MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  emcllem7 Structured version   Visualization version   GIF version

Theorem emcllem7 26910
Description: Lemma for emcl 26911 and harmonicbnd 26912. Derive bounds on γ as 𝐹(1) and 𝐺(1). (Contributed by Mario Carneiro, 11-Jul-2014.) (Revised by Mario Carneiro, 9-Apr-2016.)
Hypotheses
Ref Expression
emcl.1 𝐹 = (𝑛 ∈ ℕ ↦ (Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) − (log‘𝑛)))
emcl.2 𝐺 = (𝑛 ∈ ℕ ↦ (Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) − (log‘(𝑛 + 1))))
emcl.3 𝐻 = (𝑛 ∈ ℕ ↦ (log‘(1 + (1 / 𝑛))))
emcl.4 𝑇 = (𝑛 ∈ ℕ ↦ ((1 / 𝑛) − (log‘(1 + (1 / 𝑛)))))
Assertion
Ref Expression
emcllem7 (γ ∈ ((1 − (log‘2))[,]1) ∧ 𝐹:ℕ⟶(γ[,]1) ∧ 𝐺:ℕ⟶((1 − (log‘2))[,]γ))
Distinct variable groups:   𝑚,𝐻   𝑚,𝑛,𝑇
Allowed substitution hints:   𝐹(𝑚,𝑛)   𝐺(𝑚,𝑛)   𝐻(𝑛)

Proof of Theorem emcllem7
Dummy variables 𝑖 𝑘 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnuz 12778 . . . . 5 ℕ = (ℤ‘1)
2 1zzd 12506 . . . . 5 (⊤ → 1 ∈ ℤ)
3 emcl.1 . . . . . . . 8 𝐹 = (𝑛 ∈ ℕ ↦ (Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) − (log‘𝑛)))
4 emcl.2 . . . . . . . 8 𝐺 = (𝑛 ∈ ℕ ↦ (Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) − (log‘(𝑛 + 1))))
5 emcl.3 . . . . . . . 8 𝐻 = (𝑛 ∈ ℕ ↦ (log‘(1 + (1 / 𝑛))))
6 emcl.4 . . . . . . . 8 𝑇 = (𝑛 ∈ ℕ ↦ ((1 / 𝑛) − (log‘(1 + (1 / 𝑛)))))
73, 4, 5, 6emcllem6 26909 . . . . . . 7 (𝐹 ⇝ γ ∧ 𝐺 ⇝ γ)
87simpri 485 . . . . . 6 𝐺 ⇝ γ
98a1i 11 . . . . 5 (⊤ → 𝐺 ⇝ γ)
103, 4emcllem1 26904 . . . . . . . 8 (𝐹:ℕ⟶ℝ ∧ 𝐺:ℕ⟶ℝ)
1110simpri 485 . . . . . . 7 𝐺:ℕ⟶ℝ
1211ffvelcdmi 7017 . . . . . 6 (𝑘 ∈ ℕ → (𝐺𝑘) ∈ ℝ)
1312adantl 481 . . . . 5 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝐺𝑘) ∈ ℝ)
141, 2, 9, 13climrecl 15490 . . . 4 (⊤ → γ ∈ ℝ)
15 1nn 12139 . . . . 5 1 ∈ ℕ
16 simpr 484 . . . . . . 7 ((⊤ ∧ 𝑖 ∈ ℕ) → 𝑖 ∈ ℕ)
178a1i 11 . . . . . . 7 ((⊤ ∧ 𝑖 ∈ ℕ) → 𝐺 ⇝ γ)
1812adantl 481 . . . . . . 7 (((⊤ ∧ 𝑖 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → (𝐺𝑘) ∈ ℝ)
193, 4emcllem2 26905 . . . . . . . . 9 (𝑘 ∈ ℕ → ((𝐹‘(𝑘 + 1)) ≤ (𝐹𝑘) ∧ (𝐺𝑘) ≤ (𝐺‘(𝑘 + 1))))
2019simprd 495 . . . . . . . 8 (𝑘 ∈ ℕ → (𝐺𝑘) ≤ (𝐺‘(𝑘 + 1)))
2120adantl 481 . . . . . . 7 (((⊤ ∧ 𝑖 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → (𝐺𝑘) ≤ (𝐺‘(𝑘 + 1)))
221, 16, 17, 18, 21climub 15569 . . . . . 6 ((⊤ ∧ 𝑖 ∈ ℕ) → (𝐺𝑖) ≤ γ)
2322ralrimiva 3121 . . . . 5 (⊤ → ∀𝑖 ∈ ℕ (𝐺𝑖) ≤ γ)
24 fveq2 6822 . . . . . . . 8 (𝑖 = 1 → (𝐺𝑖) = (𝐺‘1))
25 oveq2 7357 . . . . . . . . . . . . 13 (𝑛 = 1 → (1...𝑛) = (1...1))
2625sumeq1d 15607 . . . . . . . . . . . 12 (𝑛 = 1 → Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) = Σ𝑚 ∈ (1...1)(1 / 𝑚))
27 1z 12505 . . . . . . . . . . . . 13 1 ∈ ℤ
28 ax-1cn 11067 . . . . . . . . . . . . 13 1 ∈ ℂ
29 oveq2 7357 . . . . . . . . . . . . . . 15 (𝑚 = 1 → (1 / 𝑚) = (1 / 1))
30 1div1e1 11815 . . . . . . . . . . . . . . 15 (1 / 1) = 1
3129, 30eqtrdi 2780 . . . . . . . . . . . . . 14 (𝑚 = 1 → (1 / 𝑚) = 1)
3231fsum1 15654 . . . . . . . . . . . . 13 ((1 ∈ ℤ ∧ 1 ∈ ℂ) → Σ𝑚 ∈ (1...1)(1 / 𝑚) = 1)
3327, 28, 32mp2an 692 . . . . . . . . . . . 12 Σ𝑚 ∈ (1...1)(1 / 𝑚) = 1
3426, 33eqtrdi 2780 . . . . . . . . . . 11 (𝑛 = 1 → Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) = 1)
35 oveq1 7356 . . . . . . . . . . . . 13 (𝑛 = 1 → (𝑛 + 1) = (1 + 1))
36 df-2 12191 . . . . . . . . . . . . 13 2 = (1 + 1)
3735, 36eqtr4di 2782 . . . . . . . . . . . 12 (𝑛 = 1 → (𝑛 + 1) = 2)
3837fveq2d 6826 . . . . . . . . . . 11 (𝑛 = 1 → (log‘(𝑛 + 1)) = (log‘2))
3934, 38oveq12d 7367 . . . . . . . . . 10 (𝑛 = 1 → (Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) − (log‘(𝑛 + 1))) = (1 − (log‘2)))
40 1re 11115 . . . . . . . . . . . 12 1 ∈ ℝ
41 2rp 12898 . . . . . . . . . . . . 13 2 ∈ ℝ+
42 relogcl 26482 . . . . . . . . . . . . 13 (2 ∈ ℝ+ → (log‘2) ∈ ℝ)
4341, 42ax-mp 5 . . . . . . . . . . . 12 (log‘2) ∈ ℝ
4440, 43resubcli 11426 . . . . . . . . . . 11 (1 − (log‘2)) ∈ ℝ
4544elexi 3459 . . . . . . . . . 10 (1 − (log‘2)) ∈ V
4639, 4, 45fvmpt 6930 . . . . . . . . 9 (1 ∈ ℕ → (𝐺‘1) = (1 − (log‘2)))
4715, 46ax-mp 5 . . . . . . . 8 (𝐺‘1) = (1 − (log‘2))
4824, 47eqtrdi 2780 . . . . . . 7 (𝑖 = 1 → (𝐺𝑖) = (1 − (log‘2)))
4948breq1d 5102 . . . . . 6 (𝑖 = 1 → ((𝐺𝑖) ≤ γ ↔ (1 − (log‘2)) ≤ γ))
5049rspcva 3575 . . . . 5 ((1 ∈ ℕ ∧ ∀𝑖 ∈ ℕ (𝐺𝑖) ≤ γ) → (1 − (log‘2)) ≤ γ)
5115, 23, 50sylancr 587 . . . 4 (⊤ → (1 − (log‘2)) ≤ γ)
52 fveq2 6822 . . . . . . . . . . . 12 (𝑥 = 𝑖 → (𝐹𝑥) = (𝐹𝑖))
5352negeqd 11357 . . . . . . . . . . 11 (𝑥 = 𝑖 → -(𝐹𝑥) = -(𝐹𝑖))
54 eqid 2729 . . . . . . . . . . 11 (𝑥 ∈ ℕ ↦ -(𝐹𝑥)) = (𝑥 ∈ ℕ ↦ -(𝐹𝑥))
55 negex 11361 . . . . . . . . . . 11 -(𝐹𝑖) ∈ V
5653, 54, 55fvmpt 6930 . . . . . . . . . 10 (𝑖 ∈ ℕ → ((𝑥 ∈ ℕ ↦ -(𝐹𝑥))‘𝑖) = -(𝐹𝑖))
5756adantl 481 . . . . . . . . 9 ((⊤ ∧ 𝑖 ∈ ℕ) → ((𝑥 ∈ ℕ ↦ -(𝐹𝑥))‘𝑖) = -(𝐹𝑖))
587simpli 483 . . . . . . . . . . . . 13 𝐹 ⇝ γ
5958a1i 11 . . . . . . . . . . . 12 (⊤ → 𝐹 ⇝ γ)
60 0cnd 11108 . . . . . . . . . . . 12 (⊤ → 0 ∈ ℂ)
61 nnex 12134 . . . . . . . . . . . . . 14 ℕ ∈ V
6261mptex 7159 . . . . . . . . . . . . 13 (𝑥 ∈ ℕ ↦ -(𝐹𝑥)) ∈ V
6362a1i 11 . . . . . . . . . . . 12 (⊤ → (𝑥 ∈ ℕ ↦ -(𝐹𝑥)) ∈ V)
6410simpli 483 . . . . . . . . . . . . . . 15 𝐹:ℕ⟶ℝ
6564ffvelcdmi 7017 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ → (𝐹𝑘) ∈ ℝ)
6665adantl 481 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝐹𝑘) ∈ ℝ)
6766recnd 11143 . . . . . . . . . . . 12 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝐹𝑘) ∈ ℂ)
68 fveq2 6822 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑘 → (𝐹𝑥) = (𝐹𝑘))
6968negeqd 11357 . . . . . . . . . . . . . . 15 (𝑥 = 𝑘 → -(𝐹𝑥) = -(𝐹𝑘))
70 negex 11361 . . . . . . . . . . . . . . 15 -(𝐹𝑘) ∈ V
7169, 54, 70fvmpt 6930 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ → ((𝑥 ∈ ℕ ↦ -(𝐹𝑥))‘𝑘) = -(𝐹𝑘))
7271adantl 481 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑘 ∈ ℕ) → ((𝑥 ∈ ℕ ↦ -(𝐹𝑥))‘𝑘) = -(𝐹𝑘))
73 df-neg 11350 . . . . . . . . . . . . 13 -(𝐹𝑘) = (0 − (𝐹𝑘))
7472, 73eqtrdi 2780 . . . . . . . . . . . 12 ((⊤ ∧ 𝑘 ∈ ℕ) → ((𝑥 ∈ ℕ ↦ -(𝐹𝑥))‘𝑘) = (0 − (𝐹𝑘)))
751, 2, 59, 60, 63, 67, 74climsubc2 15546 . . . . . . . . . . 11 (⊤ → (𝑥 ∈ ℕ ↦ -(𝐹𝑥)) ⇝ (0 − γ))
7675adantr 480 . . . . . . . . . 10 ((⊤ ∧ 𝑖 ∈ ℕ) → (𝑥 ∈ ℕ ↦ -(𝐹𝑥)) ⇝ (0 − γ))
7766renegcld 11547 . . . . . . . . . . . 12 ((⊤ ∧ 𝑘 ∈ ℕ) → -(𝐹𝑘) ∈ ℝ)
7872, 77eqeltrd 2828 . . . . . . . . . . 11 ((⊤ ∧ 𝑘 ∈ ℕ) → ((𝑥 ∈ ℕ ↦ -(𝐹𝑥))‘𝑘) ∈ ℝ)
7978adantlr 715 . . . . . . . . . 10 (((⊤ ∧ 𝑖 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → ((𝑥 ∈ ℕ ↦ -(𝐹𝑥))‘𝑘) ∈ ℝ)
8019simpld 494 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ → (𝐹‘(𝑘 + 1)) ≤ (𝐹𝑘))
8180adantl 481 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝐹‘(𝑘 + 1)) ≤ (𝐹𝑘))
82 peano2nn 12140 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ℕ → (𝑘 + 1) ∈ ℕ)
8382adantl 481 . . . . . . . . . . . . . . 15 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝑘 + 1) ∈ ℕ)
8464ffvelcdmi 7017 . . . . . . . . . . . . . . 15 ((𝑘 + 1) ∈ ℕ → (𝐹‘(𝑘 + 1)) ∈ ℝ)
8583, 84syl 17 . . . . . . . . . . . . . 14 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝐹‘(𝑘 + 1)) ∈ ℝ)
8685, 66lenegd 11699 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑘 ∈ ℕ) → ((𝐹‘(𝑘 + 1)) ≤ (𝐹𝑘) ↔ -(𝐹𝑘) ≤ -(𝐹‘(𝑘 + 1))))
8781, 86mpbid 232 . . . . . . . . . . . 12 ((⊤ ∧ 𝑘 ∈ ℕ) → -(𝐹𝑘) ≤ -(𝐹‘(𝑘 + 1)))
88 fveq2 6822 . . . . . . . . . . . . . . 15 (𝑥 = (𝑘 + 1) → (𝐹𝑥) = (𝐹‘(𝑘 + 1)))
8988negeqd 11357 . . . . . . . . . . . . . 14 (𝑥 = (𝑘 + 1) → -(𝐹𝑥) = -(𝐹‘(𝑘 + 1)))
90 negex 11361 . . . . . . . . . . . . . 14 -(𝐹‘(𝑘 + 1)) ∈ V
9189, 54, 90fvmpt 6930 . . . . . . . . . . . . 13 ((𝑘 + 1) ∈ ℕ → ((𝑥 ∈ ℕ ↦ -(𝐹𝑥))‘(𝑘 + 1)) = -(𝐹‘(𝑘 + 1)))
9283, 91syl 17 . . . . . . . . . . . 12 ((⊤ ∧ 𝑘 ∈ ℕ) → ((𝑥 ∈ ℕ ↦ -(𝐹𝑥))‘(𝑘 + 1)) = -(𝐹‘(𝑘 + 1)))
9387, 72, 923brtr4d 5124 . . . . . . . . . . 11 ((⊤ ∧ 𝑘 ∈ ℕ) → ((𝑥 ∈ ℕ ↦ -(𝐹𝑥))‘𝑘) ≤ ((𝑥 ∈ ℕ ↦ -(𝐹𝑥))‘(𝑘 + 1)))
9493adantlr 715 . . . . . . . . . 10 (((⊤ ∧ 𝑖 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → ((𝑥 ∈ ℕ ↦ -(𝐹𝑥))‘𝑘) ≤ ((𝑥 ∈ ℕ ↦ -(𝐹𝑥))‘(𝑘 + 1)))
951, 16, 76, 79, 94climub 15569 . . . . . . . . 9 ((⊤ ∧ 𝑖 ∈ ℕ) → ((𝑥 ∈ ℕ ↦ -(𝐹𝑥))‘𝑖) ≤ (0 − γ))
9657, 95eqbrtrrd 5116 . . . . . . . 8 ((⊤ ∧ 𝑖 ∈ ℕ) → -(𝐹𝑖) ≤ (0 − γ))
97 df-neg 11350 . . . . . . . 8 -γ = (0 − γ)
9896, 97breqtrrdi 5134 . . . . . . 7 ((⊤ ∧ 𝑖 ∈ ℕ) → -(𝐹𝑖) ≤ -γ)
9914mptru 1547 . . . . . . . 8 γ ∈ ℝ
10064ffvelcdmi 7017 . . . . . . . . 9 (𝑖 ∈ ℕ → (𝐹𝑖) ∈ ℝ)
101100adantl 481 . . . . . . . 8 ((⊤ ∧ 𝑖 ∈ ℕ) → (𝐹𝑖) ∈ ℝ)
102 leneg 11623 . . . . . . . 8 ((γ ∈ ℝ ∧ (𝐹𝑖) ∈ ℝ) → (γ ≤ (𝐹𝑖) ↔ -(𝐹𝑖) ≤ -γ))
10399, 101, 102sylancr 587 . . . . . . 7 ((⊤ ∧ 𝑖 ∈ ℕ) → (γ ≤ (𝐹𝑖) ↔ -(𝐹𝑖) ≤ -γ))
10498, 103mpbird 257 . . . . . 6 ((⊤ ∧ 𝑖 ∈ ℕ) → γ ≤ (𝐹𝑖))
105104ralrimiva 3121 . . . . 5 (⊤ → ∀𝑖 ∈ ℕ γ ≤ (𝐹𝑖))
106 fveq2 6822 . . . . . . . 8 (𝑖 = 1 → (𝐹𝑖) = (𝐹‘1))
107 fveq2 6822 . . . . . . . . . . . . 13 (𝑛 = 1 → (log‘𝑛) = (log‘1))
108 log1 26492 . . . . . . . . . . . . 13 (log‘1) = 0
109107, 108eqtrdi 2780 . . . . . . . . . . . 12 (𝑛 = 1 → (log‘𝑛) = 0)
11034, 109oveq12d 7367 . . . . . . . . . . 11 (𝑛 = 1 → (Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) − (log‘𝑛)) = (1 − 0))
111 1m0e1 12244 . . . . . . . . . . 11 (1 − 0) = 1
112110, 111eqtrdi 2780 . . . . . . . . . 10 (𝑛 = 1 → (Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) − (log‘𝑛)) = 1)
11340elexi 3459 . . . . . . . . . 10 1 ∈ V
114112, 3, 113fvmpt 6930 . . . . . . . . 9 (1 ∈ ℕ → (𝐹‘1) = 1)
11515, 114ax-mp 5 . . . . . . . 8 (𝐹‘1) = 1
116106, 115eqtrdi 2780 . . . . . . 7 (𝑖 = 1 → (𝐹𝑖) = 1)
117116breq2d 5104 . . . . . 6 (𝑖 = 1 → (γ ≤ (𝐹𝑖) ↔ γ ≤ 1))
118117rspcva 3575 . . . . 5 ((1 ∈ ℕ ∧ ∀𝑖 ∈ ℕ γ ≤ (𝐹𝑖)) → γ ≤ 1)
11915, 105, 118sylancr 587 . . . 4 (⊤ → γ ≤ 1)
12044, 40elicc2i 13315 . . . 4 (γ ∈ ((1 − (log‘2))[,]1) ↔ (γ ∈ ℝ ∧ (1 − (log‘2)) ≤ γ ∧ γ ≤ 1))
12114, 51, 119, 120syl3anbrc 1344 . . 3 (⊤ → γ ∈ ((1 − (log‘2))[,]1))
122 ffn 6652 . . . . 5 (𝐹:ℕ⟶ℝ → 𝐹 Fn ℕ)
12364, 122mp1i 13 . . . 4 (⊤ → 𝐹 Fn ℕ)
12416, 1eleqtrdi 2838 . . . . . . . 8 ((⊤ ∧ 𝑖 ∈ ℕ) → 𝑖 ∈ (ℤ‘1))
125 elfznn 13456 . . . . . . . . . 10 (𝑘 ∈ (1...𝑖) → 𝑘 ∈ ℕ)
126125adantl 481 . . . . . . . . 9 (((⊤ ∧ 𝑖 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑖)) → 𝑘 ∈ ℕ)
127126, 65syl 17 . . . . . . . 8 (((⊤ ∧ 𝑖 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑖)) → (𝐹𝑘) ∈ ℝ)
128 elfznn 13456 . . . . . . . . . 10 (𝑘 ∈ (1...(𝑖 − 1)) → 𝑘 ∈ ℕ)
129128adantl 481 . . . . . . . . 9 (((⊤ ∧ 𝑖 ∈ ℕ) ∧ 𝑘 ∈ (1...(𝑖 − 1))) → 𝑘 ∈ ℕ)
130129, 80syl 17 . . . . . . . 8 (((⊤ ∧ 𝑖 ∈ ℕ) ∧ 𝑘 ∈ (1...(𝑖 − 1))) → (𝐹‘(𝑘 + 1)) ≤ (𝐹𝑘))
131124, 127, 130monoord2 13940 . . . . . . 7 ((⊤ ∧ 𝑖 ∈ ℕ) → (𝐹𝑖) ≤ (𝐹‘1))
132131, 115breqtrdi 5133 . . . . . 6 ((⊤ ∧ 𝑖 ∈ ℕ) → (𝐹𝑖) ≤ 1)
13399, 40elicc2i 13315 . . . . . 6 ((𝐹𝑖) ∈ (γ[,]1) ↔ ((𝐹𝑖) ∈ ℝ ∧ γ ≤ (𝐹𝑖) ∧ (𝐹𝑖) ≤ 1))
134101, 104, 132, 133syl3anbrc 1344 . . . . 5 ((⊤ ∧ 𝑖 ∈ ℕ) → (𝐹𝑖) ∈ (γ[,]1))
135134ralrimiva 3121 . . . 4 (⊤ → ∀𝑖 ∈ ℕ (𝐹𝑖) ∈ (γ[,]1))
136 ffnfv 7053 . . . 4 (𝐹:ℕ⟶(γ[,]1) ↔ (𝐹 Fn ℕ ∧ ∀𝑖 ∈ ℕ (𝐹𝑖) ∈ (γ[,]1)))
137123, 135, 136sylanbrc 583 . . 3 (⊤ → 𝐹:ℕ⟶(γ[,]1))
138 ffn 6652 . . . . 5 (𝐺:ℕ⟶ℝ → 𝐺 Fn ℕ)
13911, 138mp1i 13 . . . 4 (⊤ → 𝐺 Fn ℕ)
14011ffvelcdmi 7017 . . . . . . 7 (𝑖 ∈ ℕ → (𝐺𝑖) ∈ ℝ)
141140adantl 481 . . . . . 6 ((⊤ ∧ 𝑖 ∈ ℕ) → (𝐺𝑖) ∈ ℝ)
142126, 12syl 17 . . . . . . . 8 (((⊤ ∧ 𝑖 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑖)) → (𝐺𝑘) ∈ ℝ)
143129, 20syl 17 . . . . . . . 8 (((⊤ ∧ 𝑖 ∈ ℕ) ∧ 𝑘 ∈ (1...(𝑖 − 1))) → (𝐺𝑘) ≤ (𝐺‘(𝑘 + 1)))
144124, 142, 143monoord 13939 . . . . . . 7 ((⊤ ∧ 𝑖 ∈ ℕ) → (𝐺‘1) ≤ (𝐺𝑖))
14547, 144eqbrtrrid 5128 . . . . . 6 ((⊤ ∧ 𝑖 ∈ ℕ) → (1 − (log‘2)) ≤ (𝐺𝑖))
14644, 99elicc2i 13315 . . . . . 6 ((𝐺𝑖) ∈ ((1 − (log‘2))[,]γ) ↔ ((𝐺𝑖) ∈ ℝ ∧ (1 − (log‘2)) ≤ (𝐺𝑖) ∧ (𝐺𝑖) ≤ γ))
147141, 145, 22, 146syl3anbrc 1344 . . . . 5 ((⊤ ∧ 𝑖 ∈ ℕ) → (𝐺𝑖) ∈ ((1 − (log‘2))[,]γ))
148147ralrimiva 3121 . . . 4 (⊤ → ∀𝑖 ∈ ℕ (𝐺𝑖) ∈ ((1 − (log‘2))[,]γ))
149 ffnfv 7053 . . . 4 (𝐺:ℕ⟶((1 − (log‘2))[,]γ) ↔ (𝐺 Fn ℕ ∧ ∀𝑖 ∈ ℕ (𝐺𝑖) ∈ ((1 − (log‘2))[,]γ)))
150139, 148, 149sylanbrc 583 . . 3 (⊤ → 𝐺:ℕ⟶((1 − (log‘2))[,]γ))
151121, 137, 1503jca 1128 . 2 (⊤ → (γ ∈ ((1 − (log‘2))[,]1) ∧ 𝐹:ℕ⟶(γ[,]1) ∧ 𝐺:ℕ⟶((1 − (log‘2))[,]γ)))
152151mptru 1547 1 (γ ∈ ((1 − (log‘2))[,]1) ∧ 𝐹:ℕ⟶(γ[,]1) ∧ 𝐺:ℕ⟶((1 − (log‘2))[,]γ))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  w3a 1086   = wceq 1540  wtru 1541  wcel 2109  wral 3044  Vcvv 3436   class class class wbr 5092  cmpt 5173   Fn wfn 6477  wf 6478  cfv 6482  (class class class)co 7349  cc 11007  cr 11008  0cc0 11009  1c1 11010   + caddc 11012  cle 11150  cmin 11347  -cneg 11348   / cdiv 11777  cn 12128  2c2 12183  cz 12471  cuz 12735  +crp 12893  [,]cicc 13251  ...cfz 13410  cli 15391  Σcsu 15593  logclog 26461  γcem 26900
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-inf2 9537  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087  ax-addf 11088
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-iin 4944  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-isom 6491  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-of 7613  df-om 7800  df-1st 7924  df-2nd 7925  df-supp 8094  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-2o 8389  df-er 8625  df-map 8755  df-pm 8756  df-ixp 8825  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-fsupp 9252  df-fi 9301  df-sup 9332  df-inf 9333  df-oi 9402  df-card 9835  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-3 12192  df-4 12193  df-5 12194  df-6 12195  df-7 12196  df-8 12197  df-9 12198  df-n0 12385  df-z 12472  df-dec 12592  df-uz 12736  df-q 12850  df-rp 12894  df-xneg 13014  df-xadd 13015  df-xmul 13016  df-ioo 13252  df-ioc 13253  df-ico 13254  df-icc 13255  df-fz 13411  df-fzo 13558  df-fl 13696  df-mod 13774  df-seq 13909  df-exp 13969  df-fac 14181  df-bc 14210  df-hash 14238  df-shft 14974  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-limsup 15378  df-clim 15395  df-rlim 15396  df-sum 15594  df-ef 15974  df-sin 15976  df-cos 15977  df-pi 15979  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-starv 17176  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-unif 17184  df-hom 17185  df-cco 17186  df-rest 17326  df-topn 17327  df-0g 17345  df-gsum 17346  df-topgen 17347  df-pt 17348  df-prds 17351  df-xrs 17406  df-qtop 17411  df-imas 17412  df-xps 17414  df-mre 17488  df-mrc 17489  df-acs 17491  df-mgm 18514  df-sgrp 18593  df-mnd 18609  df-submnd 18658  df-mulg 18947  df-cntz 19196  df-cmn 19661  df-psmet 21253  df-xmet 21254  df-met 21255  df-bl 21256  df-mopn 21257  df-fbas 21258  df-fg 21259  df-cnfld 21262  df-top 22779  df-topon 22796  df-topsp 22818  df-bases 22831  df-cld 22904  df-ntr 22905  df-cls 22906  df-nei 22983  df-lp 23021  df-perf 23022  df-cn 23112  df-cnp 23113  df-haus 23200  df-tx 23447  df-hmeo 23640  df-fil 23731  df-fm 23823  df-flim 23824  df-flf 23825  df-xms 24206  df-ms 24207  df-tms 24208  df-cncf 24769  df-limc 25765  df-dv 25766  df-log 26463  df-em 26901
This theorem is referenced by:  emcl  26911  harmonicbnd  26912  harmonicbnd2  26913
  Copyright terms: Public domain W3C validator