—)))
4832oveq2d 7427 . . . . . 6 ((๐ด โˆˆ โ„‚ โˆง ๐‘— โˆˆ โ„•) โ†’ (๐ด ยท ((๐‘˜ โˆˆ โ„•0 โ†ฆ ((1 / 2)โ†‘๐‘˜))โ€˜๐‘—)) = (๐ด ยท (1 / (2โ†‘๐‘—))))
4942, 47, 483eqtr4d 2780 . . . . 5 ((๐ด โˆˆ โ„‚ โˆง ๐‘— โˆˆ โ„•) โ†’ (๐นโ€˜๐‘—) = (๐ด ยท ((๐‘˜ โˆˆ โ„•0 โ†ฆ ((1 / 2)โ†‘๐‘˜))โ€˜๐‘—)))
501, 2, 12, 13, 18, 38, 49climmulc2 15585 . . . 4 (๐ด โˆˆ โ„‚ โ†’ ๐น โ‡ (๐ด ยท 0))
51 mul01 11397 . . . 4 (๐ด โˆˆ โ„‚ โ†’ (๐ด ยท 0) = 0)
5250, 51breqtrd 5173 . . 3 (๐ด โˆˆ โ„‚ โ†’ ๐น โ‡ 0)
53 seqex 13972 . . . 4 seq1( + , ๐น) โˆˆ V
5453a1i 11 . . 3 (๐ด โˆˆ โ„‚ โ†’ seq1( + , ๐น) โˆˆ V)
5539, 40, 41divcld 11994 . . . 4 ((๐ด โˆˆ โ„‚ โˆง ๐‘— โˆˆ โ„•) โ†’ (๐ด / (2โ†‘๐‘—)) โˆˆ โ„‚)
5647, 55eqeltrd 2831 . . 3 ((๐ด โˆˆ โ„‚ โˆง ๐‘— โˆˆ โ„•) โ†’ (๐นโ€˜๐‘—) โˆˆ โ„‚)
5747oveq2d 7427 . . . 4 ((๐ด โˆˆ โ„‚ โˆง ๐‘— โˆˆ โ„•) โ†’ (๐ด โˆ’ (๐นโ€˜๐‘—)) = (๐ด โˆ’ (๐ด / (2โ†‘๐‘—))))
58 geo2sum 15823 . . . . 5 ((๐‘— โˆˆ โ„• โˆง ๐ด โˆˆ โ„‚) โ†’ ฮฃ๐‘› โˆˆ (1...๐‘—)(๐ด / (2โ†‘๐‘›)) = (๐ด โˆ’ (๐ด / (2โ†‘๐‘—))))
5958ancoms 457 . . . 4 ((๐ด โˆˆ โ„‚ โˆง ๐‘— โˆˆ โ„•) โ†’ ฮฃ๐‘› โˆˆ (1...๐‘—)(๐ด / (2โ†‘๐‘›)) = (๐ด โˆ’ (๐ด / (2โ†‘๐‘—))))
60 elfznn 13534 . . . . . . 7 (๐‘› โˆˆ (1...๐‘—) โ†’ ๐‘› โˆˆ โ„•)
6160adantl 480 . . . . . 6 (((๐ด โˆˆ โ„‚ โˆง ๐‘— โˆˆ โ„•) โˆง ๐‘› โˆˆ (1...๐‘—)) โ†’ ๐‘› โˆˆ โ„•)
62 oveq2 7419 . . . . . . . 8 (๐‘˜ = ๐‘› โ†’ (2โ†‘๐‘˜) = (2โ†‘๐‘›))
6362oveq2d 7427 . . . . . . 7 (๐‘˜ = ๐‘› โ†’ (๐ด / (2โ†‘๐‘˜)) = (๐ด / (2โ†‘๐‘›)))
64 ovex 7444 . . . . . . 7 (๐ด / (2โ†‘๐‘›)) โˆˆ V
6563, 14, 64fvmpt 6997 . . . . . 6 (๐‘› โˆˆ โ„• โ†’ (๐นโ€˜๐‘›) = (๐ด / (2โ†‘๐‘›)))
6661, 65syl 17 . . . . 5 (((๐ด โˆˆ โ„‚ โˆง ๐‘— โˆˆ โ„•) โˆง ๐‘› โˆˆ (1...๐‘—)) โ†’ (๐นโ€˜๐‘›) = (๐ด / (2โ†‘๐‘›)))
67 simpr 483 . . . . . 6 ((๐ด โˆˆ โ„‚ โˆง ๐‘— โˆˆ โ„•) โ†’ ๐‘— โˆˆ โ„•)
6867, 1eleqtrdi 2841 . . . . 5 ((๐ด โˆˆ โ„‚ โˆง ๐‘— โˆˆ โ„•) โ†’ ๐‘— โˆˆ (โ„คโ‰ฅโ€˜1))
69 simpll 763 . . . . . 6 (((๐ด โˆˆ โ„‚ โˆง ๐‘— โˆˆ โ„•) โˆง ๐‘› โˆˆ (1...๐‘—)) โ†’ ๐ด โˆˆ โ„‚)
70 nnnn0 12483 . . . . . . . . 9 (๐‘› โˆˆ โ„• โ†’ ๐‘› โˆˆ โ„•0)
71 nnexpcl 14044 . . . . . . . . 9 ((2 โˆˆ โ„• โˆง ๐‘› โˆˆ โ„•0) โ†’ (2โ†‘๐‘›) โˆˆ โ„•)
7233, 70, 71sylancr 585 . . . . . . . 8 (๐‘› โˆˆ โ„• โ†’ (2โ†‘๐‘›) โˆˆ โ„•)
7361, 72syl 17 . . . . . . 7 (((๐ด โˆˆ โ„‚ โˆง ๐‘— โˆˆ โ„•) โˆง ๐‘› โˆˆ (1...๐‘—)) โ†’ (2โ†‘๐‘›) โˆˆ โ„•)
7473nncnd 12232 . . . . . 6 (((๐ด โˆˆ โ„‚ โˆง ๐‘— โˆˆ โ„•) โˆง ๐‘› โˆˆ (1...๐‘—)) โ†’ (2โ†‘๐‘›) โˆˆ โ„‚)
7573nnne0d 12266 . . . . . 6 (((๐ด โˆˆ โ„‚ โˆง ๐‘— โˆˆ โ„•) โˆง ๐‘› โˆˆ (1...๐‘—)) โ†’ (2โ†‘๐‘›) โ‰  0)
7669, 74, 75divcld 11994 . . . . 5 (((๐ด โˆˆ โ„‚ โˆง ๐‘— โˆˆ โ„•) โˆง ๐‘› โˆˆ (1...๐‘—)) โ†’ (๐ด / (2โ†‘๐‘›)) โˆˆ โ„‚)
7766, 68, 76fsumser 15680 . . . 4 ((๐ด โˆˆ โ„‚ โˆง ๐‘— โˆˆ โ„•) โ†’ ฮฃ๐‘› โˆˆ (1...๐‘—)(๐ด / (2โ†‘๐‘›)) = (seq1( + , ๐น)โ€˜๐‘—))
7857, 59, 773eqtr2rd 2777 . . 3 ((๐ด โˆˆ โ„‚ โˆง ๐‘— โˆˆ โ„•) โ†’ (seq1( + , ๐น)โ€˜๐‘—) = (๐ด โˆ’ (๐นโ€˜๐‘—)))
791, 2, 52, 13, 54, 56, 78climsubc2 15587 . 2 (๐ด โˆˆ โ„‚ โ†’ seq1( + , ๐น) โ‡ (๐ด โˆ’ 0))
80 subid1 11484 . 2 (๐ด โˆˆ โ„‚ โ†’ (๐ด โˆ’ 0) = ๐ด)
8179, 80breqtrd 5173 1 (๐ด โˆˆ โ„‚ โ†’ seq1( + , ๐น) โ‡ ๐ด)
Colors of variables: wff setvar class
Syntax hints:   โ†’ wi 4   โˆง wa 394   = wceq 1539   โˆˆ wcel 2104   โ‰  wne 2938  Vcvv 3472   class class class wbr 5147   โ†ฆ cmpt 5230  โ€˜cfv 6542  (class class class)co 7411  โ„‚cc 11110  โ„cr 11111  0cc0 11112  1c1 11113   + caddc 11115   ยท cmul 11117   < clt 11252   โ‰ค cle 11253   โˆ’ cmin 11448   / cdiv 11875  โ„•cn 12216  2c2 12271  โ„•0cn0 12476  โ„คcz 12562  โ„คโ‰ฅcuz 12826  ...cfz 13488  seqcseq 13970  โ†‘cexp 14031  abscabs 15185   โ‡ cli 15432  ฮฃcsu 15636
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7727  ax-inf2 9638  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189  ax-pre-sup 11190
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3374  df-reu 3375  df-rab 3431  df-v 3474  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-se 5631  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-isom 6551  df-riota 7367  df-ov 7414  df-oprab 7415  df-mpo 7416  df-om 7858  df-1st 7977  df-2nd 7978  df-frecs 8268  df-wrecs 8299  df-recs 8373  df-rdg 8412  df-1o 8468  df-er 8705  df-pm 8825  df-en 8942  df-dom 8943  df-sdom 8944  df-fin 8945  df-sup 9439  df-inf 9440  df-oi 9507  df-card 9936  df-pnf 11254  df-mnf 11255  df-xr 11256  df-ltxr 11257  df-le 11258  df-sub 11450  df-neg 11451  df-div 11876  df-nn 12217  df-2 12279  df-3 12280  df-n0 12477  df-z 12563  df-uz 12827  df-rp 12979  df-fz 13489  df-fzo 13632  df-fl 13761  df-seq 13971  df-exp 14032  df-hash 14295  df-cj 15050  df-re 15051  df-im 15052  df-sqrt 15186  df-abs 15187  df-clim 15436  df-rlim 15437  df-sum 15637
This theorem is referenced by:  omssubadd  33597  sge0ad2en  45445
  Copyright terms: Public domain W3C validator