MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  emcllem7 Structured version   Visualization version   GIF version

Theorem emcllem7 26969
Description: Lemma for emcl 26970 and harmonicbnd 26971. Derive bounds on γ as 𝐹(1) and 𝐺(1). (Contributed by Mario Carneiro, 11-Jul-2014.) (Revised by Mario Carneiro, 9-Apr-2016.)
Hypotheses
Ref Expression
emcl.1 𝐹 = (𝑛 ∈ ℕ ↦ (Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) − (log‘𝑛)))
emcl.2 𝐺 = (𝑛 ∈ ℕ ↦ (Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) − (log‘(𝑛 + 1))))
emcl.3 𝐻 = (𝑛 ∈ ℕ ↦ (log‘(1 + (1 / 𝑛))))
emcl.4 𝑇 = (𝑛 ∈ ℕ ↦ ((1 / 𝑛) − (log‘(1 + (1 / 𝑛)))))
Assertion
Ref Expression
emcllem7 (γ ∈ ((1 − (log‘2))[,]1) ∧ 𝐹:ℕ⟶(γ[,]1) ∧ 𝐺:ℕ⟶((1 − (log‘2))[,]γ))
Distinct variable groups:   𝑚,𝐻   𝑚,𝑛,𝑇
Allowed substitution hints:   𝐹(𝑚,𝑛)   𝐺(𝑚,𝑛)   𝐻(𝑛)

Proof of Theorem emcllem7
Dummy variables 𝑖 𝑘 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnuz 12900 . . . . 5 ℕ = (ℤ‘1)
2 1zzd 12628 . . . . 5 (⊤ → 1 ∈ ℤ)
3 emcl.1 . . . . . . . 8 𝐹 = (𝑛 ∈ ℕ ↦ (Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) − (log‘𝑛)))
4 emcl.2 . . . . . . . 8 𝐺 = (𝑛 ∈ ℕ ↦ (Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) − (log‘(𝑛 + 1))))
5 emcl.3 . . . . . . . 8 𝐻 = (𝑛 ∈ ℕ ↦ (log‘(1 + (1 / 𝑛))))
6 emcl.4 . . . . . . . 8 𝑇 = (𝑛 ∈ ℕ ↦ ((1 / 𝑛) − (log‘(1 + (1 / 𝑛)))))
73, 4, 5, 6emcllem6 26968 . . . . . . 7 (𝐹 ⇝ γ ∧ 𝐺 ⇝ γ)
87simpri 485 . . . . . 6 𝐺 ⇝ γ
98a1i 11 . . . . 5 (⊤ → 𝐺 ⇝ γ)
103, 4emcllem1 26963 . . . . . . . 8 (𝐹:ℕ⟶ℝ ∧ 𝐺:ℕ⟶ℝ)
1110simpri 485 . . . . . . 7 𝐺:ℕ⟶ℝ
1211ffvelcdmi 7078 . . . . . 6 (𝑘 ∈ ℕ → (𝐺𝑘) ∈ ℝ)
1312adantl 481 . . . . 5 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝐺𝑘) ∈ ℝ)
141, 2, 9, 13climrecl 15604 . . . 4 (⊤ → γ ∈ ℝ)
15 1nn 12256 . . . . 5 1 ∈ ℕ
16 simpr 484 . . . . . . 7 ((⊤ ∧ 𝑖 ∈ ℕ) → 𝑖 ∈ ℕ)
178a1i 11 . . . . . . 7 ((⊤ ∧ 𝑖 ∈ ℕ) → 𝐺 ⇝ γ)
1812adantl 481 . . . . . . 7 (((⊤ ∧ 𝑖 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → (𝐺𝑘) ∈ ℝ)
193, 4emcllem2 26964 . . . . . . . . 9 (𝑘 ∈ ℕ → ((𝐹‘(𝑘 + 1)) ≤ (𝐹𝑘) ∧ (𝐺𝑘) ≤ (𝐺‘(𝑘 + 1))))
2019simprd 495 . . . . . . . 8 (𝑘 ∈ ℕ → (𝐺𝑘) ≤ (𝐺‘(𝑘 + 1)))
2120adantl 481 . . . . . . 7 (((⊤ ∧ 𝑖 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → (𝐺𝑘) ≤ (𝐺‘(𝑘 + 1)))
221, 16, 17, 18, 21climub 15683 . . . . . 6 ((⊤ ∧ 𝑖 ∈ ℕ) → (𝐺𝑖) ≤ γ)
2322ralrimiva 3133 . . . . 5 (⊤ → ∀𝑖 ∈ ℕ (𝐺𝑖) ≤ γ)
24 fveq2 6881 . . . . . . . 8 (𝑖 = 1 → (𝐺𝑖) = (𝐺‘1))
25 oveq2 7418 . . . . . . . . . . . . 13 (𝑛 = 1 → (1...𝑛) = (1...1))
2625sumeq1d 15721 . . . . . . . . . . . 12 (𝑛 = 1 → Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) = Σ𝑚 ∈ (1...1)(1 / 𝑚))
27 1z 12627 . . . . . . . . . . . . 13 1 ∈ ℤ
28 ax-1cn 11192 . . . . . . . . . . . . 13 1 ∈ ℂ
29 oveq2 7418 . . . . . . . . . . . . . . 15 (𝑚 = 1 → (1 / 𝑚) = (1 / 1))
30 1div1e1 11937 . . . . . . . . . . . . . . 15 (1 / 1) = 1
3129, 30eqtrdi 2787 . . . . . . . . . . . . . 14 (𝑚 = 1 → (1 / 𝑚) = 1)
3231fsum1 15768 . . . . . . . . . . . . 13 ((1 ∈ ℤ ∧ 1 ∈ ℂ) → Σ𝑚 ∈ (1...1)(1 / 𝑚) = 1)
3327, 28, 32mp2an 692 . . . . . . . . . . . 12 Σ𝑚 ∈ (1...1)(1 / 𝑚) = 1
3426, 33eqtrdi 2787 . . . . . . . . . . 11 (𝑛 = 1 → Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) = 1)
35 oveq1 7417 . . . . . . . . . . . . 13 (𝑛 = 1 → (𝑛 + 1) = (1 + 1))
36 df-2 12308 . . . . . . . . . . . . 13 2 = (1 + 1)
3735, 36eqtr4di 2789 . . . . . . . . . . . 12 (𝑛 = 1 → (𝑛 + 1) = 2)
3837fveq2d 6885 . . . . . . . . . . 11 (𝑛 = 1 → (log‘(𝑛 + 1)) = (log‘2))
3934, 38oveq12d 7428 . . . . . . . . . 10 (𝑛 = 1 → (Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) − (log‘(𝑛 + 1))) = (1 − (log‘2)))
40 1re 11240 . . . . . . . . . . . 12 1 ∈ ℝ
41 2rp 13018 . . . . . . . . . . . . 13 2 ∈ ℝ+
42 relogcl 26541 . . . . . . . . . . . . 13 (2 ∈ ℝ+ → (log‘2) ∈ ℝ)
4341, 42ax-mp 5 . . . . . . . . . . . 12 (log‘2) ∈ ℝ
4440, 43resubcli 11550 . . . . . . . . . . 11 (1 − (log‘2)) ∈ ℝ
4544elexi 3487 . . . . . . . . . 10 (1 − (log‘2)) ∈ V
4639, 4, 45fvmpt 6991 . . . . . . . . 9 (1 ∈ ℕ → (𝐺‘1) = (1 − (log‘2)))
4715, 46ax-mp 5 . . . . . . . 8 (𝐺‘1) = (1 − (log‘2))
4824, 47eqtrdi 2787 . . . . . . 7 (𝑖 = 1 → (𝐺𝑖) = (1 − (log‘2)))
4948breq1d 5134 . . . . . 6 (𝑖 = 1 → ((𝐺𝑖) ≤ γ ↔ (1 − (log‘2)) ≤ γ))
5049rspcva 3604 . . . . 5 ((1 ∈ ℕ ∧ ∀𝑖 ∈ ℕ (𝐺𝑖) ≤ γ) → (1 − (log‘2)) ≤ γ)
5115, 23, 50sylancr 587 . . . 4 (⊤ → (1 − (log‘2)) ≤ γ)
52 fveq2 6881 . . . . . . . . . . . 12 (𝑥 = 𝑖 → (𝐹𝑥) = (𝐹𝑖))
5352negeqd 11481 . . . . . . . . . . 11 (𝑥 = 𝑖 → -(𝐹𝑥) = -(𝐹𝑖))
54 eqid 2736 . . . . . . . . . . 11 (𝑥 ∈ ℕ ↦ -(𝐹𝑥)) = (𝑥 ∈ ℕ ↦ -(𝐹𝑥))
55 negex 11485 . . . . . . . . . . 11 -(𝐹𝑖) ∈ V
5653, 54, 55fvmpt 6991 . . . . . . . . . 10 (𝑖 ∈ ℕ → ((𝑥 ∈ ℕ ↦ -(𝐹𝑥))‘𝑖) = -(𝐹𝑖))
5756adantl 481 . . . . . . . . 9 ((⊤ ∧ 𝑖 ∈ ℕ) → ((𝑥 ∈ ℕ ↦ -(𝐹𝑥))‘𝑖) = -(𝐹𝑖))
587simpli 483 . . . . . . . . . . . . 13 𝐹 ⇝ γ
5958a1i 11 . . . . . . . . . . . 12 (⊤ → 𝐹 ⇝ γ)
60 0cnd 11233 . . . . . . . . . . . 12 (⊤ → 0 ∈ ℂ)
61 nnex 12251 . . . . . . . . . . . . . 14 ℕ ∈ V
6261mptex 7220 . . . . . . . . . . . . 13 (𝑥 ∈ ℕ ↦ -(𝐹𝑥)) ∈ V
6362a1i 11 . . . . . . . . . . . 12 (⊤ → (𝑥 ∈ ℕ ↦ -(𝐹𝑥)) ∈ V)
6410simpli 483 . . . . . . . . . . . . . . 15 𝐹:ℕ⟶ℝ
6564ffvelcdmi 7078 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ → (𝐹𝑘) ∈ ℝ)
6665adantl 481 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝐹𝑘) ∈ ℝ)
6766recnd 11268 . . . . . . . . . . . 12 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝐹𝑘) ∈ ℂ)
68 fveq2 6881 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑘 → (𝐹𝑥) = (𝐹𝑘))
6968negeqd 11481 . . . . . . . . . . . . . . 15 (𝑥 = 𝑘 → -(𝐹𝑥) = -(𝐹𝑘))
70 negex 11485 . . . . . . . . . . . . . . 15 -(𝐹𝑘) ∈ V
7169, 54, 70fvmpt 6991 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ → ((𝑥 ∈ ℕ ↦ -(𝐹𝑥))‘𝑘) = -(𝐹𝑘))
7271adantl 481 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑘 ∈ ℕ) → ((𝑥 ∈ ℕ ↦ -(𝐹𝑥))‘𝑘) = -(𝐹𝑘))
73 df-neg 11474 . . . . . . . . . . . . 13 -(𝐹𝑘) = (0 − (𝐹𝑘))
7472, 73eqtrdi 2787 . . . . . . . . . . . 12 ((⊤ ∧ 𝑘 ∈ ℕ) → ((𝑥 ∈ ℕ ↦ -(𝐹𝑥))‘𝑘) = (0 − (𝐹𝑘)))
751, 2, 59, 60, 63, 67, 74climsubc2 15660 . . . . . . . . . . 11 (⊤ → (𝑥 ∈ ℕ ↦ -(𝐹𝑥)) ⇝ (0 − γ))
7675adantr 480 . . . . . . . . . 10 ((⊤ ∧ 𝑖 ∈ ℕ) → (𝑥 ∈ ℕ ↦ -(𝐹𝑥)) ⇝ (0 − γ))
7766renegcld 11669 . . . . . . . . . . . 12 ((⊤ ∧ 𝑘 ∈ ℕ) → -(𝐹𝑘) ∈ ℝ)
7872, 77eqeltrd 2835 . . . . . . . . . . 11 ((⊤ ∧ 𝑘 ∈ ℕ) → ((𝑥 ∈ ℕ ↦ -(𝐹𝑥))‘𝑘) ∈ ℝ)
7978adantlr 715 . . . . . . . . . 10 (((⊤ ∧ 𝑖 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → ((𝑥 ∈ ℕ ↦ -(𝐹𝑥))‘𝑘) ∈ ℝ)
8019simpld 494 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ → (𝐹‘(𝑘 + 1)) ≤ (𝐹𝑘))
8180adantl 481 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝐹‘(𝑘 + 1)) ≤ (𝐹𝑘))
82 peano2nn 12257 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ℕ → (𝑘 + 1) ∈ ℕ)
8382adantl 481 . . . . . . . . . . . . . . 15 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝑘 + 1) ∈ ℕ)
8464ffvelcdmi 7078 . . . . . . . . . . . . . . 15 ((𝑘 + 1) ∈ ℕ → (𝐹‘(𝑘 + 1)) ∈ ℝ)
8583, 84syl 17 . . . . . . . . . . . . . 14 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝐹‘(𝑘 + 1)) ∈ ℝ)
8685, 66lenegd 11821 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑘 ∈ ℕ) → ((𝐹‘(𝑘 + 1)) ≤ (𝐹𝑘) ↔ -(𝐹𝑘) ≤ -(𝐹‘(𝑘 + 1))))
8781, 86mpbid 232 . . . . . . . . . . . 12 ((⊤ ∧ 𝑘 ∈ ℕ) → -(𝐹𝑘) ≤ -(𝐹‘(𝑘 + 1)))
88 fveq2 6881 . . . . . . . . . . . . . . 15 (𝑥 = (𝑘 + 1) → (𝐹𝑥) = (𝐹‘(𝑘 + 1)))
8988negeqd 11481 . . . . . . . . . . . . . 14 (𝑥 = (𝑘 + 1) → -(𝐹𝑥) = -(𝐹‘(𝑘 + 1)))
90 negex 11485 . . . . . . . . . . . . . 14 -(𝐹‘(𝑘 + 1)) ∈ V
9189, 54, 90fvmpt 6991 . . . . . . . . . . . . 13 ((𝑘 + 1) ∈ ℕ → ((𝑥 ∈ ℕ ↦ -(𝐹𝑥))‘(𝑘 + 1)) = -(𝐹‘(𝑘 + 1)))
9283, 91syl 17 . . . . . . . . . . . 12 ((⊤ ∧ 𝑘 ∈ ℕ) → ((𝑥 ∈ ℕ ↦ -(𝐹𝑥))‘(𝑘 + 1)) = -(𝐹‘(𝑘 + 1)))
9387, 72, 923brtr4d 5156 . . . . . . . . . . 11 ((⊤ ∧ 𝑘 ∈ ℕ) → ((𝑥 ∈ ℕ ↦ -(𝐹𝑥))‘𝑘) ≤ ((𝑥 ∈ ℕ ↦ -(𝐹𝑥))‘(𝑘 + 1)))
9493adantlr 715 . . . . . . . . . 10 (((⊤ ∧ 𝑖 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → ((𝑥 ∈ ℕ ↦ -(𝐹𝑥))‘𝑘) ≤ ((𝑥 ∈ ℕ ↦ -(𝐹𝑥))‘(𝑘 + 1)))
951, 16, 76, 79, 94climub 15683 . . . . . . . . 9 ((⊤ ∧ 𝑖 ∈ ℕ) → ((𝑥 ∈ ℕ ↦ -(𝐹𝑥))‘𝑖) ≤ (0 − γ))
9657, 95eqbrtrrd 5148 . . . . . . . 8 ((⊤ ∧ 𝑖 ∈ ℕ) → -(𝐹𝑖) ≤ (0 − γ))
97 df-neg 11474 . . . . . . . 8 -γ = (0 − γ)
9896, 97breqtrrdi 5166 . . . . . . 7 ((⊤ ∧ 𝑖 ∈ ℕ) → -(𝐹𝑖) ≤ -γ)
9914mptru 1547 . . . . . . . 8 γ ∈ ℝ
10064ffvelcdmi 7078 . . . . . . . . 9 (𝑖 ∈ ℕ → (𝐹𝑖) ∈ ℝ)
101100adantl 481 . . . . . . . 8 ((⊤ ∧ 𝑖 ∈ ℕ) → (𝐹𝑖) ∈ ℝ)
102 leneg 11745 . . . . . . . 8 ((γ ∈ ℝ ∧ (𝐹𝑖) ∈ ℝ) → (γ ≤ (𝐹𝑖) ↔ -(𝐹𝑖) ≤ -γ))
10399, 101, 102sylancr 587 . . . . . . 7 ((⊤ ∧ 𝑖 ∈ ℕ) → (γ ≤ (𝐹𝑖) ↔ -(𝐹𝑖) ≤ -γ))
10498, 103mpbird 257 . . . . . 6 ((⊤ ∧ 𝑖 ∈ ℕ) → γ ≤ (𝐹𝑖))
105104ralrimiva 3133 . . . . 5 (⊤ → ∀𝑖 ∈ ℕ γ ≤ (𝐹𝑖))
106 fveq2 6881 . . . . . . . 8 (𝑖 = 1 → (𝐹𝑖) = (𝐹‘1))
107 fveq2 6881 . . . . . . . . . . . . 13 (𝑛 = 1 → (log‘𝑛) = (log‘1))
108 log1 26551 . . . . . . . . . . . . 13 (log‘1) = 0
109107, 108eqtrdi 2787 . . . . . . . . . . . 12 (𝑛 = 1 → (log‘𝑛) = 0)
11034, 109oveq12d 7428 . . . . . . . . . . 11 (𝑛 = 1 → (Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) − (log‘𝑛)) = (1 − 0))
111 1m0e1 12366 . . . . . . . . . . 11 (1 − 0) = 1
112110, 111eqtrdi 2787 . . . . . . . . . 10 (𝑛 = 1 → (Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) − (log‘𝑛)) = 1)
11340elexi 3487 . . . . . . . . . 10 1 ∈ V
114112, 3, 113fvmpt 6991 . . . . . . . . 9 (1 ∈ ℕ → (𝐹‘1) = 1)
11515, 114ax-mp 5 . . . . . . . 8 (𝐹‘1) = 1
116106, 115eqtrdi 2787 . . . . . . 7 (𝑖 = 1 → (𝐹𝑖) = 1)
117116breq2d 5136 . . . . . 6 (𝑖 = 1 → (γ ≤ (𝐹𝑖) ↔ γ ≤ 1))
118117rspcva 3604 . . . . 5 ((1 ∈ ℕ ∧ ∀𝑖 ∈ ℕ γ ≤ (𝐹𝑖)) → γ ≤ 1)
11915, 105, 118sylancr 587 . . . 4 (⊤ → γ ≤ 1)
12044, 40elicc2i 13434 . . . 4 (γ ∈ ((1 − (log‘2))[,]1) ↔ (γ ∈ ℝ ∧ (1 − (log‘2)) ≤ γ ∧ γ ≤ 1))
12114, 51, 119, 120syl3anbrc 1344 . . 3 (⊤ → γ ∈ ((1 − (log‘2))[,]1))
122 ffn 6711 . . . . 5 (𝐹:ℕ⟶ℝ → 𝐹 Fn ℕ)
12364, 122mp1i 13 . . . 4 (⊤ → 𝐹 Fn ℕ)
12416, 1eleqtrdi 2845 . . . . . . . 8 ((⊤ ∧ 𝑖 ∈ ℕ) → 𝑖 ∈ (ℤ‘1))
125 elfznn 13575 . . . . . . . . . 10 (𝑘 ∈ (1...𝑖) → 𝑘 ∈ ℕ)
126125adantl 481 . . . . . . . . 9 (((⊤ ∧ 𝑖 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑖)) → 𝑘 ∈ ℕ)
127126, 65syl 17 . . . . . . . 8 (((⊤ ∧ 𝑖 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑖)) → (𝐹𝑘) ∈ ℝ)
128 elfznn 13575 . . . . . . . . . 10 (𝑘 ∈ (1...(𝑖 − 1)) → 𝑘 ∈ ℕ)
129128adantl 481 . . . . . . . . 9 (((⊤ ∧ 𝑖 ∈ ℕ) ∧ 𝑘 ∈ (1...(𝑖 − 1))) → 𝑘 ∈ ℕ)
130129, 80syl 17 . . . . . . . 8 (((⊤ ∧ 𝑖 ∈ ℕ) ∧ 𝑘 ∈ (1...(𝑖 − 1))) → (𝐹‘(𝑘 + 1)) ≤ (𝐹𝑘))
131124, 127, 130monoord2 14056 . . . . . . 7 ((⊤ ∧ 𝑖 ∈ ℕ) → (𝐹𝑖) ≤ (𝐹‘1))
132131, 115breqtrdi 5165 . . . . . 6 ((⊤ ∧ 𝑖 ∈ ℕ) → (𝐹𝑖) ≤ 1)
13399, 40elicc2i 13434 . . . . . 6 ((𝐹𝑖) ∈ (γ[,]1) ↔ ((𝐹𝑖) ∈ ℝ ∧ γ ≤ (𝐹𝑖) ∧ (𝐹𝑖) ≤ 1))
134101, 104, 132, 133syl3anbrc 1344 . . . . 5 ((⊤ ∧ 𝑖 ∈ ℕ) → (𝐹𝑖) ∈ (γ[,]1))
135134ralrimiva 3133 . . . 4 (⊤ → ∀𝑖 ∈ ℕ (𝐹𝑖) ∈ (γ[,]1))
136 ffnfv 7114 . . . 4 (𝐹:ℕ⟶(γ[,]1) ↔ (𝐹 Fn ℕ ∧ ∀𝑖 ∈ ℕ (𝐹𝑖) ∈ (γ[,]1)))
137123, 135, 136sylanbrc 583 . . 3 (⊤ → 𝐹:ℕ⟶(γ[,]1))
138 ffn 6711 . . . . 5 (𝐺:ℕ⟶ℝ → 𝐺 Fn ℕ)
13911, 138mp1i 13 . . . 4 (⊤ → 𝐺 Fn ℕ)
14011ffvelcdmi 7078 . . . . . . 7 (𝑖 ∈ ℕ → (𝐺𝑖) ∈ ℝ)
141140adantl 481 . . . . . 6 ((⊤ ∧ 𝑖 ∈ ℕ) → (𝐺𝑖) ∈ ℝ)
142126, 12syl 17 . . . . . . . 8 (((⊤ ∧ 𝑖 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑖)) → (𝐺𝑘) ∈ ℝ)
143129, 20syl 17 . . . . . . . 8 (((⊤ ∧ 𝑖 ∈ ℕ) ∧ 𝑘 ∈ (1...(𝑖 − 1))) → (𝐺𝑘) ≤ (𝐺‘(𝑘 + 1)))
144124, 142, 143monoord 14055 . . . . . . 7 ((⊤ ∧ 𝑖 ∈ ℕ) → (𝐺‘1) ≤ (𝐺𝑖))
14547, 144eqbrtrrid 5160 . . . . . 6 ((⊤ ∧ 𝑖 ∈ ℕ) → (1 − (log‘2)) ≤ (𝐺𝑖))
14644, 99elicc2i 13434 . . . . . 6 ((𝐺𝑖) ∈ ((1 − (log‘2))[,]γ) ↔ ((𝐺𝑖) ∈ ℝ ∧ (1 − (log‘2)) ≤ (𝐺𝑖) ∧ (𝐺𝑖) ≤ γ))
147141, 145, 22, 146syl3anbrc 1344 . . . . 5 ((⊤ ∧ 𝑖 ∈ ℕ) → (𝐺𝑖) ∈ ((1 − (log‘2))[,]γ))
148147ralrimiva 3133 . . . 4 (⊤ → ∀𝑖 ∈ ℕ (𝐺𝑖) ∈ ((1 − (log‘2))[,]γ))
149 ffnfv 7114 . . . 4 (𝐺:ℕ⟶((1 − (log‘2))[,]γ) ↔ (𝐺 Fn ℕ ∧ ∀𝑖 ∈ ℕ (𝐺𝑖) ∈ ((1 − (log‘2))[,]γ)))
150139, 148, 149sylanbrc 583 . . 3 (⊤ → 𝐺:ℕ⟶((1 − (log‘2))[,]γ))
151121, 137, 1503jca 1128 . 2 (⊤ → (γ ∈ ((1 − (log‘2))[,]1) ∧ 𝐹:ℕ⟶(γ[,]1) ∧ 𝐺:ℕ⟶((1 − (log‘2))[,]γ)))
152151mptru 1547 1 (γ ∈ ((1 − (log‘2))[,]1) ∧ 𝐹:ℕ⟶(γ[,]1) ∧ 𝐺:ℕ⟶((1 − (log‘2))[,]γ))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  w3a 1086   = wceq 1540  wtru 1541  wcel 2109  wral 3052  Vcvv 3464   class class class wbr 5124  cmpt 5206   Fn wfn 6531  wf 6532  cfv 6536  (class class class)co 7410  cc 11132  cr 11133  0cc0 11134  1c1 11135   + caddc 11137  cle 11275  cmin 11471  -cneg 11472   / cdiv 11899  cn 12245  2c2 12300  cz 12593  cuz 12857  +crp 13013  [,]cicc 13370  ...cfz 13529  cli 15505  Σcsu 15707  logclog 26520  γcem 26959
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-inf2 9660  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211  ax-pre-sup 11212  ax-addf 11213
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-iin 4975  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-se 5612  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-isom 6545  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-of 7676  df-om 7867  df-1st 7993  df-2nd 7994  df-supp 8165  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-2o 8486  df-er 8724  df-map 8847  df-pm 8848  df-ixp 8917  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-fsupp 9379  df-fi 9428  df-sup 9459  df-inf 9460  df-oi 9529  df-card 9958  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-div 11900  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-7 12313  df-8 12314  df-9 12315  df-n0 12507  df-z 12594  df-dec 12714  df-uz 12858  df-q 12970  df-rp 13014  df-xneg 13133  df-xadd 13134  df-xmul 13135  df-ioo 13371  df-ioc 13372  df-ico 13373  df-icc 13374  df-fz 13530  df-fzo 13677  df-fl 13814  df-mod 13892  df-seq 14025  df-exp 14085  df-fac 14297  df-bc 14326  df-hash 14354  df-shft 15091  df-cj 15123  df-re 15124  df-im 15125  df-sqrt 15259  df-abs 15260  df-limsup 15492  df-clim 15509  df-rlim 15510  df-sum 15708  df-ef 16088  df-sin 16090  df-cos 16091  df-pi 16093  df-struct 17171  df-sets 17188  df-slot 17206  df-ndx 17218  df-base 17234  df-ress 17257  df-plusg 17289  df-mulr 17290  df-starv 17291  df-sca 17292  df-vsca 17293  df-ip 17294  df-tset 17295  df-ple 17296  df-ds 17298  df-unif 17299  df-hom 17300  df-cco 17301  df-rest 17441  df-topn 17442  df-0g 17460  df-gsum 17461  df-topgen 17462  df-pt 17463  df-prds 17466  df-xrs 17521  df-qtop 17526  df-imas 17527  df-xps 17529  df-mre 17603  df-mrc 17604  df-acs 17606  df-mgm 18623  df-sgrp 18702  df-mnd 18718  df-submnd 18767  df-mulg 19056  df-cntz 19305  df-cmn 19768  df-psmet 21312  df-xmet 21313  df-met 21314  df-bl 21315  df-mopn 21316  df-fbas 21317  df-fg 21318  df-cnfld 21321  df-top 22837  df-topon 22854  df-topsp 22876  df-bases 22889  df-cld 22962  df-ntr 22963  df-cls 22964  df-nei 23041  df-lp 23079  df-perf 23080  df-cn 23170  df-cnp 23171  df-haus 23258  df-tx 23505  df-hmeo 23698  df-fil 23789  df-fm 23881  df-flim 23882  df-flf 23883  df-xms 24264  df-ms 24265  df-tms 24266  df-cncf 24827  df-limc 25824  df-dv 25825  df-log 26522  df-em 26960
This theorem is referenced by:  emcl  26970  harmonicbnd  26971  harmonicbnd2  26972
  Copyright terms: Public domain W3C validator