MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  emcllem7 Structured version   Visualization version   GIF version

Theorem emcllem7 26513
Description: Lemma for emcl 26514 and harmonicbnd 26515. Derive bounds on Ξ³ as 𝐹(1) and 𝐺(1). (Contributed by Mario Carneiro, 11-Jul-2014.) (Revised by Mario Carneiro, 9-Apr-2016.)
Hypotheses
Ref Expression
emcl.1 𝐹 = (𝑛 ∈ β„• ↦ (Ξ£π‘š ∈ (1...𝑛)(1 / π‘š) βˆ’ (logβ€˜π‘›)))
emcl.2 𝐺 = (𝑛 ∈ β„• ↦ (Ξ£π‘š ∈ (1...𝑛)(1 / π‘š) βˆ’ (logβ€˜(𝑛 + 1))))
emcl.3 𝐻 = (𝑛 ∈ β„• ↦ (logβ€˜(1 + (1 / 𝑛))))
emcl.4 𝑇 = (𝑛 ∈ β„• ↦ ((1 / 𝑛) βˆ’ (logβ€˜(1 + (1 / 𝑛)))))
Assertion
Ref Expression
emcllem7 (Ξ³ ∈ ((1 βˆ’ (logβ€˜2))[,]1) ∧ 𝐹:β„•βŸΆ(Ξ³[,]1) ∧ 𝐺:β„•βŸΆ((1 βˆ’ (logβ€˜2))[,]Ξ³))
Distinct variable groups:   π‘š,𝐻   π‘š,𝑛,𝑇
Allowed substitution hints:   𝐹(π‘š,𝑛)   𝐺(π‘š,𝑛)   𝐻(𝑛)

Proof of Theorem emcllem7
Dummy variables 𝑖 π‘˜ π‘₯ are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnuz 12867 . . . . 5 β„• = (β„€β‰₯β€˜1)
2 1zzd 12595 . . . . 5 (⊀ β†’ 1 ∈ β„€)
3 emcl.1 . . . . . . . 8 𝐹 = (𝑛 ∈ β„• ↦ (Ξ£π‘š ∈ (1...𝑛)(1 / π‘š) βˆ’ (logβ€˜π‘›)))
4 emcl.2 . . . . . . . 8 𝐺 = (𝑛 ∈ β„• ↦ (Ξ£π‘š ∈ (1...𝑛)(1 / π‘š) βˆ’ (logβ€˜(𝑛 + 1))))
5 emcl.3 . . . . . . . 8 𝐻 = (𝑛 ∈ β„• ↦ (logβ€˜(1 + (1 / 𝑛))))
6 emcl.4 . . . . . . . 8 𝑇 = (𝑛 ∈ β„• ↦ ((1 / 𝑛) βˆ’ (logβ€˜(1 + (1 / 𝑛)))))
73, 4, 5, 6emcllem6 26512 . . . . . . 7 (𝐹 ⇝ Ξ³ ∧ 𝐺 ⇝ Ξ³)
87simpri 486 . . . . . 6 𝐺 ⇝ Ξ³
98a1i 11 . . . . 5 (⊀ β†’ 𝐺 ⇝ Ξ³)
103, 4emcllem1 26507 . . . . . . . 8 (𝐹:β„•βŸΆβ„ ∧ 𝐺:β„•βŸΆβ„)
1110simpri 486 . . . . . . 7 𝐺:β„•βŸΆβ„
1211ffvelcdmi 7085 . . . . . 6 (π‘˜ ∈ β„• β†’ (πΊβ€˜π‘˜) ∈ ℝ)
1312adantl 482 . . . . 5 ((⊀ ∧ π‘˜ ∈ β„•) β†’ (πΊβ€˜π‘˜) ∈ ℝ)
141, 2, 9, 13climrecl 15529 . . . 4 (⊀ β†’ Ξ³ ∈ ℝ)
15 1nn 12225 . . . . 5 1 ∈ β„•
16 simpr 485 . . . . . . 7 ((⊀ ∧ 𝑖 ∈ β„•) β†’ 𝑖 ∈ β„•)
178a1i 11 . . . . . . 7 ((⊀ ∧ 𝑖 ∈ β„•) β†’ 𝐺 ⇝ Ξ³)
1812adantl 482 . . . . . . 7 (((⊀ ∧ 𝑖 ∈ β„•) ∧ π‘˜ ∈ β„•) β†’ (πΊβ€˜π‘˜) ∈ ℝ)
193, 4emcllem2 26508 . . . . . . . . 9 (π‘˜ ∈ β„• β†’ ((πΉβ€˜(π‘˜ + 1)) ≀ (πΉβ€˜π‘˜) ∧ (πΊβ€˜π‘˜) ≀ (πΊβ€˜(π‘˜ + 1))))
2019simprd 496 . . . . . . . 8 (π‘˜ ∈ β„• β†’ (πΊβ€˜π‘˜) ≀ (πΊβ€˜(π‘˜ + 1)))
2120adantl 482 . . . . . . 7 (((⊀ ∧ 𝑖 ∈ β„•) ∧ π‘˜ ∈ β„•) β†’ (πΊβ€˜π‘˜) ≀ (πΊβ€˜(π‘˜ + 1)))
221, 16, 17, 18, 21climub 15610 . . . . . 6 ((⊀ ∧ 𝑖 ∈ β„•) β†’ (πΊβ€˜π‘–) ≀ Ξ³)
2322ralrimiva 3146 . . . . 5 (⊀ β†’ βˆ€π‘– ∈ β„• (πΊβ€˜π‘–) ≀ Ξ³)
24 fveq2 6891 . . . . . . . 8 (𝑖 = 1 β†’ (πΊβ€˜π‘–) = (πΊβ€˜1))
25 oveq2 7419 . . . . . . . . . . . . 13 (𝑛 = 1 β†’ (1...𝑛) = (1...1))
2625sumeq1d 15649 . . . . . . . . . . . 12 (𝑛 = 1 β†’ Ξ£π‘š ∈ (1...𝑛)(1 / π‘š) = Ξ£π‘š ∈ (1...1)(1 / π‘š))
27 1z 12594 . . . . . . . . . . . . 13 1 ∈ β„€
28 ax-1cn 11170 . . . . . . . . . . . . 13 1 ∈ β„‚
29 oveq2 7419 . . . . . . . . . . . . . . 15 (π‘š = 1 β†’ (1 / π‘š) = (1 / 1))
30 1div1e1 11906 . . . . . . . . . . . . . . 15 (1 / 1) = 1
3129, 30eqtrdi 2788 . . . . . . . . . . . . . 14 (π‘š = 1 β†’ (1 / π‘š) = 1)
3231fsum1 15695 . . . . . . . . . . . . 13 ((1 ∈ β„€ ∧ 1 ∈ β„‚) β†’ Ξ£π‘š ∈ (1...1)(1 / π‘š) = 1)
3327, 28, 32mp2an 690 . . . . . . . . . . . 12 Ξ£π‘š ∈ (1...1)(1 / π‘š) = 1
3426, 33eqtrdi 2788 . . . . . . . . . . 11 (𝑛 = 1 β†’ Ξ£π‘š ∈ (1...𝑛)(1 / π‘š) = 1)
35 oveq1 7418 . . . . . . . . . . . . 13 (𝑛 = 1 β†’ (𝑛 + 1) = (1 + 1))
36 df-2 12277 . . . . . . . . . . . . 13 2 = (1 + 1)
3735, 36eqtr4di 2790 . . . . . . . . . . . 12 (𝑛 = 1 β†’ (𝑛 + 1) = 2)
3837fveq2d 6895 . . . . . . . . . . 11 (𝑛 = 1 β†’ (logβ€˜(𝑛 + 1)) = (logβ€˜2))
3934, 38oveq12d 7429 . . . . . . . . . 10 (𝑛 = 1 β†’ (Ξ£π‘š ∈ (1...𝑛)(1 / π‘š) βˆ’ (logβ€˜(𝑛 + 1))) = (1 βˆ’ (logβ€˜2)))
40 1re 11216 . . . . . . . . . . . 12 1 ∈ ℝ
41 2rp 12981 . . . . . . . . . . . . 13 2 ∈ ℝ+
42 relogcl 26091 . . . . . . . . . . . . 13 (2 ∈ ℝ+ β†’ (logβ€˜2) ∈ ℝ)
4341, 42ax-mp 5 . . . . . . . . . . . 12 (logβ€˜2) ∈ ℝ
4440, 43resubcli 11524 . . . . . . . . . . 11 (1 βˆ’ (logβ€˜2)) ∈ ℝ
4544elexi 3493 . . . . . . . . . 10 (1 βˆ’ (logβ€˜2)) ∈ V
4639, 4, 45fvmpt 6998 . . . . . . . . 9 (1 ∈ β„• β†’ (πΊβ€˜1) = (1 βˆ’ (logβ€˜2)))
4715, 46ax-mp 5 . . . . . . . 8 (πΊβ€˜1) = (1 βˆ’ (logβ€˜2))
4824, 47eqtrdi 2788 . . . . . . 7 (𝑖 = 1 β†’ (πΊβ€˜π‘–) = (1 βˆ’ (logβ€˜2)))
4948breq1d 5158 . . . . . 6 (𝑖 = 1 β†’ ((πΊβ€˜π‘–) ≀ Ξ³ ↔ (1 βˆ’ (logβ€˜2)) ≀ Ξ³))
5049rspcva 3610 . . . . 5 ((1 ∈ β„• ∧ βˆ€π‘– ∈ β„• (πΊβ€˜π‘–) ≀ Ξ³) β†’ (1 βˆ’ (logβ€˜2)) ≀ Ξ³)
5115, 23, 50sylancr 587 . . . 4 (⊀ β†’ (1 βˆ’ (logβ€˜2)) ≀ Ξ³)
52 fveq2 6891 . . . . . . . . . . . 12 (π‘₯ = 𝑖 β†’ (πΉβ€˜π‘₯) = (πΉβ€˜π‘–))
5352negeqd 11456 . . . . . . . . . . 11 (π‘₯ = 𝑖 β†’ -(πΉβ€˜π‘₯) = -(πΉβ€˜π‘–))
54 eqid 2732 . . . . . . . . . . 11 (π‘₯ ∈ β„• ↦ -(πΉβ€˜π‘₯)) = (π‘₯ ∈ β„• ↦ -(πΉβ€˜π‘₯))
55 negex 11460 . . . . . . . . . . 11 -(πΉβ€˜π‘–) ∈ V
5653, 54, 55fvmpt 6998 . . . . . . . . . 10 (𝑖 ∈ β„• β†’ ((π‘₯ ∈ β„• ↦ -(πΉβ€˜π‘₯))β€˜π‘–) = -(πΉβ€˜π‘–))
5756adantl 482 . . . . . . . . 9 ((⊀ ∧ 𝑖 ∈ β„•) β†’ ((π‘₯ ∈ β„• ↦ -(πΉβ€˜π‘₯))β€˜π‘–) = -(πΉβ€˜π‘–))
587simpli 484 . . . . . . . . . . . . 13 𝐹 ⇝ Ξ³
5958a1i 11 . . . . . . . . . . . 12 (⊀ β†’ 𝐹 ⇝ Ξ³)
60 0cnd 11209 . . . . . . . . . . . 12 (⊀ β†’ 0 ∈ β„‚)
61 nnex 12220 . . . . . . . . . . . . . 14 β„• ∈ V
6261mptex 7227 . . . . . . . . . . . . 13 (π‘₯ ∈ β„• ↦ -(πΉβ€˜π‘₯)) ∈ V
6362a1i 11 . . . . . . . . . . . 12 (⊀ β†’ (π‘₯ ∈ β„• ↦ -(πΉβ€˜π‘₯)) ∈ V)
6410simpli 484 . . . . . . . . . . . . . . 15 𝐹:β„•βŸΆβ„
6564ffvelcdmi 7085 . . . . . . . . . . . . . 14 (π‘˜ ∈ β„• β†’ (πΉβ€˜π‘˜) ∈ ℝ)
6665adantl 482 . . . . . . . . . . . . 13 ((⊀ ∧ π‘˜ ∈ β„•) β†’ (πΉβ€˜π‘˜) ∈ ℝ)
6766recnd 11244 . . . . . . . . . . . 12 ((⊀ ∧ π‘˜ ∈ β„•) β†’ (πΉβ€˜π‘˜) ∈ β„‚)
68 fveq2 6891 . . . . . . . . . . . . . . . 16 (π‘₯ = π‘˜ β†’ (πΉβ€˜π‘₯) = (πΉβ€˜π‘˜))
6968negeqd 11456 . . . . . . . . . . . . . . 15 (π‘₯ = π‘˜ β†’ -(πΉβ€˜π‘₯) = -(πΉβ€˜π‘˜))
70 negex 11460 . . . . . . . . . . . . . . 15 -(πΉβ€˜π‘˜) ∈ V
7169, 54, 70fvmpt 6998 . . . . . . . . . . . . . 14 (π‘˜ ∈ β„• β†’ ((π‘₯ ∈ β„• ↦ -(πΉβ€˜π‘₯))β€˜π‘˜) = -(πΉβ€˜π‘˜))
7271adantl 482 . . . . . . . . . . . . 13 ((⊀ ∧ π‘˜ ∈ β„•) β†’ ((π‘₯ ∈ β„• ↦ -(πΉβ€˜π‘₯))β€˜π‘˜) = -(πΉβ€˜π‘˜))
73 df-neg 11449 . . . . . . . . . . . . 13 -(πΉβ€˜π‘˜) = (0 βˆ’ (πΉβ€˜π‘˜))
7472, 73eqtrdi 2788 . . . . . . . . . . . 12 ((⊀ ∧ π‘˜ ∈ β„•) β†’ ((π‘₯ ∈ β„• ↦ -(πΉβ€˜π‘₯))β€˜π‘˜) = (0 βˆ’ (πΉβ€˜π‘˜)))
751, 2, 59, 60, 63, 67, 74climsubc2 15585 . . . . . . . . . . 11 (⊀ β†’ (π‘₯ ∈ β„• ↦ -(πΉβ€˜π‘₯)) ⇝ (0 βˆ’ Ξ³))
7675adantr 481 . . . . . . . . . 10 ((⊀ ∧ 𝑖 ∈ β„•) β†’ (π‘₯ ∈ β„• ↦ -(πΉβ€˜π‘₯)) ⇝ (0 βˆ’ Ξ³))
7766renegcld 11643 . . . . . . . . . . . 12 ((⊀ ∧ π‘˜ ∈ β„•) β†’ -(πΉβ€˜π‘˜) ∈ ℝ)
7872, 77eqeltrd 2833 . . . . . . . . . . 11 ((⊀ ∧ π‘˜ ∈ β„•) β†’ ((π‘₯ ∈ β„• ↦ -(πΉβ€˜π‘₯))β€˜π‘˜) ∈ ℝ)
7978adantlr 713 . . . . . . . . . 10 (((⊀ ∧ 𝑖 ∈ β„•) ∧ π‘˜ ∈ β„•) β†’ ((π‘₯ ∈ β„• ↦ -(πΉβ€˜π‘₯))β€˜π‘˜) ∈ ℝ)
8019simpld 495 . . . . . . . . . . . . . 14 (π‘˜ ∈ β„• β†’ (πΉβ€˜(π‘˜ + 1)) ≀ (πΉβ€˜π‘˜))
8180adantl 482 . . . . . . . . . . . . 13 ((⊀ ∧ π‘˜ ∈ β„•) β†’ (πΉβ€˜(π‘˜ + 1)) ≀ (πΉβ€˜π‘˜))
82 peano2nn 12226 . . . . . . . . . . . . . . . 16 (π‘˜ ∈ β„• β†’ (π‘˜ + 1) ∈ β„•)
8382adantl 482 . . . . . . . . . . . . . . 15 ((⊀ ∧ π‘˜ ∈ β„•) β†’ (π‘˜ + 1) ∈ β„•)
8464ffvelcdmi 7085 . . . . . . . . . . . . . . 15 ((π‘˜ + 1) ∈ β„• β†’ (πΉβ€˜(π‘˜ + 1)) ∈ ℝ)
8583, 84syl 17 . . . . . . . . . . . . . 14 ((⊀ ∧ π‘˜ ∈ β„•) β†’ (πΉβ€˜(π‘˜ + 1)) ∈ ℝ)
8685, 66lenegd 11795 . . . . . . . . . . . . 13 ((⊀ ∧ π‘˜ ∈ β„•) β†’ ((πΉβ€˜(π‘˜ + 1)) ≀ (πΉβ€˜π‘˜) ↔ -(πΉβ€˜π‘˜) ≀ -(πΉβ€˜(π‘˜ + 1))))
8781, 86mpbid 231 . . . . . . . . . . . 12 ((⊀ ∧ π‘˜ ∈ β„•) β†’ -(πΉβ€˜π‘˜) ≀ -(πΉβ€˜(π‘˜ + 1)))
88 fveq2 6891 . . . . . . . . . . . . . . 15 (π‘₯ = (π‘˜ + 1) β†’ (πΉβ€˜π‘₯) = (πΉβ€˜(π‘˜ + 1)))
8988negeqd 11456 . . . . . . . . . . . . . 14 (π‘₯ = (π‘˜ + 1) β†’ -(πΉβ€˜π‘₯) = -(πΉβ€˜(π‘˜ + 1)))
90 negex 11460 . . . . . . . . . . . . . 14 -(πΉβ€˜(π‘˜ + 1)) ∈ V
9189, 54, 90fvmpt 6998 . . . . . . . . . . . . 13 ((π‘˜ + 1) ∈ β„• β†’ ((π‘₯ ∈ β„• ↦ -(πΉβ€˜π‘₯))β€˜(π‘˜ + 1)) = -(πΉβ€˜(π‘˜ + 1)))
9283, 91syl 17 . . . . . . . . . . . 12 ((⊀ ∧ π‘˜ ∈ β„•) β†’ ((π‘₯ ∈ β„• ↦ -(πΉβ€˜π‘₯))β€˜(π‘˜ + 1)) = -(πΉβ€˜(π‘˜ + 1)))
9387, 72, 923brtr4d 5180 . . . . . . . . . . 11 ((⊀ ∧ π‘˜ ∈ β„•) β†’ ((π‘₯ ∈ β„• ↦ -(πΉβ€˜π‘₯))β€˜π‘˜) ≀ ((π‘₯ ∈ β„• ↦ -(πΉβ€˜π‘₯))β€˜(π‘˜ + 1)))
9493adantlr 713 . . . . . . . . . 10 (((⊀ ∧ 𝑖 ∈ β„•) ∧ π‘˜ ∈ β„•) β†’ ((π‘₯ ∈ β„• ↦ -(πΉβ€˜π‘₯))β€˜π‘˜) ≀ ((π‘₯ ∈ β„• ↦ -(πΉβ€˜π‘₯))β€˜(π‘˜ + 1)))
951, 16, 76, 79, 94climub 15610 . . . . . . . . 9 ((⊀ ∧ 𝑖 ∈ β„•) β†’ ((π‘₯ ∈ β„• ↦ -(πΉβ€˜π‘₯))β€˜π‘–) ≀ (0 βˆ’ Ξ³))
9657, 95eqbrtrrd 5172 . . . . . . . 8 ((⊀ ∧ 𝑖 ∈ β„•) β†’ -(πΉβ€˜π‘–) ≀ (0 βˆ’ Ξ³))
97 df-neg 11449 . . . . . . . 8 -Ξ³ = (0 βˆ’ Ξ³)
9896, 97breqtrrdi 5190 . . . . . . 7 ((⊀ ∧ 𝑖 ∈ β„•) β†’ -(πΉβ€˜π‘–) ≀ -Ξ³)
9914mptru 1548 . . . . . . . 8 Ξ³ ∈ ℝ
10064ffvelcdmi 7085 . . . . . . . . 9 (𝑖 ∈ β„• β†’ (πΉβ€˜π‘–) ∈ ℝ)
101100adantl 482 . . . . . . . 8 ((⊀ ∧ 𝑖 ∈ β„•) β†’ (πΉβ€˜π‘–) ∈ ℝ)
102 leneg 11719 . . . . . . . 8 ((Ξ³ ∈ ℝ ∧ (πΉβ€˜π‘–) ∈ ℝ) β†’ (Ξ³ ≀ (πΉβ€˜π‘–) ↔ -(πΉβ€˜π‘–) ≀ -Ξ³))
10399, 101, 102sylancr 587 . . . . . . 7 ((⊀ ∧ 𝑖 ∈ β„•) β†’ (Ξ³ ≀ (πΉβ€˜π‘–) ↔ -(πΉβ€˜π‘–) ≀ -Ξ³))
10498, 103mpbird 256 . . . . . 6 ((⊀ ∧ 𝑖 ∈ β„•) β†’ Ξ³ ≀ (πΉβ€˜π‘–))
105104ralrimiva 3146 . . . . 5 (⊀ β†’ βˆ€π‘– ∈ β„• Ξ³ ≀ (πΉβ€˜π‘–))
106 fveq2 6891 . . . . . . . 8 (𝑖 = 1 β†’ (πΉβ€˜π‘–) = (πΉβ€˜1))
107 fveq2 6891 . . . . . . . . . . . . 13 (𝑛 = 1 β†’ (logβ€˜π‘›) = (logβ€˜1))
108 log1 26101 . . . . . . . . . . . . 13 (logβ€˜1) = 0
109107, 108eqtrdi 2788 . . . . . . . . . . . 12 (𝑛 = 1 β†’ (logβ€˜π‘›) = 0)
11034, 109oveq12d 7429 . . . . . . . . . . 11 (𝑛 = 1 β†’ (Ξ£π‘š ∈ (1...𝑛)(1 / π‘š) βˆ’ (logβ€˜π‘›)) = (1 βˆ’ 0))
111 1m0e1 12335 . . . . . . . . . . 11 (1 βˆ’ 0) = 1
112110, 111eqtrdi 2788 . . . . . . . . . 10 (𝑛 = 1 β†’ (Ξ£π‘š ∈ (1...𝑛)(1 / π‘š) βˆ’ (logβ€˜π‘›)) = 1)
11340elexi 3493 . . . . . . . . . 10 1 ∈ V
114112, 3, 113fvmpt 6998 . . . . . . . . 9 (1 ∈ β„• β†’ (πΉβ€˜1) = 1)
11515, 114ax-mp 5 . . . . . . . 8 (πΉβ€˜1) = 1
116106, 115eqtrdi 2788 . . . . . . 7 (𝑖 = 1 β†’ (πΉβ€˜π‘–) = 1)
117116breq2d 5160 . . . . . 6 (𝑖 = 1 β†’ (Ξ³ ≀ (πΉβ€˜π‘–) ↔ Ξ³ ≀ 1))
118117rspcva 3610 . . . . 5 ((1 ∈ β„• ∧ βˆ€π‘– ∈ β„• Ξ³ ≀ (πΉβ€˜π‘–)) β†’ Ξ³ ≀ 1)
11915, 105, 118sylancr 587 . . . 4 (⊀ β†’ Ξ³ ≀ 1)
12044, 40elicc2i 13392 . . . 4 (Ξ³ ∈ ((1 βˆ’ (logβ€˜2))[,]1) ↔ (Ξ³ ∈ ℝ ∧ (1 βˆ’ (logβ€˜2)) ≀ Ξ³ ∧ Ξ³ ≀ 1))
12114, 51, 119, 120syl3anbrc 1343 . . 3 (⊀ β†’ Ξ³ ∈ ((1 βˆ’ (logβ€˜2))[,]1))
122 ffn 6717 . . . . 5 (𝐹:β„•βŸΆβ„ β†’ 𝐹 Fn β„•)
12364, 122mp1i 13 . . . 4 (⊀ β†’ 𝐹 Fn β„•)
12416, 1eleqtrdi 2843 . . . . . . . 8 ((⊀ ∧ 𝑖 ∈ β„•) β†’ 𝑖 ∈ (β„€β‰₯β€˜1))
125 elfznn 13532 . . . . . . . . . 10 (π‘˜ ∈ (1...𝑖) β†’ π‘˜ ∈ β„•)
126125adantl 482 . . . . . . . . 9 (((⊀ ∧ 𝑖 ∈ β„•) ∧ π‘˜ ∈ (1...𝑖)) β†’ π‘˜ ∈ β„•)
127126, 65syl 17 . . . . . . . 8 (((⊀ ∧ 𝑖 ∈ β„•) ∧ π‘˜ ∈ (1...𝑖)) β†’ (πΉβ€˜π‘˜) ∈ ℝ)
128 elfznn 13532 . . . . . . . . . 10 (π‘˜ ∈ (1...(𝑖 βˆ’ 1)) β†’ π‘˜ ∈ β„•)
129128adantl 482 . . . . . . . . 9 (((⊀ ∧ 𝑖 ∈ β„•) ∧ π‘˜ ∈ (1...(𝑖 βˆ’ 1))) β†’ π‘˜ ∈ β„•)
130129, 80syl 17 . . . . . . . 8 (((⊀ ∧ 𝑖 ∈ β„•) ∧ π‘˜ ∈ (1...(𝑖 βˆ’ 1))) β†’ (πΉβ€˜(π‘˜ + 1)) ≀ (πΉβ€˜π‘˜))
131124, 127, 130monoord2 14001 . . . . . . 7 ((⊀ ∧ 𝑖 ∈ β„•) β†’ (πΉβ€˜π‘–) ≀ (πΉβ€˜1))
132131, 115breqtrdi 5189 . . . . . 6 ((⊀ ∧ 𝑖 ∈ β„•) β†’ (πΉβ€˜π‘–) ≀ 1)
13399, 40elicc2i 13392 . . . . . 6 ((πΉβ€˜π‘–) ∈ (Ξ³[,]1) ↔ ((πΉβ€˜π‘–) ∈ ℝ ∧ Ξ³ ≀ (πΉβ€˜π‘–) ∧ (πΉβ€˜π‘–) ≀ 1))
134101, 104, 132, 133syl3anbrc 1343 . . . . 5 ((⊀ ∧ 𝑖 ∈ β„•) β†’ (πΉβ€˜π‘–) ∈ (Ξ³[,]1))
135134ralrimiva 3146 . . . 4 (⊀ β†’ βˆ€π‘– ∈ β„• (πΉβ€˜π‘–) ∈ (Ξ³[,]1))
136 ffnfv 7120 . . . 4 (𝐹:β„•βŸΆ(Ξ³[,]1) ↔ (𝐹 Fn β„• ∧ βˆ€π‘– ∈ β„• (πΉβ€˜π‘–) ∈ (Ξ³[,]1)))
137123, 135, 136sylanbrc 583 . . 3 (⊀ β†’ 𝐹:β„•βŸΆ(Ξ³[,]1))
138 ffn 6717 . . . . 5 (𝐺:β„•βŸΆβ„ β†’ 𝐺 Fn β„•)
13911, 138mp1i 13 . . . 4 (⊀ β†’ 𝐺 Fn β„•)
14011ffvelcdmi 7085 . . . . . . 7 (𝑖 ∈ β„• β†’ (πΊβ€˜π‘–) ∈ ℝ)
141140adantl 482 . . . . . 6 ((⊀ ∧ 𝑖 ∈ β„•) β†’ (πΊβ€˜π‘–) ∈ ℝ)
142126, 12syl 17 . . . . . . . 8 (((⊀ ∧ 𝑖 ∈ β„•) ∧ π‘˜ ∈ (1...𝑖)) β†’ (πΊβ€˜π‘˜) ∈ ℝ)
143129, 20syl 17 . . . . . . . 8 (((⊀ ∧ 𝑖 ∈ β„•) ∧ π‘˜ ∈ (1...(𝑖 βˆ’ 1))) β†’ (πΊβ€˜π‘˜) ≀ (πΊβ€˜(π‘˜ + 1)))
144124, 142, 143monoord 14000 . . . . . . 7 ((⊀ ∧ 𝑖 ∈ β„•) β†’ (πΊβ€˜1) ≀ (πΊβ€˜π‘–))
14547, 144eqbrtrrid 5184 . . . . . 6 ((⊀ ∧ 𝑖 ∈ β„•) β†’ (1 βˆ’ (logβ€˜2)) ≀ (πΊβ€˜π‘–))
14644, 99elicc2i 13392 . . . . . 6 ((πΊβ€˜π‘–) ∈ ((1 βˆ’ (logβ€˜2))[,]Ξ³) ↔ ((πΊβ€˜π‘–) ∈ ℝ ∧ (1 βˆ’ (logβ€˜2)) ≀ (πΊβ€˜π‘–) ∧ (πΊβ€˜π‘–) ≀ Ξ³))
147141, 145, 22, 146syl3anbrc 1343 . . . . 5 ((⊀ ∧ 𝑖 ∈ β„•) β†’ (πΊβ€˜π‘–) ∈ ((1 βˆ’ (logβ€˜2))[,]Ξ³))
148147ralrimiva 3146 . . . 4 (⊀ β†’ βˆ€π‘– ∈ β„• (πΊβ€˜π‘–) ∈ ((1 βˆ’ (logβ€˜2))[,]Ξ³))
149 ffnfv 7120 . . . 4 (𝐺:β„•βŸΆ((1 βˆ’ (logβ€˜2))[,]Ξ³) ↔ (𝐺 Fn β„• ∧ βˆ€π‘– ∈ β„• (πΊβ€˜π‘–) ∈ ((1 βˆ’ (logβ€˜2))[,]Ξ³)))
150139, 148, 149sylanbrc 583 . . 3 (⊀ β†’ 𝐺:β„•βŸΆ((1 βˆ’ (logβ€˜2))[,]Ξ³))
151121, 137, 1503jca 1128 . 2 (⊀ β†’ (Ξ³ ∈ ((1 βˆ’ (logβ€˜2))[,]1) ∧ 𝐹:β„•βŸΆ(Ξ³[,]1) ∧ 𝐺:β„•βŸΆ((1 βˆ’ (logβ€˜2))[,]Ξ³)))
152151mptru 1548 1 (Ξ³ ∈ ((1 βˆ’ (logβ€˜2))[,]1) ∧ 𝐹:β„•βŸΆ(Ξ³[,]1) ∧ 𝐺:β„•βŸΆ((1 βˆ’ (logβ€˜2))[,]Ξ³))
Colors of variables: wff setvar class
Syntax hints:   ↔ wb 205   ∧ wa 396   ∧ w3a 1087   = wceq 1541  βŠ€wtru 1542   ∈ wcel 2106  βˆ€wral 3061  Vcvv 3474   class class class wbr 5148   ↦ cmpt 5231   Fn wfn 6538  βŸΆwf 6539  β€˜cfv 6543  (class class class)co 7411  β„‚cc 11110  β„cr 11111  0cc0 11112  1c1 11113   + caddc 11115   ≀ cle 11251   βˆ’ cmin 11446  -cneg 11447   / cdiv 11873  β„•cn 12214  2c2 12269  β„€cz 12560  β„€β‰₯cuz 12824  β„+crp 12976  [,]cicc 13329  ...cfz 13486   ⇝ cli 15430  Ξ£csu 15634  logclog 26070  Ξ³cem 26503
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7727  ax-inf2 9638  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189  ax-pre-sup 11190  ax-addf 11191  ax-mulf 11192
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-tp 4633  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-iin 5000  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-se 5632  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-isom 6552  df-riota 7367  df-ov 7414  df-oprab 7415  df-mpo 7416  df-of 7672  df-om 7858  df-1st 7977  df-2nd 7978  df-supp 8149  df-frecs 8268  df-wrecs 8299  df-recs 8373  df-rdg 8412  df-1o 8468  df-2o 8469  df-er 8705  df-map 8824  df-pm 8825  df-ixp 8894  df-en 8942  df-dom 8943  df-sdom 8944  df-fin 8945  df-fsupp 9364  df-fi 9408  df-sup 9439  df-inf 9440  df-oi 9507  df-card 9936  df-pnf 11252  df-mnf 11253  df-xr 11254  df-ltxr 11255  df-le 11256  df-sub 11448  df-neg 11449  df-div 11874  df-nn 12215  df-2 12277  df-3 12278  df-4 12279  df-5 12280  df-6 12281  df-7 12282  df-8 12283  df-9 12284  df-n0 12475  df-z 12561  df-dec 12680  df-uz 12825  df-q 12935  df-rp 12977  df-xneg 13094  df-xadd 13095  df-xmul 13096  df-ioo 13330  df-ioc 13331  df-ico 13332  df-icc 13333  df-fz 13487  df-fzo 13630  df-fl 13759  df-mod 13837  df-seq 13969  df-exp 14030  df-fac 14236  df-bc 14265  df-hash 14293  df-shft 15016  df-cj 15048  df-re 15049  df-im 15050  df-sqrt 15184  df-abs 15185  df-limsup 15417  df-clim 15434  df-rlim 15435  df-sum 15635  df-ef 16013  df-sin 16015  df-cos 16016  df-pi 16018  df-struct 17082  df-sets 17099  df-slot 17117  df-ndx 17129  df-base 17147  df-ress 17176  df-plusg 17212  df-mulr 17213  df-starv 17214  df-sca 17215  df-vsca 17216  df-ip 17217  df-tset 17218  df-ple 17219  df-ds 17221  df-unif 17222  df-hom 17223  df-cco 17224  df-rest 17370  df-topn 17371  df-0g 17389  df-gsum 17390  df-topgen 17391  df-pt 17392  df-prds 17395  df-xrs 17450  df-qtop 17455  df-imas 17456  df-xps 17458  df-mre 17532  df-mrc 17533  df-acs 17535  df-mgm 18563  df-sgrp 18612  df-mnd 18628  df-submnd 18674  df-mulg 18953  df-cntz 19183  df-cmn 19652  df-psmet 20942  df-xmet 20943  df-met 20944  df-bl 20945  df-mopn 20946  df-fbas 20947  df-fg 20948  df-cnfld 20951  df-top 22403  df-topon 22420  df-topsp 22442  df-bases 22456  df-cld 22530  df-ntr 22531  df-cls 22532  df-nei 22609  df-lp 22647  df-perf 22648  df-cn 22738  df-cnp 22739  df-haus 22826  df-tx 23073  df-hmeo 23266  df-fil 23357  df-fm 23449  df-flim 23450  df-flf 23451  df-xms 23833  df-ms 23834  df-tms 23835  df-cncf 24401  df-limc 25390  df-dv 25391  df-log 26072  df-em 26504
This theorem is referenced by:  emcl  26514  harmonicbnd  26515  harmonicbnd2  26516
  Copyright terms: Public domain W3C validator