MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ivth2 Structured version   Visualization version   GIF version

Theorem ivth2 25509
Description: The intermediate value theorem, decreasing case. (Contributed by Paul Chapman, 22-Jan-2008.) (Revised by Mario Carneiro, 30-Apr-2014.)
Hypotheses
Ref Expression
ivth.1 (𝜑𝐴 ∈ ℝ)
ivth.2 (𝜑𝐵 ∈ ℝ)
ivth.3 (𝜑𝑈 ∈ ℝ)
ivth.4 (𝜑𝐴 < 𝐵)
ivth.5 (𝜑 → (𝐴[,]𝐵) ⊆ 𝐷)
ivth.7 (𝜑𝐹 ∈ (𝐷cn→ℂ))
ivth.8 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝐹𝑥) ∈ ℝ)
ivth2.9 (𝜑 → ((𝐹𝐵) < 𝑈𝑈 < (𝐹𝐴)))
Assertion
Ref Expression
ivth2 (𝜑 → ∃𝑐 ∈ (𝐴(,)𝐵)(𝐹𝑐) = 𝑈)
Distinct variable groups:   𝑥,𝑐,𝐵   𝐷,𝑐,𝑥   𝐹,𝑐,𝑥   𝜑,𝑐,𝑥   𝐴,𝑐,𝑥   𝑈,𝑐,𝑥

Proof of Theorem ivth2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 ivth.1 . . 3 (𝜑𝐴 ∈ ℝ)
2 ivth.2 . . 3 (𝜑𝐵 ∈ ℝ)
3 ivth.3 . . . 4 (𝜑𝑈 ∈ ℝ)
43renegcld 11717 . . 3 (𝜑 → -𝑈 ∈ ℝ)
5 ivth.4 . . 3 (𝜑𝐴 < 𝐵)
6 ivth.5 . . 3 (𝜑 → (𝐴[,]𝐵) ⊆ 𝐷)
7 ivth.7 . . . 4 (𝜑𝐹 ∈ (𝐷cn→ℂ))
8 eqid 2740 . . . . 5 (𝑦𝐷 ↦ -(𝐹𝑦)) = (𝑦𝐷 ↦ -(𝐹𝑦))
98negfcncf 24969 . . . 4 (𝐹 ∈ (𝐷cn→ℂ) → (𝑦𝐷 ↦ -(𝐹𝑦)) ∈ (𝐷cn→ℂ))
107, 9syl 17 . . 3 (𝜑 → (𝑦𝐷 ↦ -(𝐹𝑦)) ∈ (𝐷cn→ℂ))
116sselda 4008 . . . . 5 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝑥𝐷)
12 fveq2 6920 . . . . . . 7 (𝑦 = 𝑥 → (𝐹𝑦) = (𝐹𝑥))
1312negeqd 11530 . . . . . 6 (𝑦 = 𝑥 → -(𝐹𝑦) = -(𝐹𝑥))
14 negex 11534 . . . . . 6 -(𝐹𝑥) ∈ V
1513, 8, 14fvmpt 7029 . . . . 5 (𝑥𝐷 → ((𝑦𝐷 ↦ -(𝐹𝑦))‘𝑥) = -(𝐹𝑥))
1611, 15syl 17 . . . 4 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → ((𝑦𝐷 ↦ -(𝐹𝑦))‘𝑥) = -(𝐹𝑥))
17 ivth.8 . . . . 5 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝐹𝑥) ∈ ℝ)
1817renegcld 11717 . . . 4 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → -(𝐹𝑥) ∈ ℝ)
1916, 18eqeltrd 2844 . . 3 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → ((𝑦𝐷 ↦ -(𝐹𝑦))‘𝑥) ∈ ℝ)
201rexrd 11340 . . . . . . . 8 (𝜑𝐴 ∈ ℝ*)
212rexrd 11340 . . . . . . . 8 (𝜑𝐵 ∈ ℝ*)
221, 2, 5ltled 11438 . . . . . . . 8 (𝜑𝐴𝐵)
23 lbicc2 13524 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → 𝐴 ∈ (𝐴[,]𝐵))
2420, 21, 22, 23syl3anc 1371 . . . . . . 7 (𝜑𝐴 ∈ (𝐴[,]𝐵))
256, 24sseldd 4009 . . . . . 6 (𝜑𝐴𝐷)
26 fveq2 6920 . . . . . . . 8 (𝑦 = 𝐴 → (𝐹𝑦) = (𝐹𝐴))
2726negeqd 11530 . . . . . . 7 (𝑦 = 𝐴 → -(𝐹𝑦) = -(𝐹𝐴))
28 negex 11534 . . . . . . 7 -(𝐹𝐴) ∈ V
2927, 8, 28fvmpt 7029 . . . . . 6 (𝐴𝐷 → ((𝑦𝐷 ↦ -(𝐹𝑦))‘𝐴) = -(𝐹𝐴))
3025, 29syl 17 . . . . 5 (𝜑 → ((𝑦𝐷 ↦ -(𝐹𝑦))‘𝐴) = -(𝐹𝐴))
31 ivth2.9 . . . . . . 7 (𝜑 → ((𝐹𝐵) < 𝑈𝑈 < (𝐹𝐴)))
3231simprd 495 . . . . . 6 (𝜑𝑈 < (𝐹𝐴))
33 fveq2 6920 . . . . . . . . 9 (𝑥 = 𝐴 → (𝐹𝑥) = (𝐹𝐴))
3433eleq1d 2829 . . . . . . . 8 (𝑥 = 𝐴 → ((𝐹𝑥) ∈ ℝ ↔ (𝐹𝐴) ∈ ℝ))
3517ralrimiva 3152 . . . . . . . 8 (𝜑 → ∀𝑥 ∈ (𝐴[,]𝐵)(𝐹𝑥) ∈ ℝ)
3634, 35, 24rspcdva 3636 . . . . . . 7 (𝜑 → (𝐹𝐴) ∈ ℝ)
373, 36ltnegd 11868 . . . . . 6 (𝜑 → (𝑈 < (𝐹𝐴) ↔ -(𝐹𝐴) < -𝑈))
3832, 37mpbid 232 . . . . 5 (𝜑 → -(𝐹𝐴) < -𝑈)
3930, 38eqbrtrd 5188 . . . 4 (𝜑 → ((𝑦𝐷 ↦ -(𝐹𝑦))‘𝐴) < -𝑈)
4031simpld 494 . . . . . 6 (𝜑 → (𝐹𝐵) < 𝑈)
41 fveq2 6920 . . . . . . . . 9 (𝑥 = 𝐵 → (𝐹𝑥) = (𝐹𝐵))
4241eleq1d 2829 . . . . . . . 8 (𝑥 = 𝐵 → ((𝐹𝑥) ∈ ℝ ↔ (𝐹𝐵) ∈ ℝ))
43 ubicc2 13525 . . . . . . . . 9 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → 𝐵 ∈ (𝐴[,]𝐵))
4420, 21, 22, 43syl3anc 1371 . . . . . . . 8 (𝜑𝐵 ∈ (𝐴[,]𝐵))
4542, 35, 44rspcdva 3636 . . . . . . 7 (𝜑 → (𝐹𝐵) ∈ ℝ)
4645, 3ltnegd 11868 . . . . . 6 (𝜑 → ((𝐹𝐵) < 𝑈 ↔ -𝑈 < -(𝐹𝐵)))
4740, 46mpbid 232 . . . . 5 (𝜑 → -𝑈 < -(𝐹𝐵))
486, 44sseldd 4009 . . . . . 6 (𝜑𝐵𝐷)
49 fveq2 6920 . . . . . . . 8 (𝑦 = 𝐵 → (𝐹𝑦) = (𝐹𝐵))
5049negeqd 11530 . . . . . . 7 (𝑦 = 𝐵 → -(𝐹𝑦) = -(𝐹𝐵))
51 negex 11534 . . . . . . 7 -(𝐹𝐵) ∈ V
5250, 8, 51fvmpt 7029 . . . . . 6 (𝐵𝐷 → ((𝑦𝐷 ↦ -(𝐹𝑦))‘𝐵) = -(𝐹𝐵))
5348, 52syl 17 . . . . 5 (𝜑 → ((𝑦𝐷 ↦ -(𝐹𝑦))‘𝐵) = -(𝐹𝐵))
5447, 53breqtrrd 5194 . . . 4 (𝜑 → -𝑈 < ((𝑦𝐷 ↦ -(𝐹𝑦))‘𝐵))
5539, 54jca 511 . . 3 (𝜑 → (((𝑦𝐷 ↦ -(𝐹𝑦))‘𝐴) < -𝑈 ∧ -𝑈 < ((𝑦𝐷 ↦ -(𝐹𝑦))‘𝐵)))
561, 2, 4, 5, 6, 10, 19, 55ivth 25508 . 2 (𝜑 → ∃𝑐 ∈ (𝐴(,)𝐵)((𝑦𝐷 ↦ -(𝐹𝑦))‘𝑐) = -𝑈)
57 ioossicc 13493 . . . . . . . 8 (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵)
5857, 6sstrid 4020 . . . . . . 7 (𝜑 → (𝐴(,)𝐵) ⊆ 𝐷)
5958sselda 4008 . . . . . 6 ((𝜑𝑐 ∈ (𝐴(,)𝐵)) → 𝑐𝐷)
60 fveq2 6920 . . . . . . . 8 (𝑦 = 𝑐 → (𝐹𝑦) = (𝐹𝑐))
6160negeqd 11530 . . . . . . 7 (𝑦 = 𝑐 → -(𝐹𝑦) = -(𝐹𝑐))
62 negex 11534 . . . . . . 7 -(𝐹𝑐) ∈ V
6361, 8, 62fvmpt 7029 . . . . . 6 (𝑐𝐷 → ((𝑦𝐷 ↦ -(𝐹𝑦))‘𝑐) = -(𝐹𝑐))
6459, 63syl 17 . . . . 5 ((𝜑𝑐 ∈ (𝐴(,)𝐵)) → ((𝑦𝐷 ↦ -(𝐹𝑦))‘𝑐) = -(𝐹𝑐))
6564eqeq1d 2742 . . . 4 ((𝜑𝑐 ∈ (𝐴(,)𝐵)) → (((𝑦𝐷 ↦ -(𝐹𝑦))‘𝑐) = -𝑈 ↔ -(𝐹𝑐) = -𝑈))
66 cncff 24938 . . . . . . . 8 (𝐹 ∈ (𝐷cn→ℂ) → 𝐹:𝐷⟶ℂ)
677, 66syl 17 . . . . . . 7 (𝜑𝐹:𝐷⟶ℂ)
6867ffvelcdmda 7118 . . . . . 6 ((𝜑𝑐𝐷) → (𝐹𝑐) ∈ ℂ)
6959, 68syldan 590 . . . . 5 ((𝜑𝑐 ∈ (𝐴(,)𝐵)) → (𝐹𝑐) ∈ ℂ)
703recnd 11318 . . . . . 6 (𝜑𝑈 ∈ ℂ)
7170adantr 480 . . . . 5 ((𝜑𝑐 ∈ (𝐴(,)𝐵)) → 𝑈 ∈ ℂ)
7269, 71neg11ad 11643 . . . 4 ((𝜑𝑐 ∈ (𝐴(,)𝐵)) → (-(𝐹𝑐) = -𝑈 ↔ (𝐹𝑐) = 𝑈))
7365, 72bitrd 279 . . 3 ((𝜑𝑐 ∈ (𝐴(,)𝐵)) → (((𝑦𝐷 ↦ -(𝐹𝑦))‘𝑐) = -𝑈 ↔ (𝐹𝑐) = 𝑈))
7473rexbidva 3183 . 2 (𝜑 → (∃𝑐 ∈ (𝐴(,)𝐵)((𝑦𝐷 ↦ -(𝐹𝑦))‘𝑐) = -𝑈 ↔ ∃𝑐 ∈ (𝐴(,)𝐵)(𝐹𝑐) = 𝑈))
7556, 74mpbid 232 1 (𝜑 → ∃𝑐 ∈ (𝐴(,)𝐵)(𝐹𝑐) = 𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  wrex 3076  wss 3976   class class class wbr 5166  cmpt 5249  wf 6569  cfv 6573  (class class class)co 7448  cc 11182  cr 11183  *cxr 11323   < clt 11324  cle 11325  -cneg 11521  (,)cioo 13407  [,]cicc 13410  cnccncf 24921
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-er 8763  df-map 8886  df-ixp 8956  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fsupp 9432  df-fi 9480  df-sup 9511  df-inf 9512  df-oi 9579  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-q 13014  df-rp 13058  df-xneg 13175  df-xadd 13176  df-xmul 13177  df-ioo 13411  df-icc 13414  df-fz 13568  df-fzo 13712  df-seq 14053  df-exp 14113  df-hash 14380  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-starv 17326  df-sca 17327  df-vsca 17328  df-ip 17329  df-tset 17330  df-ple 17331  df-ds 17333  df-unif 17334  df-hom 17335  df-cco 17336  df-rest 17482  df-topn 17483  df-0g 17501  df-gsum 17502  df-topgen 17503  df-pt 17504  df-prds 17507  df-xrs 17562  df-qtop 17567  df-imas 17568  df-xps 17570  df-mre 17644  df-mrc 17645  df-acs 17647  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-submnd 18819  df-mulg 19108  df-cntz 19357  df-cmn 19824  df-psmet 21379  df-xmet 21380  df-met 21381  df-bl 21382  df-mopn 21383  df-cnfld 21388  df-top 22921  df-topon 22938  df-topsp 22960  df-bases 22974  df-cn 23256  df-cnp 23257  df-tx 23591  df-hmeo 23784  df-xms 24351  df-ms 24352  df-tms 24353  df-cncf 24923
This theorem is referenced by:  ivthle2  25511  pilem3  26515  signsply0  34528
  Copyright terms: Public domain W3C validator