Step | Hyp | Ref
| Expression |
1 | | monoord2.1 |
. . . 4
⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) |
2 | | monoord2.2 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → (𝐹‘𝑘) ∈ ℝ) |
3 | 2 | renegcld 11106 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → -(𝐹‘𝑘) ∈ ℝ) |
4 | 3 | fmpttd 6871 |
. . . . 5
⊢ (𝜑 → (𝑘 ∈ (𝑀...𝑁) ↦ -(𝐹‘𝑘)):(𝑀...𝑁)⟶ℝ) |
5 | 4 | ffvelrnda 6843 |
. . . 4
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀...𝑁)) → ((𝑘 ∈ (𝑀...𝑁) ↦ -(𝐹‘𝑘))‘𝑛) ∈ ℝ) |
6 | | monoord2.3 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...(𝑁 − 1))) → (𝐹‘(𝑘 + 1)) ≤ (𝐹‘𝑘)) |
7 | 6 | ralrimiva 3114 |
. . . . . . . 8
⊢ (𝜑 → ∀𝑘 ∈ (𝑀...(𝑁 − 1))(𝐹‘(𝑘 + 1)) ≤ (𝐹‘𝑘)) |
8 | | fvoveq1 7174 |
. . . . . . . . . 10
⊢ (𝑘 = 𝑛 → (𝐹‘(𝑘 + 1)) = (𝐹‘(𝑛 + 1))) |
9 | | fveq2 6659 |
. . . . . . . . . 10
⊢ (𝑘 = 𝑛 → (𝐹‘𝑘) = (𝐹‘𝑛)) |
10 | 8, 9 | breq12d 5046 |
. . . . . . . . 9
⊢ (𝑘 = 𝑛 → ((𝐹‘(𝑘 + 1)) ≤ (𝐹‘𝑘) ↔ (𝐹‘(𝑛 + 1)) ≤ (𝐹‘𝑛))) |
11 | 10 | cbvralvw 3362 |
. . . . . . . 8
⊢
(∀𝑘 ∈
(𝑀...(𝑁 − 1))(𝐹‘(𝑘 + 1)) ≤ (𝐹‘𝑘) ↔ ∀𝑛 ∈ (𝑀...(𝑁 − 1))(𝐹‘(𝑛 + 1)) ≤ (𝐹‘𝑛)) |
12 | 7, 11 | sylib 221 |
. . . . . . 7
⊢ (𝜑 → ∀𝑛 ∈ (𝑀...(𝑁 − 1))(𝐹‘(𝑛 + 1)) ≤ (𝐹‘𝑛)) |
13 | 12 | r19.21bi 3138 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀...(𝑁 − 1))) → (𝐹‘(𝑛 + 1)) ≤ (𝐹‘𝑛)) |
14 | | fveq2 6659 |
. . . . . . . . 9
⊢ (𝑘 = (𝑛 + 1) → (𝐹‘𝑘) = (𝐹‘(𝑛 + 1))) |
15 | 14 | eleq1d 2837 |
. . . . . . . 8
⊢ (𝑘 = (𝑛 + 1) → ((𝐹‘𝑘) ∈ ℝ ↔ (𝐹‘(𝑛 + 1)) ∈ ℝ)) |
16 | 2 | ralrimiva 3114 |
. . . . . . . . 9
⊢ (𝜑 → ∀𝑘 ∈ (𝑀...𝑁)(𝐹‘𝑘) ∈ ℝ) |
17 | 16 | adantr 485 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀...(𝑁 − 1))) → ∀𝑘 ∈ (𝑀...𝑁)(𝐹‘𝑘) ∈ ℝ) |
18 | | fzp1elp1 13010 |
. . . . . . . . . 10
⊢ (𝑛 ∈ (𝑀...(𝑁 − 1)) → (𝑛 + 1) ∈ (𝑀...((𝑁 − 1) + 1))) |
19 | 18 | adantl 486 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀...(𝑁 − 1))) → (𝑛 + 1) ∈ (𝑀...((𝑁 − 1) + 1))) |
20 | | eluzelz 12293 |
. . . . . . . . . . . . . 14
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → 𝑁 ∈ ℤ) |
21 | 1, 20 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑁 ∈ ℤ) |
22 | 21 | zcnd 12128 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑁 ∈ ℂ) |
23 | | ax-1cn 10634 |
. . . . . . . . . . . 12
⊢ 1 ∈
ℂ |
24 | | npcan 10934 |
. . . . . . . . . . . 12
⊢ ((𝑁 ∈ ℂ ∧ 1 ∈
ℂ) → ((𝑁 −
1) + 1) = 𝑁) |
25 | 22, 23, 24 | sylancl 590 |
. . . . . . . . . . 11
⊢ (𝜑 → ((𝑁 − 1) + 1) = 𝑁) |
26 | 25 | oveq2d 7167 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑀...((𝑁 − 1) + 1)) = (𝑀...𝑁)) |
27 | 26 | adantr 485 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀...(𝑁 − 1))) → (𝑀...((𝑁 − 1) + 1)) = (𝑀...𝑁)) |
28 | 19, 27 | eleqtrd 2855 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀...(𝑁 − 1))) → (𝑛 + 1) ∈ (𝑀...𝑁)) |
29 | 15, 17, 28 | rspcdva 3544 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀...(𝑁 − 1))) → (𝐹‘(𝑛 + 1)) ∈ ℝ) |
30 | 9 | eleq1d 2837 |
. . . . . . . 8
⊢ (𝑘 = 𝑛 → ((𝐹‘𝑘) ∈ ℝ ↔ (𝐹‘𝑛) ∈ ℝ)) |
31 | | fzssp1 13000 |
. . . . . . . . . 10
⊢ (𝑀...(𝑁 − 1)) ⊆ (𝑀...((𝑁 − 1) + 1)) |
32 | 31, 26 | sseqtrid 3945 |
. . . . . . . . 9
⊢ (𝜑 → (𝑀...(𝑁 − 1)) ⊆ (𝑀...𝑁)) |
33 | 32 | sselda 3893 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀...(𝑁 − 1))) → 𝑛 ∈ (𝑀...𝑁)) |
34 | 30, 17, 33 | rspcdva 3544 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀...(𝑁 − 1))) → (𝐹‘𝑛) ∈ ℝ) |
35 | 29, 34 | lenegd 11258 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀...(𝑁 − 1))) → ((𝐹‘(𝑛 + 1)) ≤ (𝐹‘𝑛) ↔ -(𝐹‘𝑛) ≤ -(𝐹‘(𝑛 + 1)))) |
36 | 13, 35 | mpbid 235 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀...(𝑁 − 1))) → -(𝐹‘𝑛) ≤ -(𝐹‘(𝑛 + 1))) |
37 | 9 | negeqd 10919 |
. . . . . . 7
⊢ (𝑘 = 𝑛 → -(𝐹‘𝑘) = -(𝐹‘𝑛)) |
38 | | eqid 2759 |
. . . . . . 7
⊢ (𝑘 ∈ (𝑀...𝑁) ↦ -(𝐹‘𝑘)) = (𝑘 ∈ (𝑀...𝑁) ↦ -(𝐹‘𝑘)) |
39 | | negex 10923 |
. . . . . . 7
⊢ -(𝐹‘𝑛) ∈ V |
40 | 37, 38, 39 | fvmpt 6760 |
. . . . . 6
⊢ (𝑛 ∈ (𝑀...𝑁) → ((𝑘 ∈ (𝑀...𝑁) ↦ -(𝐹‘𝑘))‘𝑛) = -(𝐹‘𝑛)) |
41 | 33, 40 | syl 17 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀...(𝑁 − 1))) → ((𝑘 ∈ (𝑀...𝑁) ↦ -(𝐹‘𝑘))‘𝑛) = -(𝐹‘𝑛)) |
42 | 14 | negeqd 10919 |
. . . . . . 7
⊢ (𝑘 = (𝑛 + 1) → -(𝐹‘𝑘) = -(𝐹‘(𝑛 + 1))) |
43 | | negex 10923 |
. . . . . . 7
⊢ -(𝐹‘(𝑛 + 1)) ∈ V |
44 | 42, 38, 43 | fvmpt 6760 |
. . . . . 6
⊢ ((𝑛 + 1) ∈ (𝑀...𝑁) → ((𝑘 ∈ (𝑀...𝑁) ↦ -(𝐹‘𝑘))‘(𝑛 + 1)) = -(𝐹‘(𝑛 + 1))) |
45 | 28, 44 | syl 17 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀...(𝑁 − 1))) → ((𝑘 ∈ (𝑀...𝑁) ↦ -(𝐹‘𝑘))‘(𝑛 + 1)) = -(𝐹‘(𝑛 + 1))) |
46 | 36, 41, 45 | 3brtr4d 5065 |
. . . 4
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀...(𝑁 − 1))) → ((𝑘 ∈ (𝑀...𝑁) ↦ -(𝐹‘𝑘))‘𝑛) ≤ ((𝑘 ∈ (𝑀...𝑁) ↦ -(𝐹‘𝑘))‘(𝑛 + 1))) |
47 | 1, 5, 46 | monoord 13451 |
. . 3
⊢ (𝜑 → ((𝑘 ∈ (𝑀...𝑁) ↦ -(𝐹‘𝑘))‘𝑀) ≤ ((𝑘 ∈ (𝑀...𝑁) ↦ -(𝐹‘𝑘))‘𝑁)) |
48 | | eluzfz1 12964 |
. . . . 5
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → 𝑀 ∈ (𝑀...𝑁)) |
49 | 1, 48 | syl 17 |
. . . 4
⊢ (𝜑 → 𝑀 ∈ (𝑀...𝑁)) |
50 | | fveq2 6659 |
. . . . . 6
⊢ (𝑘 = 𝑀 → (𝐹‘𝑘) = (𝐹‘𝑀)) |
51 | 50 | negeqd 10919 |
. . . . 5
⊢ (𝑘 = 𝑀 → -(𝐹‘𝑘) = -(𝐹‘𝑀)) |
52 | | negex 10923 |
. . . . 5
⊢ -(𝐹‘𝑀) ∈ V |
53 | 51, 38, 52 | fvmpt 6760 |
. . . 4
⊢ (𝑀 ∈ (𝑀...𝑁) → ((𝑘 ∈ (𝑀...𝑁) ↦ -(𝐹‘𝑘))‘𝑀) = -(𝐹‘𝑀)) |
54 | 49, 53 | syl 17 |
. . 3
⊢ (𝜑 → ((𝑘 ∈ (𝑀...𝑁) ↦ -(𝐹‘𝑘))‘𝑀) = -(𝐹‘𝑀)) |
55 | | eluzfz2 12965 |
. . . . 5
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → 𝑁 ∈ (𝑀...𝑁)) |
56 | 1, 55 | syl 17 |
. . . 4
⊢ (𝜑 → 𝑁 ∈ (𝑀...𝑁)) |
57 | | fveq2 6659 |
. . . . . 6
⊢ (𝑘 = 𝑁 → (𝐹‘𝑘) = (𝐹‘𝑁)) |
58 | 57 | negeqd 10919 |
. . . . 5
⊢ (𝑘 = 𝑁 → -(𝐹‘𝑘) = -(𝐹‘𝑁)) |
59 | | negex 10923 |
. . . . 5
⊢ -(𝐹‘𝑁) ∈ V |
60 | 58, 38, 59 | fvmpt 6760 |
. . . 4
⊢ (𝑁 ∈ (𝑀...𝑁) → ((𝑘 ∈ (𝑀...𝑁) ↦ -(𝐹‘𝑘))‘𝑁) = -(𝐹‘𝑁)) |
61 | 56, 60 | syl 17 |
. . 3
⊢ (𝜑 → ((𝑘 ∈ (𝑀...𝑁) ↦ -(𝐹‘𝑘))‘𝑁) = -(𝐹‘𝑁)) |
62 | 47, 54, 61 | 3brtr3d 5064 |
. 2
⊢ (𝜑 → -(𝐹‘𝑀) ≤ -(𝐹‘𝑁)) |
63 | 57 | eleq1d 2837 |
. . . 4
⊢ (𝑘 = 𝑁 → ((𝐹‘𝑘) ∈ ℝ ↔ (𝐹‘𝑁) ∈ ℝ)) |
64 | 63, 16, 56 | rspcdva 3544 |
. . 3
⊢ (𝜑 → (𝐹‘𝑁) ∈ ℝ) |
65 | 50 | eleq1d 2837 |
. . . 4
⊢ (𝑘 = 𝑀 → ((𝐹‘𝑘) ∈ ℝ ↔ (𝐹‘𝑀) ∈ ℝ)) |
66 | 65, 16, 49 | rspcdva 3544 |
. . 3
⊢ (𝜑 → (𝐹‘𝑀) ∈ ℝ) |
67 | 64, 66 | lenegd 11258 |
. 2
⊢ (𝜑 → ((𝐹‘𝑁) ≤ (𝐹‘𝑀) ↔ -(𝐹‘𝑀) ≤ -(𝐹‘𝑁))) |
68 | 62, 67 | mpbird 260 |
1
⊢ (𝜑 → (𝐹‘𝑁) ≤ (𝐹‘𝑀)) |