MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  emcllem7 Structured version   Visualization version   GIF version

Theorem emcllem7 26056
Description: Lemma for emcl 26057 and harmonicbnd 26058. Derive bounds on γ as 𝐹(1) and 𝐺(1). (Contributed by Mario Carneiro, 11-Jul-2014.) (Revised by Mario Carneiro, 9-Apr-2016.)
Hypotheses
Ref Expression
emcl.1 𝐹 = (𝑛 ∈ ℕ ↦ (Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) − (log‘𝑛)))
emcl.2 𝐺 = (𝑛 ∈ ℕ ↦ (Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) − (log‘(𝑛 + 1))))
emcl.3 𝐻 = (𝑛 ∈ ℕ ↦ (log‘(1 + (1 / 𝑛))))
emcl.4 𝑇 = (𝑛 ∈ ℕ ↦ ((1 / 𝑛) − (log‘(1 + (1 / 𝑛)))))
Assertion
Ref Expression
emcllem7 (γ ∈ ((1 − (log‘2))[,]1) ∧ 𝐹:ℕ⟶(γ[,]1) ∧ 𝐺:ℕ⟶((1 − (log‘2))[,]γ))
Distinct variable groups:   𝑚,𝐻   𝑚,𝑛,𝑇
Allowed substitution hints:   𝐹(𝑚,𝑛)   𝐺(𝑚,𝑛)   𝐻(𝑛)

Proof of Theorem emcllem7
Dummy variables 𝑖 𝑘 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnuz 12550 . . . . 5 ℕ = (ℤ‘1)
2 1zzd 12281 . . . . 5 (⊤ → 1 ∈ ℤ)
3 emcl.1 . . . . . . . 8 𝐹 = (𝑛 ∈ ℕ ↦ (Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) − (log‘𝑛)))
4 emcl.2 . . . . . . . 8 𝐺 = (𝑛 ∈ ℕ ↦ (Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) − (log‘(𝑛 + 1))))
5 emcl.3 . . . . . . . 8 𝐻 = (𝑛 ∈ ℕ ↦ (log‘(1 + (1 / 𝑛))))
6 emcl.4 . . . . . . . 8 𝑇 = (𝑛 ∈ ℕ ↦ ((1 / 𝑛) − (log‘(1 + (1 / 𝑛)))))
73, 4, 5, 6emcllem6 26055 . . . . . . 7 (𝐹 ⇝ γ ∧ 𝐺 ⇝ γ)
87simpri 485 . . . . . 6 𝐺 ⇝ γ
98a1i 11 . . . . 5 (⊤ → 𝐺 ⇝ γ)
103, 4emcllem1 26050 . . . . . . . 8 (𝐹:ℕ⟶ℝ ∧ 𝐺:ℕ⟶ℝ)
1110simpri 485 . . . . . . 7 𝐺:ℕ⟶ℝ
1211ffvelrni 6942 . . . . . 6 (𝑘 ∈ ℕ → (𝐺𝑘) ∈ ℝ)
1312adantl 481 . . . . 5 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝐺𝑘) ∈ ℝ)
141, 2, 9, 13climrecl 15220 . . . 4 (⊤ → γ ∈ ℝ)
15 1nn 11914 . . . . 5 1 ∈ ℕ
16 simpr 484 . . . . . . 7 ((⊤ ∧ 𝑖 ∈ ℕ) → 𝑖 ∈ ℕ)
178a1i 11 . . . . . . 7 ((⊤ ∧ 𝑖 ∈ ℕ) → 𝐺 ⇝ γ)
1812adantl 481 . . . . . . 7 (((⊤ ∧ 𝑖 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → (𝐺𝑘) ∈ ℝ)
193, 4emcllem2 26051 . . . . . . . . 9 (𝑘 ∈ ℕ → ((𝐹‘(𝑘 + 1)) ≤ (𝐹𝑘) ∧ (𝐺𝑘) ≤ (𝐺‘(𝑘 + 1))))
2019simprd 495 . . . . . . . 8 (𝑘 ∈ ℕ → (𝐺𝑘) ≤ (𝐺‘(𝑘 + 1)))
2120adantl 481 . . . . . . 7 (((⊤ ∧ 𝑖 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → (𝐺𝑘) ≤ (𝐺‘(𝑘 + 1)))
221, 16, 17, 18, 21climub 15301 . . . . . 6 ((⊤ ∧ 𝑖 ∈ ℕ) → (𝐺𝑖) ≤ γ)
2322ralrimiva 3107 . . . . 5 (⊤ → ∀𝑖 ∈ ℕ (𝐺𝑖) ≤ γ)
24 fveq2 6756 . . . . . . . 8 (𝑖 = 1 → (𝐺𝑖) = (𝐺‘1))
25 oveq2 7263 . . . . . . . . . . . . 13 (𝑛 = 1 → (1...𝑛) = (1...1))
2625sumeq1d 15341 . . . . . . . . . . . 12 (𝑛 = 1 → Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) = Σ𝑚 ∈ (1...1)(1 / 𝑚))
27 1z 12280 . . . . . . . . . . . . 13 1 ∈ ℤ
28 ax-1cn 10860 . . . . . . . . . . . . 13 1 ∈ ℂ
29 oveq2 7263 . . . . . . . . . . . . . . 15 (𝑚 = 1 → (1 / 𝑚) = (1 / 1))
30 1div1e1 11595 . . . . . . . . . . . . . . 15 (1 / 1) = 1
3129, 30eqtrdi 2795 . . . . . . . . . . . . . 14 (𝑚 = 1 → (1 / 𝑚) = 1)
3231fsum1 15387 . . . . . . . . . . . . 13 ((1 ∈ ℤ ∧ 1 ∈ ℂ) → Σ𝑚 ∈ (1...1)(1 / 𝑚) = 1)
3327, 28, 32mp2an 688 . . . . . . . . . . . 12 Σ𝑚 ∈ (1...1)(1 / 𝑚) = 1
3426, 33eqtrdi 2795 . . . . . . . . . . 11 (𝑛 = 1 → Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) = 1)
35 oveq1 7262 . . . . . . . . . . . . 13 (𝑛 = 1 → (𝑛 + 1) = (1 + 1))
36 df-2 11966 . . . . . . . . . . . . 13 2 = (1 + 1)
3735, 36eqtr4di 2797 . . . . . . . . . . . 12 (𝑛 = 1 → (𝑛 + 1) = 2)
3837fveq2d 6760 . . . . . . . . . . 11 (𝑛 = 1 → (log‘(𝑛 + 1)) = (log‘2))
3934, 38oveq12d 7273 . . . . . . . . . 10 (𝑛 = 1 → (Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) − (log‘(𝑛 + 1))) = (1 − (log‘2)))
40 1re 10906 . . . . . . . . . . . 12 1 ∈ ℝ
41 2rp 12664 . . . . . . . . . . . . 13 2 ∈ ℝ+
42 relogcl 25636 . . . . . . . . . . . . 13 (2 ∈ ℝ+ → (log‘2) ∈ ℝ)
4341, 42ax-mp 5 . . . . . . . . . . . 12 (log‘2) ∈ ℝ
4440, 43resubcli 11213 . . . . . . . . . . 11 (1 − (log‘2)) ∈ ℝ
4544elexi 3441 . . . . . . . . . 10 (1 − (log‘2)) ∈ V
4639, 4, 45fvmpt 6857 . . . . . . . . 9 (1 ∈ ℕ → (𝐺‘1) = (1 − (log‘2)))
4715, 46ax-mp 5 . . . . . . . 8 (𝐺‘1) = (1 − (log‘2))
4824, 47eqtrdi 2795 . . . . . . 7 (𝑖 = 1 → (𝐺𝑖) = (1 − (log‘2)))
4948breq1d 5080 . . . . . 6 (𝑖 = 1 → ((𝐺𝑖) ≤ γ ↔ (1 − (log‘2)) ≤ γ))
5049rspcva 3550 . . . . 5 ((1 ∈ ℕ ∧ ∀𝑖 ∈ ℕ (𝐺𝑖) ≤ γ) → (1 − (log‘2)) ≤ γ)
5115, 23, 50sylancr 586 . . . 4 (⊤ → (1 − (log‘2)) ≤ γ)
52 fveq2 6756 . . . . . . . . . . . 12 (𝑥 = 𝑖 → (𝐹𝑥) = (𝐹𝑖))
5352negeqd 11145 . . . . . . . . . . 11 (𝑥 = 𝑖 → -(𝐹𝑥) = -(𝐹𝑖))
54 eqid 2738 . . . . . . . . . . 11 (𝑥 ∈ ℕ ↦ -(𝐹𝑥)) = (𝑥 ∈ ℕ ↦ -(𝐹𝑥))
55 negex 11149 . . . . . . . . . . 11 -(𝐹𝑖) ∈ V
5653, 54, 55fvmpt 6857 . . . . . . . . . 10 (𝑖 ∈ ℕ → ((𝑥 ∈ ℕ ↦ -(𝐹𝑥))‘𝑖) = -(𝐹𝑖))
5756adantl 481 . . . . . . . . 9 ((⊤ ∧ 𝑖 ∈ ℕ) → ((𝑥 ∈ ℕ ↦ -(𝐹𝑥))‘𝑖) = -(𝐹𝑖))
587simpli 483 . . . . . . . . . . . . 13 𝐹 ⇝ γ
5958a1i 11 . . . . . . . . . . . 12 (⊤ → 𝐹 ⇝ γ)
60 0cnd 10899 . . . . . . . . . . . 12 (⊤ → 0 ∈ ℂ)
61 nnex 11909 . . . . . . . . . . . . . 14 ℕ ∈ V
6261mptex 7081 . . . . . . . . . . . . 13 (𝑥 ∈ ℕ ↦ -(𝐹𝑥)) ∈ V
6362a1i 11 . . . . . . . . . . . 12 (⊤ → (𝑥 ∈ ℕ ↦ -(𝐹𝑥)) ∈ V)
6410simpli 483 . . . . . . . . . . . . . . 15 𝐹:ℕ⟶ℝ
6564ffvelrni 6942 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ → (𝐹𝑘) ∈ ℝ)
6665adantl 481 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝐹𝑘) ∈ ℝ)
6766recnd 10934 . . . . . . . . . . . 12 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝐹𝑘) ∈ ℂ)
68 fveq2 6756 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑘 → (𝐹𝑥) = (𝐹𝑘))
6968negeqd 11145 . . . . . . . . . . . . . . 15 (𝑥 = 𝑘 → -(𝐹𝑥) = -(𝐹𝑘))
70 negex 11149 . . . . . . . . . . . . . . 15 -(𝐹𝑘) ∈ V
7169, 54, 70fvmpt 6857 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ → ((𝑥 ∈ ℕ ↦ -(𝐹𝑥))‘𝑘) = -(𝐹𝑘))
7271adantl 481 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑘 ∈ ℕ) → ((𝑥 ∈ ℕ ↦ -(𝐹𝑥))‘𝑘) = -(𝐹𝑘))
73 df-neg 11138 . . . . . . . . . . . . 13 -(𝐹𝑘) = (0 − (𝐹𝑘))
7472, 73eqtrdi 2795 . . . . . . . . . . . 12 ((⊤ ∧ 𝑘 ∈ ℕ) → ((𝑥 ∈ ℕ ↦ -(𝐹𝑥))‘𝑘) = (0 − (𝐹𝑘)))
751, 2, 59, 60, 63, 67, 74climsubc2 15276 . . . . . . . . . . 11 (⊤ → (𝑥 ∈ ℕ ↦ -(𝐹𝑥)) ⇝ (0 − γ))
7675adantr 480 . . . . . . . . . 10 ((⊤ ∧ 𝑖 ∈ ℕ) → (𝑥 ∈ ℕ ↦ -(𝐹𝑥)) ⇝ (0 − γ))
7766renegcld 11332 . . . . . . . . . . . 12 ((⊤ ∧ 𝑘 ∈ ℕ) → -(𝐹𝑘) ∈ ℝ)
7872, 77eqeltrd 2839 . . . . . . . . . . 11 ((⊤ ∧ 𝑘 ∈ ℕ) → ((𝑥 ∈ ℕ ↦ -(𝐹𝑥))‘𝑘) ∈ ℝ)
7978adantlr 711 . . . . . . . . . 10 (((⊤ ∧ 𝑖 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → ((𝑥 ∈ ℕ ↦ -(𝐹𝑥))‘𝑘) ∈ ℝ)
8019simpld 494 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ → (𝐹‘(𝑘 + 1)) ≤ (𝐹𝑘))
8180adantl 481 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝐹‘(𝑘 + 1)) ≤ (𝐹𝑘))
82 peano2nn 11915 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ℕ → (𝑘 + 1) ∈ ℕ)
8382adantl 481 . . . . . . . . . . . . . . 15 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝑘 + 1) ∈ ℕ)
8464ffvelrni 6942 . . . . . . . . . . . . . . 15 ((𝑘 + 1) ∈ ℕ → (𝐹‘(𝑘 + 1)) ∈ ℝ)
8583, 84syl 17 . . . . . . . . . . . . . 14 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝐹‘(𝑘 + 1)) ∈ ℝ)
8685, 66lenegd 11484 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑘 ∈ ℕ) → ((𝐹‘(𝑘 + 1)) ≤ (𝐹𝑘) ↔ -(𝐹𝑘) ≤ -(𝐹‘(𝑘 + 1))))
8781, 86mpbid 231 . . . . . . . . . . . 12 ((⊤ ∧ 𝑘 ∈ ℕ) → -(𝐹𝑘) ≤ -(𝐹‘(𝑘 + 1)))
88 fveq2 6756 . . . . . . . . . . . . . . 15 (𝑥 = (𝑘 + 1) → (𝐹𝑥) = (𝐹‘(𝑘 + 1)))
8988negeqd 11145 . . . . . . . . . . . . . 14 (𝑥 = (𝑘 + 1) → -(𝐹𝑥) = -(𝐹‘(𝑘 + 1)))
90 negex 11149 . . . . . . . . . . . . . 14 -(𝐹‘(𝑘 + 1)) ∈ V
9189, 54, 90fvmpt 6857 . . . . . . . . . . . . 13 ((𝑘 + 1) ∈ ℕ → ((𝑥 ∈ ℕ ↦ -(𝐹𝑥))‘(𝑘 + 1)) = -(𝐹‘(𝑘 + 1)))
9283, 91syl 17 . . . . . . . . . . . 12 ((⊤ ∧ 𝑘 ∈ ℕ) → ((𝑥 ∈ ℕ ↦ -(𝐹𝑥))‘(𝑘 + 1)) = -(𝐹‘(𝑘 + 1)))
9387, 72, 923brtr4d 5102 . . . . . . . . . . 11 ((⊤ ∧ 𝑘 ∈ ℕ) → ((𝑥 ∈ ℕ ↦ -(𝐹𝑥))‘𝑘) ≤ ((𝑥 ∈ ℕ ↦ -(𝐹𝑥))‘(𝑘 + 1)))
9493adantlr 711 . . . . . . . . . 10 (((⊤ ∧ 𝑖 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → ((𝑥 ∈ ℕ ↦ -(𝐹𝑥))‘𝑘) ≤ ((𝑥 ∈ ℕ ↦ -(𝐹𝑥))‘(𝑘 + 1)))
951, 16, 76, 79, 94climub 15301 . . . . . . . . 9 ((⊤ ∧ 𝑖 ∈ ℕ) → ((𝑥 ∈ ℕ ↦ -(𝐹𝑥))‘𝑖) ≤ (0 − γ))
9657, 95eqbrtrrd 5094 . . . . . . . 8 ((⊤ ∧ 𝑖 ∈ ℕ) → -(𝐹𝑖) ≤ (0 − γ))
97 df-neg 11138 . . . . . . . 8 -γ = (0 − γ)
9896, 97breqtrrdi 5112 . . . . . . 7 ((⊤ ∧ 𝑖 ∈ ℕ) → -(𝐹𝑖) ≤ -γ)
9914mptru 1546 . . . . . . . 8 γ ∈ ℝ
10064ffvelrni 6942 . . . . . . . . 9 (𝑖 ∈ ℕ → (𝐹𝑖) ∈ ℝ)
101100adantl 481 . . . . . . . 8 ((⊤ ∧ 𝑖 ∈ ℕ) → (𝐹𝑖) ∈ ℝ)
102 leneg 11408 . . . . . . . 8 ((γ ∈ ℝ ∧ (𝐹𝑖) ∈ ℝ) → (γ ≤ (𝐹𝑖) ↔ -(𝐹𝑖) ≤ -γ))
10399, 101, 102sylancr 586 . . . . . . 7 ((⊤ ∧ 𝑖 ∈ ℕ) → (γ ≤ (𝐹𝑖) ↔ -(𝐹𝑖) ≤ -γ))
10498, 103mpbird 256 . . . . . 6 ((⊤ ∧ 𝑖 ∈ ℕ) → γ ≤ (𝐹𝑖))
105104ralrimiva 3107 . . . . 5 (⊤ → ∀𝑖 ∈ ℕ γ ≤ (𝐹𝑖))
106 fveq2 6756 . . . . . . . 8 (𝑖 = 1 → (𝐹𝑖) = (𝐹‘1))
107 fveq2 6756 . . . . . . . . . . . . 13 (𝑛 = 1 → (log‘𝑛) = (log‘1))
108 log1 25646 . . . . . . . . . . . . 13 (log‘1) = 0
109107, 108eqtrdi 2795 . . . . . . . . . . . 12 (𝑛 = 1 → (log‘𝑛) = 0)
11034, 109oveq12d 7273 . . . . . . . . . . 11 (𝑛 = 1 → (Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) − (log‘𝑛)) = (1 − 0))
111 1m0e1 12024 . . . . . . . . . . 11 (1 − 0) = 1
112110, 111eqtrdi 2795 . . . . . . . . . 10 (𝑛 = 1 → (Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) − (log‘𝑛)) = 1)
11340elexi 3441 . . . . . . . . . 10 1 ∈ V
114112, 3, 113fvmpt 6857 . . . . . . . . 9 (1 ∈ ℕ → (𝐹‘1) = 1)
11515, 114ax-mp 5 . . . . . . . 8 (𝐹‘1) = 1
116106, 115eqtrdi 2795 . . . . . . 7 (𝑖 = 1 → (𝐹𝑖) = 1)
117116breq2d 5082 . . . . . 6 (𝑖 = 1 → (γ ≤ (𝐹𝑖) ↔ γ ≤ 1))
118117rspcva 3550 . . . . 5 ((1 ∈ ℕ ∧ ∀𝑖 ∈ ℕ γ ≤ (𝐹𝑖)) → γ ≤ 1)
11915, 105, 118sylancr 586 . . . 4 (⊤ → γ ≤ 1)
12044, 40elicc2i 13074 . . . 4 (γ ∈ ((1 − (log‘2))[,]1) ↔ (γ ∈ ℝ ∧ (1 − (log‘2)) ≤ γ ∧ γ ≤ 1))
12114, 51, 119, 120syl3anbrc 1341 . . 3 (⊤ → γ ∈ ((1 − (log‘2))[,]1))
122 ffn 6584 . . . . 5 (𝐹:ℕ⟶ℝ → 𝐹 Fn ℕ)
12364, 122mp1i 13 . . . 4 (⊤ → 𝐹 Fn ℕ)
12416, 1eleqtrdi 2849 . . . . . . . 8 ((⊤ ∧ 𝑖 ∈ ℕ) → 𝑖 ∈ (ℤ‘1))
125 elfznn 13214 . . . . . . . . . 10 (𝑘 ∈ (1...𝑖) → 𝑘 ∈ ℕ)
126125adantl 481 . . . . . . . . 9 (((⊤ ∧ 𝑖 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑖)) → 𝑘 ∈ ℕ)
127126, 65syl 17 . . . . . . . 8 (((⊤ ∧ 𝑖 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑖)) → (𝐹𝑘) ∈ ℝ)
128 elfznn 13214 . . . . . . . . . 10 (𝑘 ∈ (1...(𝑖 − 1)) → 𝑘 ∈ ℕ)
129128adantl 481 . . . . . . . . 9 (((⊤ ∧ 𝑖 ∈ ℕ) ∧ 𝑘 ∈ (1...(𝑖 − 1))) → 𝑘 ∈ ℕ)
130129, 80syl 17 . . . . . . . 8 (((⊤ ∧ 𝑖 ∈ ℕ) ∧ 𝑘 ∈ (1...(𝑖 − 1))) → (𝐹‘(𝑘 + 1)) ≤ (𝐹𝑘))
131124, 127, 130monoord2 13682 . . . . . . 7 ((⊤ ∧ 𝑖 ∈ ℕ) → (𝐹𝑖) ≤ (𝐹‘1))
132131, 115breqtrdi 5111 . . . . . 6 ((⊤ ∧ 𝑖 ∈ ℕ) → (𝐹𝑖) ≤ 1)
13399, 40elicc2i 13074 . . . . . 6 ((𝐹𝑖) ∈ (γ[,]1) ↔ ((𝐹𝑖) ∈ ℝ ∧ γ ≤ (𝐹𝑖) ∧ (𝐹𝑖) ≤ 1))
134101, 104, 132, 133syl3anbrc 1341 . . . . 5 ((⊤ ∧ 𝑖 ∈ ℕ) → (𝐹𝑖) ∈ (γ[,]1))
135134ralrimiva 3107 . . . 4 (⊤ → ∀𝑖 ∈ ℕ (𝐹𝑖) ∈ (γ[,]1))
136 ffnfv 6974 . . . 4 (𝐹:ℕ⟶(γ[,]1) ↔ (𝐹 Fn ℕ ∧ ∀𝑖 ∈ ℕ (𝐹𝑖) ∈ (γ[,]1)))
137123, 135, 136sylanbrc 582 . . 3 (⊤ → 𝐹:ℕ⟶(γ[,]1))
138 ffn 6584 . . . . 5 (𝐺:ℕ⟶ℝ → 𝐺 Fn ℕ)
13911, 138mp1i 13 . . . 4 (⊤ → 𝐺 Fn ℕ)
14011ffvelrni 6942 . . . . . . 7 (𝑖 ∈ ℕ → (𝐺𝑖) ∈ ℝ)
141140adantl 481 . . . . . 6 ((⊤ ∧ 𝑖 ∈ ℕ) → (𝐺𝑖) ∈ ℝ)
142126, 12syl 17 . . . . . . . 8 (((⊤ ∧ 𝑖 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑖)) → (𝐺𝑘) ∈ ℝ)
143129, 20syl 17 . . . . . . . 8 (((⊤ ∧ 𝑖 ∈ ℕ) ∧ 𝑘 ∈ (1...(𝑖 − 1))) → (𝐺𝑘) ≤ (𝐺‘(𝑘 + 1)))
144124, 142, 143monoord 13681 . . . . . . 7 ((⊤ ∧ 𝑖 ∈ ℕ) → (𝐺‘1) ≤ (𝐺𝑖))
14547, 144eqbrtrrid 5106 . . . . . 6 ((⊤ ∧ 𝑖 ∈ ℕ) → (1 − (log‘2)) ≤ (𝐺𝑖))
14644, 99elicc2i 13074 . . . . . 6 ((𝐺𝑖) ∈ ((1 − (log‘2))[,]γ) ↔ ((𝐺𝑖) ∈ ℝ ∧ (1 − (log‘2)) ≤ (𝐺𝑖) ∧ (𝐺𝑖) ≤ γ))
147141, 145, 22, 146syl3anbrc 1341 . . . . 5 ((⊤ ∧ 𝑖 ∈ ℕ) → (𝐺𝑖) ∈ ((1 − (log‘2))[,]γ))
148147ralrimiva 3107 . . . 4 (⊤ → ∀𝑖 ∈ ℕ (𝐺𝑖) ∈ ((1 − (log‘2))[,]γ))
149 ffnfv 6974 . . . 4 (𝐺:ℕ⟶((1 − (log‘2))[,]γ) ↔ (𝐺 Fn ℕ ∧ ∀𝑖 ∈ ℕ (𝐺𝑖) ∈ ((1 − (log‘2))[,]γ)))
150139, 148, 149sylanbrc 582 . . 3 (⊤ → 𝐺:ℕ⟶((1 − (log‘2))[,]γ))
151121, 137, 1503jca 1126 . 2 (⊤ → (γ ∈ ((1 − (log‘2))[,]1) ∧ 𝐹:ℕ⟶(γ[,]1) ∧ 𝐺:ℕ⟶((1 − (log‘2))[,]γ)))
152151mptru 1546 1 (γ ∈ ((1 − (log‘2))[,]1) ∧ 𝐹:ℕ⟶(γ[,]1) ∧ 𝐺:ℕ⟶((1 − (log‘2))[,]γ))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395  w3a 1085   = wceq 1539  wtru 1540  wcel 2108  wral 3063  Vcvv 3422   class class class wbr 5070  cmpt 5153   Fn wfn 6413  wf 6414  cfv 6418  (class class class)co 7255  cc 10800  cr 10801  0cc0 10802  1c1 10803   + caddc 10805  cle 10941  cmin 11135  -cneg 11136   / cdiv 11562  cn 11903  2c2 11958  cz 12249  cuz 12511  +crp 12659  [,]cicc 13011  ...cfz 13168  cli 15121  Σcsu 15325  logclog 25615  γcem 26046
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880  ax-addf 10881  ax-mulf 10882
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-om 7688  df-1st 7804  df-2nd 7805  df-supp 7949  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-er 8456  df-map 8575  df-pm 8576  df-ixp 8644  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fsupp 9059  df-fi 9100  df-sup 9131  df-inf 9132  df-oi 9199  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-uz 12512  df-q 12618  df-rp 12660  df-xneg 12777  df-xadd 12778  df-xmul 12779  df-ioo 13012  df-ioc 13013  df-ico 13014  df-icc 13015  df-fz 13169  df-fzo 13312  df-fl 13440  df-mod 13518  df-seq 13650  df-exp 13711  df-fac 13916  df-bc 13945  df-hash 13973  df-shft 14706  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-limsup 15108  df-clim 15125  df-rlim 15126  df-sum 15326  df-ef 15705  df-sin 15707  df-cos 15708  df-pi 15710  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-starv 16903  df-sca 16904  df-vsca 16905  df-ip 16906  df-tset 16907  df-ple 16908  df-ds 16910  df-unif 16911  df-hom 16912  df-cco 16913  df-rest 17050  df-topn 17051  df-0g 17069  df-gsum 17070  df-topgen 17071  df-pt 17072  df-prds 17075  df-xrs 17130  df-qtop 17135  df-imas 17136  df-xps 17138  df-mre 17212  df-mrc 17213  df-acs 17215  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-submnd 18346  df-mulg 18616  df-cntz 18838  df-cmn 19303  df-psmet 20502  df-xmet 20503  df-met 20504  df-bl 20505  df-mopn 20506  df-fbas 20507  df-fg 20508  df-cnfld 20511  df-top 21951  df-topon 21968  df-topsp 21990  df-bases 22004  df-cld 22078  df-ntr 22079  df-cls 22080  df-nei 22157  df-lp 22195  df-perf 22196  df-cn 22286  df-cnp 22287  df-haus 22374  df-tx 22621  df-hmeo 22814  df-fil 22905  df-fm 22997  df-flim 22998  df-flf 22999  df-xms 23381  df-ms 23382  df-tms 23383  df-cncf 23947  df-limc 24935  df-dv 24936  df-log 25617  df-em 26047
This theorem is referenced by:  emcl  26057  harmonicbnd  26058  harmonicbnd2  26059
  Copyright terms: Public domain W3C validator