Step | Hyp | Ref
| Expression |
1 | | nnuz 12550 |
. . . . 5
⊢ ℕ =
(ℤ≥‘1) |
2 | | 1zzd 12281 |
. . . . 5
⊢ (⊤
→ 1 ∈ ℤ) |
3 | | emcl.1 |
. . . . . . . 8
⊢ 𝐹 = (𝑛 ∈ ℕ ↦ (Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) − (log‘𝑛))) |
4 | | emcl.2 |
. . . . . . . 8
⊢ 𝐺 = (𝑛 ∈ ℕ ↦ (Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) − (log‘(𝑛 + 1)))) |
5 | | emcl.3 |
. . . . . . . 8
⊢ 𝐻 = (𝑛 ∈ ℕ ↦ (log‘(1 + (1 /
𝑛)))) |
6 | | emcl.4 |
. . . . . . . 8
⊢ 𝑇 = (𝑛 ∈ ℕ ↦ ((1 / 𝑛) − (log‘(1 + (1 /
𝑛))))) |
7 | 3, 4, 5, 6 | emcllem6 26055 |
. . . . . . 7
⊢ (𝐹 ⇝ γ ∧ 𝐺 ⇝
γ) |
8 | 7 | simpri 485 |
. . . . . 6
⊢ 𝐺 ⇝
γ |
9 | 8 | a1i 11 |
. . . . 5
⊢ (⊤
→ 𝐺 ⇝
γ) |
10 | 3, 4 | emcllem1 26050 |
. . . . . . . 8
⊢ (𝐹:ℕ⟶ℝ ∧
𝐺:ℕ⟶ℝ) |
11 | 10 | simpri 485 |
. . . . . . 7
⊢ 𝐺:ℕ⟶ℝ |
12 | 11 | ffvelrni 6942 |
. . . . . 6
⊢ (𝑘 ∈ ℕ → (𝐺‘𝑘) ∈ ℝ) |
13 | 12 | adantl 481 |
. . . . 5
⊢
((⊤ ∧ 𝑘
∈ ℕ) → (𝐺‘𝑘) ∈ ℝ) |
14 | 1, 2, 9, 13 | climrecl 15220 |
. . . 4
⊢ (⊤
→ γ ∈ ℝ) |
15 | | 1nn 11914 |
. . . . 5
⊢ 1 ∈
ℕ |
16 | | simpr 484 |
. . . . . . 7
⊢
((⊤ ∧ 𝑖
∈ ℕ) → 𝑖
∈ ℕ) |
17 | 8 | a1i 11 |
. . . . . . 7
⊢
((⊤ ∧ 𝑖
∈ ℕ) → 𝐺
⇝ γ) |
18 | 12 | adantl 481 |
. . . . . . 7
⊢
(((⊤ ∧ 𝑖
∈ ℕ) ∧ 𝑘
∈ ℕ) → (𝐺‘𝑘) ∈ ℝ) |
19 | 3, 4 | emcllem2 26051 |
. . . . . . . . 9
⊢ (𝑘 ∈ ℕ → ((𝐹‘(𝑘 + 1)) ≤ (𝐹‘𝑘) ∧ (𝐺‘𝑘) ≤ (𝐺‘(𝑘 + 1)))) |
20 | 19 | simprd 495 |
. . . . . . . 8
⊢ (𝑘 ∈ ℕ → (𝐺‘𝑘) ≤ (𝐺‘(𝑘 + 1))) |
21 | 20 | adantl 481 |
. . . . . . 7
⊢
(((⊤ ∧ 𝑖
∈ ℕ) ∧ 𝑘
∈ ℕ) → (𝐺‘𝑘) ≤ (𝐺‘(𝑘 + 1))) |
22 | 1, 16, 17, 18, 21 | climub 15301 |
. . . . . 6
⊢
((⊤ ∧ 𝑖
∈ ℕ) → (𝐺‘𝑖) ≤ γ) |
23 | 22 | ralrimiva 3107 |
. . . . 5
⊢ (⊤
→ ∀𝑖 ∈
ℕ (𝐺‘𝑖) ≤ γ) |
24 | | fveq2 6756 |
. . . . . . . 8
⊢ (𝑖 = 1 → (𝐺‘𝑖) = (𝐺‘1)) |
25 | | oveq2 7263 |
. . . . . . . . . . . . 13
⊢ (𝑛 = 1 → (1...𝑛) = (1...1)) |
26 | 25 | sumeq1d 15341 |
. . . . . . . . . . . 12
⊢ (𝑛 = 1 → Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) = Σ𝑚 ∈ (1...1)(1 / 𝑚)) |
27 | | 1z 12280 |
. . . . . . . . . . . . 13
⊢ 1 ∈
ℤ |
28 | | ax-1cn 10860 |
. . . . . . . . . . . . 13
⊢ 1 ∈
ℂ |
29 | | oveq2 7263 |
. . . . . . . . . . . . . . 15
⊢ (𝑚 = 1 → (1 / 𝑚) = (1 / 1)) |
30 | | 1div1e1 11595 |
. . . . . . . . . . . . . . 15
⊢ (1 / 1) =
1 |
31 | 29, 30 | eqtrdi 2795 |
. . . . . . . . . . . . . 14
⊢ (𝑚 = 1 → (1 / 𝑚) = 1) |
32 | 31 | fsum1 15387 |
. . . . . . . . . . . . 13
⊢ ((1
∈ ℤ ∧ 1 ∈ ℂ) → Σ𝑚 ∈ (1...1)(1 / 𝑚) = 1) |
33 | 27, 28, 32 | mp2an 688 |
. . . . . . . . . . . 12
⊢
Σ𝑚 ∈
(1...1)(1 / 𝑚) =
1 |
34 | 26, 33 | eqtrdi 2795 |
. . . . . . . . . . 11
⊢ (𝑛 = 1 → Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) = 1) |
35 | | oveq1 7262 |
. . . . . . . . . . . . 13
⊢ (𝑛 = 1 → (𝑛 + 1) = (1 + 1)) |
36 | | df-2 11966 |
. . . . . . . . . . . . 13
⊢ 2 = (1 +
1) |
37 | 35, 36 | eqtr4di 2797 |
. . . . . . . . . . . 12
⊢ (𝑛 = 1 → (𝑛 + 1) = 2) |
38 | 37 | fveq2d 6760 |
. . . . . . . . . . 11
⊢ (𝑛 = 1 → (log‘(𝑛 + 1)) =
(log‘2)) |
39 | 34, 38 | oveq12d 7273 |
. . . . . . . . . 10
⊢ (𝑛 = 1 → (Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) − (log‘(𝑛 + 1))) = (1 −
(log‘2))) |
40 | | 1re 10906 |
. . . . . . . . . . . 12
⊢ 1 ∈
ℝ |
41 | | 2rp 12664 |
. . . . . . . . . . . . 13
⊢ 2 ∈
ℝ+ |
42 | | relogcl 25636 |
. . . . . . . . . . . . 13
⊢ (2 ∈
ℝ+ → (log‘2) ∈ ℝ) |
43 | 41, 42 | ax-mp 5 |
. . . . . . . . . . . 12
⊢
(log‘2) ∈ ℝ |
44 | 40, 43 | resubcli 11213 |
. . . . . . . . . . 11
⊢ (1
− (log‘2)) ∈ ℝ |
45 | 44 | elexi 3441 |
. . . . . . . . . 10
⊢ (1
− (log‘2)) ∈ V |
46 | 39, 4, 45 | fvmpt 6857 |
. . . . . . . . 9
⊢ (1 ∈
ℕ → (𝐺‘1)
= (1 − (log‘2))) |
47 | 15, 46 | ax-mp 5 |
. . . . . . . 8
⊢ (𝐺‘1) = (1 −
(log‘2)) |
48 | 24, 47 | eqtrdi 2795 |
. . . . . . 7
⊢ (𝑖 = 1 → (𝐺‘𝑖) = (1 −
(log‘2))) |
49 | 48 | breq1d 5080 |
. . . . . 6
⊢ (𝑖 = 1 → ((𝐺‘𝑖) ≤ γ ↔ (1 −
(log‘2)) ≤ γ)) |
50 | 49 | rspcva 3550 |
. . . . 5
⊢ ((1
∈ ℕ ∧ ∀𝑖 ∈ ℕ (𝐺‘𝑖) ≤ γ) → (1 −
(log‘2)) ≤ γ) |
51 | 15, 23, 50 | sylancr 586 |
. . . 4
⊢ (⊤
→ (1 − (log‘2)) ≤ γ) |
52 | | fveq2 6756 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑖 → (𝐹‘𝑥) = (𝐹‘𝑖)) |
53 | 52 | negeqd 11145 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑖 → -(𝐹‘𝑥) = -(𝐹‘𝑖)) |
54 | | eqid 2738 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ ℕ ↦ -(𝐹‘𝑥)) = (𝑥 ∈ ℕ ↦ -(𝐹‘𝑥)) |
55 | | negex 11149 |
. . . . . . . . . . 11
⊢ -(𝐹‘𝑖) ∈ V |
56 | 53, 54, 55 | fvmpt 6857 |
. . . . . . . . . 10
⊢ (𝑖 ∈ ℕ → ((𝑥 ∈ ℕ ↦ -(𝐹‘𝑥))‘𝑖) = -(𝐹‘𝑖)) |
57 | 56 | adantl 481 |
. . . . . . . . 9
⊢
((⊤ ∧ 𝑖
∈ ℕ) → ((𝑥
∈ ℕ ↦ -(𝐹‘𝑥))‘𝑖) = -(𝐹‘𝑖)) |
58 | 7 | simpli 483 |
. . . . . . . . . . . . 13
⊢ 𝐹 ⇝
γ |
59 | 58 | a1i 11 |
. . . . . . . . . . . 12
⊢ (⊤
→ 𝐹 ⇝
γ) |
60 | | 0cnd 10899 |
. . . . . . . . . . . 12
⊢ (⊤
→ 0 ∈ ℂ) |
61 | | nnex 11909 |
. . . . . . . . . . . . . 14
⊢ ℕ
∈ V |
62 | 61 | mptex 7081 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ ℕ ↦ -(𝐹‘𝑥)) ∈ V |
63 | 62 | a1i 11 |
. . . . . . . . . . . 12
⊢ (⊤
→ (𝑥 ∈ ℕ
↦ -(𝐹‘𝑥)) ∈ V) |
64 | 10 | simpli 483 |
. . . . . . . . . . . . . . 15
⊢ 𝐹:ℕ⟶ℝ |
65 | 64 | ffvelrni 6942 |
. . . . . . . . . . . . . 14
⊢ (𝑘 ∈ ℕ → (𝐹‘𝑘) ∈ ℝ) |
66 | 65 | adantl 481 |
. . . . . . . . . . . . 13
⊢
((⊤ ∧ 𝑘
∈ ℕ) → (𝐹‘𝑘) ∈ ℝ) |
67 | 66 | recnd 10934 |
. . . . . . . . . . . 12
⊢
((⊤ ∧ 𝑘
∈ ℕ) → (𝐹‘𝑘) ∈ ℂ) |
68 | | fveq2 6756 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = 𝑘 → (𝐹‘𝑥) = (𝐹‘𝑘)) |
69 | 68 | negeqd 11145 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = 𝑘 → -(𝐹‘𝑥) = -(𝐹‘𝑘)) |
70 | | negex 11149 |
. . . . . . . . . . . . . . 15
⊢ -(𝐹‘𝑘) ∈ V |
71 | 69, 54, 70 | fvmpt 6857 |
. . . . . . . . . . . . . 14
⊢ (𝑘 ∈ ℕ → ((𝑥 ∈ ℕ ↦ -(𝐹‘𝑥))‘𝑘) = -(𝐹‘𝑘)) |
72 | 71 | adantl 481 |
. . . . . . . . . . . . 13
⊢
((⊤ ∧ 𝑘
∈ ℕ) → ((𝑥
∈ ℕ ↦ -(𝐹‘𝑥))‘𝑘) = -(𝐹‘𝑘)) |
73 | | df-neg 11138 |
. . . . . . . . . . . . 13
⊢ -(𝐹‘𝑘) = (0 − (𝐹‘𝑘)) |
74 | 72, 73 | eqtrdi 2795 |
. . . . . . . . . . . 12
⊢
((⊤ ∧ 𝑘
∈ ℕ) → ((𝑥
∈ ℕ ↦ -(𝐹‘𝑥))‘𝑘) = (0 − (𝐹‘𝑘))) |
75 | 1, 2, 59, 60, 63, 67, 74 | climsubc2 15276 |
. . . . . . . . . . 11
⊢ (⊤
→ (𝑥 ∈ ℕ
↦ -(𝐹‘𝑥)) ⇝ (0 −
γ)) |
76 | 75 | adantr 480 |
. . . . . . . . . 10
⊢
((⊤ ∧ 𝑖
∈ ℕ) → (𝑥
∈ ℕ ↦ -(𝐹‘𝑥)) ⇝ (0 −
γ)) |
77 | 66 | renegcld 11332 |
. . . . . . . . . . . 12
⊢
((⊤ ∧ 𝑘
∈ ℕ) → -(𝐹‘𝑘) ∈ ℝ) |
78 | 72, 77 | eqeltrd 2839 |
. . . . . . . . . . 11
⊢
((⊤ ∧ 𝑘
∈ ℕ) → ((𝑥
∈ ℕ ↦ -(𝐹‘𝑥))‘𝑘) ∈ ℝ) |
79 | 78 | adantlr 711 |
. . . . . . . . . 10
⊢
(((⊤ ∧ 𝑖
∈ ℕ) ∧ 𝑘
∈ ℕ) → ((𝑥
∈ ℕ ↦ -(𝐹‘𝑥))‘𝑘) ∈ ℝ) |
80 | 19 | simpld 494 |
. . . . . . . . . . . . . 14
⊢ (𝑘 ∈ ℕ → (𝐹‘(𝑘 + 1)) ≤ (𝐹‘𝑘)) |
81 | 80 | adantl 481 |
. . . . . . . . . . . . 13
⊢
((⊤ ∧ 𝑘
∈ ℕ) → (𝐹‘(𝑘 + 1)) ≤ (𝐹‘𝑘)) |
82 | | peano2nn 11915 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 ∈ ℕ → (𝑘 + 1) ∈
ℕ) |
83 | 82 | adantl 481 |
. . . . . . . . . . . . . . 15
⊢
((⊤ ∧ 𝑘
∈ ℕ) → (𝑘 +
1) ∈ ℕ) |
84 | 64 | ffvelrni 6942 |
. . . . . . . . . . . . . . 15
⊢ ((𝑘 + 1) ∈ ℕ →
(𝐹‘(𝑘 + 1)) ∈
ℝ) |
85 | 83, 84 | syl 17 |
. . . . . . . . . . . . . 14
⊢
((⊤ ∧ 𝑘
∈ ℕ) → (𝐹‘(𝑘 + 1)) ∈ ℝ) |
86 | 85, 66 | lenegd 11484 |
. . . . . . . . . . . . 13
⊢
((⊤ ∧ 𝑘
∈ ℕ) → ((𝐹‘(𝑘 + 1)) ≤ (𝐹‘𝑘) ↔ -(𝐹‘𝑘) ≤ -(𝐹‘(𝑘 + 1)))) |
87 | 81, 86 | mpbid 231 |
. . . . . . . . . . . 12
⊢
((⊤ ∧ 𝑘
∈ ℕ) → -(𝐹‘𝑘) ≤ -(𝐹‘(𝑘 + 1))) |
88 | | fveq2 6756 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = (𝑘 + 1) → (𝐹‘𝑥) = (𝐹‘(𝑘 + 1))) |
89 | 88 | negeqd 11145 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = (𝑘 + 1) → -(𝐹‘𝑥) = -(𝐹‘(𝑘 + 1))) |
90 | | negex 11149 |
. . . . . . . . . . . . . 14
⊢ -(𝐹‘(𝑘 + 1)) ∈ V |
91 | 89, 54, 90 | fvmpt 6857 |
. . . . . . . . . . . . 13
⊢ ((𝑘 + 1) ∈ ℕ →
((𝑥 ∈ ℕ ↦
-(𝐹‘𝑥))‘(𝑘 + 1)) = -(𝐹‘(𝑘 + 1))) |
92 | 83, 91 | syl 17 |
. . . . . . . . . . . 12
⊢
((⊤ ∧ 𝑘
∈ ℕ) → ((𝑥
∈ ℕ ↦ -(𝐹‘𝑥))‘(𝑘 + 1)) = -(𝐹‘(𝑘 + 1))) |
93 | 87, 72, 92 | 3brtr4d 5102 |
. . . . . . . . . . 11
⊢
((⊤ ∧ 𝑘
∈ ℕ) → ((𝑥
∈ ℕ ↦ -(𝐹‘𝑥))‘𝑘) ≤ ((𝑥 ∈ ℕ ↦ -(𝐹‘𝑥))‘(𝑘 + 1))) |
94 | 93 | adantlr 711 |
. . . . . . . . . 10
⊢
(((⊤ ∧ 𝑖
∈ ℕ) ∧ 𝑘
∈ ℕ) → ((𝑥
∈ ℕ ↦ -(𝐹‘𝑥))‘𝑘) ≤ ((𝑥 ∈ ℕ ↦ -(𝐹‘𝑥))‘(𝑘 + 1))) |
95 | 1, 16, 76, 79, 94 | climub 15301 |
. . . . . . . . 9
⊢
((⊤ ∧ 𝑖
∈ ℕ) → ((𝑥
∈ ℕ ↦ -(𝐹‘𝑥))‘𝑖) ≤ (0 − γ)) |
96 | 57, 95 | eqbrtrrd 5094 |
. . . . . . . 8
⊢
((⊤ ∧ 𝑖
∈ ℕ) → -(𝐹‘𝑖) ≤ (0 − γ)) |
97 | | df-neg 11138 |
. . . . . . . 8
⊢ -γ
= (0 − γ) |
98 | 96, 97 | breqtrrdi 5112 |
. . . . . . 7
⊢
((⊤ ∧ 𝑖
∈ ℕ) → -(𝐹‘𝑖) ≤ -γ) |
99 | 14 | mptru 1546 |
. . . . . . . 8
⊢ γ
∈ ℝ |
100 | 64 | ffvelrni 6942 |
. . . . . . . . 9
⊢ (𝑖 ∈ ℕ → (𝐹‘𝑖) ∈ ℝ) |
101 | 100 | adantl 481 |
. . . . . . . 8
⊢
((⊤ ∧ 𝑖
∈ ℕ) → (𝐹‘𝑖) ∈ ℝ) |
102 | | leneg 11408 |
. . . . . . . 8
⊢ ((γ
∈ ℝ ∧ (𝐹‘𝑖) ∈ ℝ) → (γ ≤ (𝐹‘𝑖) ↔ -(𝐹‘𝑖) ≤ -γ)) |
103 | 99, 101, 102 | sylancr 586 |
. . . . . . 7
⊢
((⊤ ∧ 𝑖
∈ ℕ) → (γ ≤ (𝐹‘𝑖) ↔ -(𝐹‘𝑖) ≤ -γ)) |
104 | 98, 103 | mpbird 256 |
. . . . . 6
⊢
((⊤ ∧ 𝑖
∈ ℕ) → γ ≤ (𝐹‘𝑖)) |
105 | 104 | ralrimiva 3107 |
. . . . 5
⊢ (⊤
→ ∀𝑖 ∈
ℕ γ ≤ (𝐹‘𝑖)) |
106 | | fveq2 6756 |
. . . . . . . 8
⊢ (𝑖 = 1 → (𝐹‘𝑖) = (𝐹‘1)) |
107 | | fveq2 6756 |
. . . . . . . . . . . . 13
⊢ (𝑛 = 1 → (log‘𝑛) =
(log‘1)) |
108 | | log1 25646 |
. . . . . . . . . . . . 13
⊢
(log‘1) = 0 |
109 | 107, 108 | eqtrdi 2795 |
. . . . . . . . . . . 12
⊢ (𝑛 = 1 → (log‘𝑛) = 0) |
110 | 34, 109 | oveq12d 7273 |
. . . . . . . . . . 11
⊢ (𝑛 = 1 → (Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) − (log‘𝑛)) = (1 − 0)) |
111 | | 1m0e1 12024 |
. . . . . . . . . . 11
⊢ (1
− 0) = 1 |
112 | 110, 111 | eqtrdi 2795 |
. . . . . . . . . 10
⊢ (𝑛 = 1 → (Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) − (log‘𝑛)) = 1) |
113 | 40 | elexi 3441 |
. . . . . . . . . 10
⊢ 1 ∈
V |
114 | 112, 3, 113 | fvmpt 6857 |
. . . . . . . . 9
⊢ (1 ∈
ℕ → (𝐹‘1)
= 1) |
115 | 15, 114 | ax-mp 5 |
. . . . . . . 8
⊢ (𝐹‘1) = 1 |
116 | 106, 115 | eqtrdi 2795 |
. . . . . . 7
⊢ (𝑖 = 1 → (𝐹‘𝑖) = 1) |
117 | 116 | breq2d 5082 |
. . . . . 6
⊢ (𝑖 = 1 → (γ ≤ (𝐹‘𝑖) ↔ γ ≤ 1)) |
118 | 117 | rspcva 3550 |
. . . . 5
⊢ ((1
∈ ℕ ∧ ∀𝑖 ∈ ℕ γ ≤ (𝐹‘𝑖)) → γ ≤ 1) |
119 | 15, 105, 118 | sylancr 586 |
. . . 4
⊢ (⊤
→ γ ≤ 1) |
120 | 44, 40 | elicc2i 13074 |
. . . 4
⊢ (γ
∈ ((1 − (log‘2))[,]1) ↔ (γ ∈ ℝ ∧ (1
− (log‘2)) ≤ γ ∧ γ ≤ 1)) |
121 | 14, 51, 119, 120 | syl3anbrc 1341 |
. . 3
⊢ (⊤
→ γ ∈ ((1 − (log‘2))[,]1)) |
122 | | ffn 6584 |
. . . . 5
⊢ (𝐹:ℕ⟶ℝ →
𝐹 Fn
ℕ) |
123 | 64, 122 | mp1i 13 |
. . . 4
⊢ (⊤
→ 𝐹 Fn
ℕ) |
124 | 16, 1 | eleqtrdi 2849 |
. . . . . . . 8
⊢
((⊤ ∧ 𝑖
∈ ℕ) → 𝑖
∈ (ℤ≥‘1)) |
125 | | elfznn 13214 |
. . . . . . . . . 10
⊢ (𝑘 ∈ (1...𝑖) → 𝑘 ∈ ℕ) |
126 | 125 | adantl 481 |
. . . . . . . . 9
⊢
(((⊤ ∧ 𝑖
∈ ℕ) ∧ 𝑘
∈ (1...𝑖)) →
𝑘 ∈
ℕ) |
127 | 126, 65 | syl 17 |
. . . . . . . 8
⊢
(((⊤ ∧ 𝑖
∈ ℕ) ∧ 𝑘
∈ (1...𝑖)) →
(𝐹‘𝑘) ∈ ℝ) |
128 | | elfznn 13214 |
. . . . . . . . . 10
⊢ (𝑘 ∈ (1...(𝑖 − 1)) → 𝑘 ∈ ℕ) |
129 | 128 | adantl 481 |
. . . . . . . . 9
⊢
(((⊤ ∧ 𝑖
∈ ℕ) ∧ 𝑘
∈ (1...(𝑖 − 1)))
→ 𝑘 ∈
ℕ) |
130 | 129, 80 | syl 17 |
. . . . . . . 8
⊢
(((⊤ ∧ 𝑖
∈ ℕ) ∧ 𝑘
∈ (1...(𝑖 − 1)))
→ (𝐹‘(𝑘 + 1)) ≤ (𝐹‘𝑘)) |
131 | 124, 127,
130 | monoord2 13682 |
. . . . . . 7
⊢
((⊤ ∧ 𝑖
∈ ℕ) → (𝐹‘𝑖) ≤ (𝐹‘1)) |
132 | 131, 115 | breqtrdi 5111 |
. . . . . 6
⊢
((⊤ ∧ 𝑖
∈ ℕ) → (𝐹‘𝑖) ≤ 1) |
133 | 99, 40 | elicc2i 13074 |
. . . . . 6
⊢ ((𝐹‘𝑖) ∈ (γ[,]1) ↔ ((𝐹‘𝑖) ∈ ℝ ∧ γ ≤ (𝐹‘𝑖) ∧ (𝐹‘𝑖) ≤ 1)) |
134 | 101, 104,
132, 133 | syl3anbrc 1341 |
. . . . 5
⊢
((⊤ ∧ 𝑖
∈ ℕ) → (𝐹‘𝑖) ∈ (γ[,]1)) |
135 | 134 | ralrimiva 3107 |
. . . 4
⊢ (⊤
→ ∀𝑖 ∈
ℕ (𝐹‘𝑖) ∈
(γ[,]1)) |
136 | | ffnfv 6974 |
. . . 4
⊢ (𝐹:ℕ⟶(γ[,]1)
↔ (𝐹 Fn ℕ ∧
∀𝑖 ∈ ℕ
(𝐹‘𝑖) ∈ (γ[,]1))) |
137 | 123, 135,
136 | sylanbrc 582 |
. . 3
⊢ (⊤
→ 𝐹:ℕ⟶(γ[,]1)) |
138 | | ffn 6584 |
. . . . 5
⊢ (𝐺:ℕ⟶ℝ →
𝐺 Fn
ℕ) |
139 | 11, 138 | mp1i 13 |
. . . 4
⊢ (⊤
→ 𝐺 Fn
ℕ) |
140 | 11 | ffvelrni 6942 |
. . . . . . 7
⊢ (𝑖 ∈ ℕ → (𝐺‘𝑖) ∈ ℝ) |
141 | 140 | adantl 481 |
. . . . . 6
⊢
((⊤ ∧ 𝑖
∈ ℕ) → (𝐺‘𝑖) ∈ ℝ) |
142 | 126, 12 | syl 17 |
. . . . . . . 8
⊢
(((⊤ ∧ 𝑖
∈ ℕ) ∧ 𝑘
∈ (1...𝑖)) →
(𝐺‘𝑘) ∈ ℝ) |
143 | 129, 20 | syl 17 |
. . . . . . . 8
⊢
(((⊤ ∧ 𝑖
∈ ℕ) ∧ 𝑘
∈ (1...(𝑖 − 1)))
→ (𝐺‘𝑘) ≤ (𝐺‘(𝑘 + 1))) |
144 | 124, 142,
143 | monoord 13681 |
. . . . . . 7
⊢
((⊤ ∧ 𝑖
∈ ℕ) → (𝐺‘1) ≤ (𝐺‘𝑖)) |
145 | 47, 144 | eqbrtrrid 5106 |
. . . . . 6
⊢
((⊤ ∧ 𝑖
∈ ℕ) → (1 − (log‘2)) ≤ (𝐺‘𝑖)) |
146 | 44, 99 | elicc2i 13074 |
. . . . . 6
⊢ ((𝐺‘𝑖) ∈ ((1 −
(log‘2))[,]γ) ↔ ((𝐺‘𝑖) ∈ ℝ ∧ (1 −
(log‘2)) ≤ (𝐺‘𝑖) ∧ (𝐺‘𝑖) ≤ γ)) |
147 | 141, 145,
22, 146 | syl3anbrc 1341 |
. . . . 5
⊢
((⊤ ∧ 𝑖
∈ ℕ) → (𝐺‘𝑖) ∈ ((1 −
(log‘2))[,]γ)) |
148 | 147 | ralrimiva 3107 |
. . . 4
⊢ (⊤
→ ∀𝑖 ∈
ℕ (𝐺‘𝑖) ∈ ((1 −
(log‘2))[,]γ)) |
149 | | ffnfv 6974 |
. . . 4
⊢ (𝐺:ℕ⟶((1 −
(log‘2))[,]γ) ↔ (𝐺 Fn ℕ ∧ ∀𝑖 ∈ ℕ (𝐺‘𝑖) ∈ ((1 −
(log‘2))[,]γ))) |
150 | 139, 148,
149 | sylanbrc 582 |
. . 3
⊢ (⊤
→ 𝐺:ℕ⟶((1
− (log‘2))[,]γ)) |
151 | 121, 137,
150 | 3jca 1126 |
. 2
⊢ (⊤
→ (γ ∈ ((1 − (log‘2))[,]1) ∧ 𝐹:ℕ⟶(γ[,]1) ∧ 𝐺:ℕ⟶((1 −
(log‘2))[,]γ))) |
152 | 151 | mptru 1546 |
1
⊢ (γ
∈ ((1 − (log‘2))[,]1) ∧ 𝐹:ℕ⟶(γ[,]1) ∧ 𝐺:ℕ⟶((1 −
(log‘2))[,]γ)) |