| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | monoord2.1 | . . . 4
⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) | 
| 2 |  | monoord2.2 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → (𝐹‘𝑘) ∈ ℝ) | 
| 3 | 2 | renegcld 11691 | . . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → -(𝐹‘𝑘) ∈ ℝ) | 
| 4 | 3 | fmpttd 7134 | . . . . 5
⊢ (𝜑 → (𝑘 ∈ (𝑀...𝑁) ↦ -(𝐹‘𝑘)):(𝑀...𝑁)⟶ℝ) | 
| 5 | 4 | ffvelcdmda 7103 | . . . 4
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀...𝑁)) → ((𝑘 ∈ (𝑀...𝑁) ↦ -(𝐹‘𝑘))‘𝑛) ∈ ℝ) | 
| 6 |  | monoord2.3 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...(𝑁 − 1))) → (𝐹‘(𝑘 + 1)) ≤ (𝐹‘𝑘)) | 
| 7 | 6 | ralrimiva 3145 | . . . . . . . 8
⊢ (𝜑 → ∀𝑘 ∈ (𝑀...(𝑁 − 1))(𝐹‘(𝑘 + 1)) ≤ (𝐹‘𝑘)) | 
| 8 |  | fvoveq1 7455 | . . . . . . . . . 10
⊢ (𝑘 = 𝑛 → (𝐹‘(𝑘 + 1)) = (𝐹‘(𝑛 + 1))) | 
| 9 |  | fveq2 6905 | . . . . . . . . . 10
⊢ (𝑘 = 𝑛 → (𝐹‘𝑘) = (𝐹‘𝑛)) | 
| 10 | 8, 9 | breq12d 5155 | . . . . . . . . 9
⊢ (𝑘 = 𝑛 → ((𝐹‘(𝑘 + 1)) ≤ (𝐹‘𝑘) ↔ (𝐹‘(𝑛 + 1)) ≤ (𝐹‘𝑛))) | 
| 11 | 10 | cbvralvw 3236 | . . . . . . . 8
⊢
(∀𝑘 ∈
(𝑀...(𝑁 − 1))(𝐹‘(𝑘 + 1)) ≤ (𝐹‘𝑘) ↔ ∀𝑛 ∈ (𝑀...(𝑁 − 1))(𝐹‘(𝑛 + 1)) ≤ (𝐹‘𝑛)) | 
| 12 | 7, 11 | sylib 218 | . . . . . . 7
⊢ (𝜑 → ∀𝑛 ∈ (𝑀...(𝑁 − 1))(𝐹‘(𝑛 + 1)) ≤ (𝐹‘𝑛)) | 
| 13 | 12 | r19.21bi 3250 | . . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀...(𝑁 − 1))) → (𝐹‘(𝑛 + 1)) ≤ (𝐹‘𝑛)) | 
| 14 |  | fveq2 6905 | . . . . . . . . 9
⊢ (𝑘 = (𝑛 + 1) → (𝐹‘𝑘) = (𝐹‘(𝑛 + 1))) | 
| 15 | 14 | eleq1d 2825 | . . . . . . . 8
⊢ (𝑘 = (𝑛 + 1) → ((𝐹‘𝑘) ∈ ℝ ↔ (𝐹‘(𝑛 + 1)) ∈ ℝ)) | 
| 16 | 2 | ralrimiva 3145 | . . . . . . . . 9
⊢ (𝜑 → ∀𝑘 ∈ (𝑀...𝑁)(𝐹‘𝑘) ∈ ℝ) | 
| 17 | 16 | adantr 480 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀...(𝑁 − 1))) → ∀𝑘 ∈ (𝑀...𝑁)(𝐹‘𝑘) ∈ ℝ) | 
| 18 |  | fzp1elp1 13618 | . . . . . . . . . 10
⊢ (𝑛 ∈ (𝑀...(𝑁 − 1)) → (𝑛 + 1) ∈ (𝑀...((𝑁 − 1) + 1))) | 
| 19 | 18 | adantl 481 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀...(𝑁 − 1))) → (𝑛 + 1) ∈ (𝑀...((𝑁 − 1) + 1))) | 
| 20 |  | eluzelz 12889 | . . . . . . . . . . . . . 14
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → 𝑁 ∈ ℤ) | 
| 21 | 1, 20 | syl 17 | . . . . . . . . . . . . 13
⊢ (𝜑 → 𝑁 ∈ ℤ) | 
| 22 | 21 | zcnd 12725 | . . . . . . . . . . . 12
⊢ (𝜑 → 𝑁 ∈ ℂ) | 
| 23 |  | ax-1cn 11214 | . . . . . . . . . . . 12
⊢ 1 ∈
ℂ | 
| 24 |  | npcan 11518 | . . . . . . . . . . . 12
⊢ ((𝑁 ∈ ℂ ∧ 1 ∈
ℂ) → ((𝑁 −
1) + 1) = 𝑁) | 
| 25 | 22, 23, 24 | sylancl 586 | . . . . . . . . . . 11
⊢ (𝜑 → ((𝑁 − 1) + 1) = 𝑁) | 
| 26 | 25 | oveq2d 7448 | . . . . . . . . . 10
⊢ (𝜑 → (𝑀...((𝑁 − 1) + 1)) = (𝑀...𝑁)) | 
| 27 | 26 | adantr 480 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀...(𝑁 − 1))) → (𝑀...((𝑁 − 1) + 1)) = (𝑀...𝑁)) | 
| 28 | 19, 27 | eleqtrd 2842 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀...(𝑁 − 1))) → (𝑛 + 1) ∈ (𝑀...𝑁)) | 
| 29 | 15, 17, 28 | rspcdva 3622 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀...(𝑁 − 1))) → (𝐹‘(𝑛 + 1)) ∈ ℝ) | 
| 30 | 9 | eleq1d 2825 | . . . . . . . 8
⊢ (𝑘 = 𝑛 → ((𝐹‘𝑘) ∈ ℝ ↔ (𝐹‘𝑛) ∈ ℝ)) | 
| 31 |  | fzssp1 13608 | . . . . . . . . . 10
⊢ (𝑀...(𝑁 − 1)) ⊆ (𝑀...((𝑁 − 1) + 1)) | 
| 32 | 31, 26 | sseqtrid 4025 | . . . . . . . . 9
⊢ (𝜑 → (𝑀...(𝑁 − 1)) ⊆ (𝑀...𝑁)) | 
| 33 | 32 | sselda 3982 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀...(𝑁 − 1))) → 𝑛 ∈ (𝑀...𝑁)) | 
| 34 | 30, 17, 33 | rspcdva 3622 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀...(𝑁 − 1))) → (𝐹‘𝑛) ∈ ℝ) | 
| 35 | 29, 34 | lenegd 11843 | . . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀...(𝑁 − 1))) → ((𝐹‘(𝑛 + 1)) ≤ (𝐹‘𝑛) ↔ -(𝐹‘𝑛) ≤ -(𝐹‘(𝑛 + 1)))) | 
| 36 | 13, 35 | mpbid 232 | . . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀...(𝑁 − 1))) → -(𝐹‘𝑛) ≤ -(𝐹‘(𝑛 + 1))) | 
| 37 | 9 | negeqd 11503 | . . . . . . 7
⊢ (𝑘 = 𝑛 → -(𝐹‘𝑘) = -(𝐹‘𝑛)) | 
| 38 |  | eqid 2736 | . . . . . . 7
⊢ (𝑘 ∈ (𝑀...𝑁) ↦ -(𝐹‘𝑘)) = (𝑘 ∈ (𝑀...𝑁) ↦ -(𝐹‘𝑘)) | 
| 39 |  | negex 11507 | . . . . . . 7
⊢ -(𝐹‘𝑛) ∈ V | 
| 40 | 37, 38, 39 | fvmpt 7015 | . . . . . 6
⊢ (𝑛 ∈ (𝑀...𝑁) → ((𝑘 ∈ (𝑀...𝑁) ↦ -(𝐹‘𝑘))‘𝑛) = -(𝐹‘𝑛)) | 
| 41 | 33, 40 | syl 17 | . . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀...(𝑁 − 1))) → ((𝑘 ∈ (𝑀...𝑁) ↦ -(𝐹‘𝑘))‘𝑛) = -(𝐹‘𝑛)) | 
| 42 | 14 | negeqd 11503 | . . . . . . 7
⊢ (𝑘 = (𝑛 + 1) → -(𝐹‘𝑘) = -(𝐹‘(𝑛 + 1))) | 
| 43 |  | negex 11507 | . . . . . . 7
⊢ -(𝐹‘(𝑛 + 1)) ∈ V | 
| 44 | 42, 38, 43 | fvmpt 7015 | . . . . . 6
⊢ ((𝑛 + 1) ∈ (𝑀...𝑁) → ((𝑘 ∈ (𝑀...𝑁) ↦ -(𝐹‘𝑘))‘(𝑛 + 1)) = -(𝐹‘(𝑛 + 1))) | 
| 45 | 28, 44 | syl 17 | . . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀...(𝑁 − 1))) → ((𝑘 ∈ (𝑀...𝑁) ↦ -(𝐹‘𝑘))‘(𝑛 + 1)) = -(𝐹‘(𝑛 + 1))) | 
| 46 | 36, 41, 45 | 3brtr4d 5174 | . . . 4
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀...(𝑁 − 1))) → ((𝑘 ∈ (𝑀...𝑁) ↦ -(𝐹‘𝑘))‘𝑛) ≤ ((𝑘 ∈ (𝑀...𝑁) ↦ -(𝐹‘𝑘))‘(𝑛 + 1))) | 
| 47 | 1, 5, 46 | monoord 14074 | . . 3
⊢ (𝜑 → ((𝑘 ∈ (𝑀...𝑁) ↦ -(𝐹‘𝑘))‘𝑀) ≤ ((𝑘 ∈ (𝑀...𝑁) ↦ -(𝐹‘𝑘))‘𝑁)) | 
| 48 |  | eluzfz1 13572 | . . . . 5
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → 𝑀 ∈ (𝑀...𝑁)) | 
| 49 | 1, 48 | syl 17 | . . . 4
⊢ (𝜑 → 𝑀 ∈ (𝑀...𝑁)) | 
| 50 |  | fveq2 6905 | . . . . . 6
⊢ (𝑘 = 𝑀 → (𝐹‘𝑘) = (𝐹‘𝑀)) | 
| 51 | 50 | negeqd 11503 | . . . . 5
⊢ (𝑘 = 𝑀 → -(𝐹‘𝑘) = -(𝐹‘𝑀)) | 
| 52 |  | negex 11507 | . . . . 5
⊢ -(𝐹‘𝑀) ∈ V | 
| 53 | 51, 38, 52 | fvmpt 7015 | . . . 4
⊢ (𝑀 ∈ (𝑀...𝑁) → ((𝑘 ∈ (𝑀...𝑁) ↦ -(𝐹‘𝑘))‘𝑀) = -(𝐹‘𝑀)) | 
| 54 | 49, 53 | syl 17 | . . 3
⊢ (𝜑 → ((𝑘 ∈ (𝑀...𝑁) ↦ -(𝐹‘𝑘))‘𝑀) = -(𝐹‘𝑀)) | 
| 55 |  | eluzfz2 13573 | . . . . 5
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → 𝑁 ∈ (𝑀...𝑁)) | 
| 56 | 1, 55 | syl 17 | . . . 4
⊢ (𝜑 → 𝑁 ∈ (𝑀...𝑁)) | 
| 57 |  | fveq2 6905 | . . . . . 6
⊢ (𝑘 = 𝑁 → (𝐹‘𝑘) = (𝐹‘𝑁)) | 
| 58 | 57 | negeqd 11503 | . . . . 5
⊢ (𝑘 = 𝑁 → -(𝐹‘𝑘) = -(𝐹‘𝑁)) | 
| 59 |  | negex 11507 | . . . . 5
⊢ -(𝐹‘𝑁) ∈ V | 
| 60 | 58, 38, 59 | fvmpt 7015 | . . . 4
⊢ (𝑁 ∈ (𝑀...𝑁) → ((𝑘 ∈ (𝑀...𝑁) ↦ -(𝐹‘𝑘))‘𝑁) = -(𝐹‘𝑁)) | 
| 61 | 56, 60 | syl 17 | . . 3
⊢ (𝜑 → ((𝑘 ∈ (𝑀...𝑁) ↦ -(𝐹‘𝑘))‘𝑁) = -(𝐹‘𝑁)) | 
| 62 | 47, 54, 61 | 3brtr3d 5173 | . 2
⊢ (𝜑 → -(𝐹‘𝑀) ≤ -(𝐹‘𝑁)) | 
| 63 | 57 | eleq1d 2825 | . . . 4
⊢ (𝑘 = 𝑁 → ((𝐹‘𝑘) ∈ ℝ ↔ (𝐹‘𝑁) ∈ ℝ)) | 
| 64 | 63, 16, 56 | rspcdva 3622 | . . 3
⊢ (𝜑 → (𝐹‘𝑁) ∈ ℝ) | 
| 65 | 50 | eleq1d 2825 | . . . 4
⊢ (𝑘 = 𝑀 → ((𝐹‘𝑘) ∈ ℝ ↔ (𝐹‘𝑀) ∈ ℝ)) | 
| 66 | 65, 16, 49 | rspcdva 3622 | . . 3
⊢ (𝜑 → (𝐹‘𝑀) ∈ ℝ) | 
| 67 | 64, 66 | lenegd 11843 | . 2
⊢ (𝜑 → ((𝐹‘𝑁) ≤ (𝐹‘𝑀) ↔ -(𝐹‘𝑀) ≤ -(𝐹‘𝑁))) | 
| 68 | 62, 67 | mpbird 257 | 1
⊢ (𝜑 → (𝐹‘𝑁) ≤ (𝐹‘𝑀)) |