MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ivth2 Structured version   Visualization version   GIF version

Theorem ivth2 25384
Description: The intermediate value theorem, decreasing case. (Contributed by Paul Chapman, 22-Jan-2008.) (Revised by Mario Carneiro, 30-Apr-2014.)
Hypotheses
Ref Expression
ivth.1 (𝜑𝐴 ∈ ℝ)
ivth.2 (𝜑𝐵 ∈ ℝ)
ivth.3 (𝜑𝑈 ∈ ℝ)
ivth.4 (𝜑𝐴 < 𝐵)
ivth.5 (𝜑 → (𝐴[,]𝐵) ⊆ 𝐷)
ivth.7 (𝜑𝐹 ∈ (𝐷cn→ℂ))
ivth.8 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝐹𝑥) ∈ ℝ)
ivth2.9 (𝜑 → ((𝐹𝐵) < 𝑈𝑈 < (𝐹𝐴)))
Assertion
Ref Expression
ivth2 (𝜑 → ∃𝑐 ∈ (𝐴(,)𝐵)(𝐹𝑐) = 𝑈)
Distinct variable groups:   𝑥,𝑐,𝐵   𝐷,𝑐,𝑥   𝐹,𝑐,𝑥   𝜑,𝑐,𝑥   𝐴,𝑐,𝑥   𝑈,𝑐,𝑥

Proof of Theorem ivth2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 ivth.1 . . 3 (𝜑𝐴 ∈ ℝ)
2 ivth.2 . . 3 (𝜑𝐵 ∈ ℝ)
3 ivth.3 . . . 4 (𝜑𝑈 ∈ ℝ)
43renegcld 11551 . . 3 (𝜑 → -𝑈 ∈ ℝ)
5 ivth.4 . . 3 (𝜑𝐴 < 𝐵)
6 ivth.5 . . 3 (𝜑 → (𝐴[,]𝐵) ⊆ 𝐷)
7 ivth.7 . . . 4 (𝜑𝐹 ∈ (𝐷cn→ℂ))
8 eqid 2733 . . . . 5 (𝑦𝐷 ↦ -(𝐹𝑦)) = (𝑦𝐷 ↦ -(𝐹𝑦))
98negfcncf 24845 . . . 4 (𝐹 ∈ (𝐷cn→ℂ) → (𝑦𝐷 ↦ -(𝐹𝑦)) ∈ (𝐷cn→ℂ))
107, 9syl 17 . . 3 (𝜑 → (𝑦𝐷 ↦ -(𝐹𝑦)) ∈ (𝐷cn→ℂ))
116sselda 3930 . . . . 5 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝑥𝐷)
12 fveq2 6828 . . . . . . 7 (𝑦 = 𝑥 → (𝐹𝑦) = (𝐹𝑥))
1312negeqd 11361 . . . . . 6 (𝑦 = 𝑥 → -(𝐹𝑦) = -(𝐹𝑥))
14 negex 11365 . . . . . 6 -(𝐹𝑥) ∈ V
1513, 8, 14fvmpt 6935 . . . . 5 (𝑥𝐷 → ((𝑦𝐷 ↦ -(𝐹𝑦))‘𝑥) = -(𝐹𝑥))
1611, 15syl 17 . . . 4 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → ((𝑦𝐷 ↦ -(𝐹𝑦))‘𝑥) = -(𝐹𝑥))
17 ivth.8 . . . . 5 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝐹𝑥) ∈ ℝ)
1817renegcld 11551 . . . 4 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → -(𝐹𝑥) ∈ ℝ)
1916, 18eqeltrd 2833 . . 3 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → ((𝑦𝐷 ↦ -(𝐹𝑦))‘𝑥) ∈ ℝ)
201rexrd 11169 . . . . . . . 8 (𝜑𝐴 ∈ ℝ*)
212rexrd 11169 . . . . . . . 8 (𝜑𝐵 ∈ ℝ*)
221, 2, 5ltled 11268 . . . . . . . 8 (𝜑𝐴𝐵)
23 lbicc2 13366 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → 𝐴 ∈ (𝐴[,]𝐵))
2420, 21, 22, 23syl3anc 1373 . . . . . . 7 (𝜑𝐴 ∈ (𝐴[,]𝐵))
256, 24sseldd 3931 . . . . . 6 (𝜑𝐴𝐷)
26 fveq2 6828 . . . . . . . 8 (𝑦 = 𝐴 → (𝐹𝑦) = (𝐹𝐴))
2726negeqd 11361 . . . . . . 7 (𝑦 = 𝐴 → -(𝐹𝑦) = -(𝐹𝐴))
28 negex 11365 . . . . . . 7 -(𝐹𝐴) ∈ V
2927, 8, 28fvmpt 6935 . . . . . 6 (𝐴𝐷 → ((𝑦𝐷 ↦ -(𝐹𝑦))‘𝐴) = -(𝐹𝐴))
3025, 29syl 17 . . . . 5 (𝜑 → ((𝑦𝐷 ↦ -(𝐹𝑦))‘𝐴) = -(𝐹𝐴))
31 ivth2.9 . . . . . . 7 (𝜑 → ((𝐹𝐵) < 𝑈𝑈 < (𝐹𝐴)))
3231simprd 495 . . . . . 6 (𝜑𝑈 < (𝐹𝐴))
33 fveq2 6828 . . . . . . . . 9 (𝑥 = 𝐴 → (𝐹𝑥) = (𝐹𝐴))
3433eleq1d 2818 . . . . . . . 8 (𝑥 = 𝐴 → ((𝐹𝑥) ∈ ℝ ↔ (𝐹𝐴) ∈ ℝ))
3517ralrimiva 3125 . . . . . . . 8 (𝜑 → ∀𝑥 ∈ (𝐴[,]𝐵)(𝐹𝑥) ∈ ℝ)
3634, 35, 24rspcdva 3574 . . . . . . 7 (𝜑 → (𝐹𝐴) ∈ ℝ)
373, 36ltnegd 11702 . . . . . 6 (𝜑 → (𝑈 < (𝐹𝐴) ↔ -(𝐹𝐴) < -𝑈))
3832, 37mpbid 232 . . . . 5 (𝜑 → -(𝐹𝐴) < -𝑈)
3930, 38eqbrtrd 5115 . . . 4 (𝜑 → ((𝑦𝐷 ↦ -(𝐹𝑦))‘𝐴) < -𝑈)
4031simpld 494 . . . . . 6 (𝜑 → (𝐹𝐵) < 𝑈)
41 fveq2 6828 . . . . . . . . 9 (𝑥 = 𝐵 → (𝐹𝑥) = (𝐹𝐵))
4241eleq1d 2818 . . . . . . . 8 (𝑥 = 𝐵 → ((𝐹𝑥) ∈ ℝ ↔ (𝐹𝐵) ∈ ℝ))
43 ubicc2 13367 . . . . . . . . 9 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → 𝐵 ∈ (𝐴[,]𝐵))
4420, 21, 22, 43syl3anc 1373 . . . . . . . 8 (𝜑𝐵 ∈ (𝐴[,]𝐵))
4542, 35, 44rspcdva 3574 . . . . . . 7 (𝜑 → (𝐹𝐵) ∈ ℝ)
4645, 3ltnegd 11702 . . . . . 6 (𝜑 → ((𝐹𝐵) < 𝑈 ↔ -𝑈 < -(𝐹𝐵)))
4740, 46mpbid 232 . . . . 5 (𝜑 → -𝑈 < -(𝐹𝐵))
486, 44sseldd 3931 . . . . . 6 (𝜑𝐵𝐷)
49 fveq2 6828 . . . . . . . 8 (𝑦 = 𝐵 → (𝐹𝑦) = (𝐹𝐵))
5049negeqd 11361 . . . . . . 7 (𝑦 = 𝐵 → -(𝐹𝑦) = -(𝐹𝐵))
51 negex 11365 . . . . . . 7 -(𝐹𝐵) ∈ V
5250, 8, 51fvmpt 6935 . . . . . 6 (𝐵𝐷 → ((𝑦𝐷 ↦ -(𝐹𝑦))‘𝐵) = -(𝐹𝐵))
5348, 52syl 17 . . . . 5 (𝜑 → ((𝑦𝐷 ↦ -(𝐹𝑦))‘𝐵) = -(𝐹𝐵))
5447, 53breqtrrd 5121 . . . 4 (𝜑 → -𝑈 < ((𝑦𝐷 ↦ -(𝐹𝑦))‘𝐵))
5539, 54jca 511 . . 3 (𝜑 → (((𝑦𝐷 ↦ -(𝐹𝑦))‘𝐴) < -𝑈 ∧ -𝑈 < ((𝑦𝐷 ↦ -(𝐹𝑦))‘𝐵)))
561, 2, 4, 5, 6, 10, 19, 55ivth 25383 . 2 (𝜑 → ∃𝑐 ∈ (𝐴(,)𝐵)((𝑦𝐷 ↦ -(𝐹𝑦))‘𝑐) = -𝑈)
57 ioossicc 13335 . . . . . . . 8 (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵)
5857, 6sstrid 3942 . . . . . . 7 (𝜑 → (𝐴(,)𝐵) ⊆ 𝐷)
5958sselda 3930 . . . . . 6 ((𝜑𝑐 ∈ (𝐴(,)𝐵)) → 𝑐𝐷)
60 fveq2 6828 . . . . . . . 8 (𝑦 = 𝑐 → (𝐹𝑦) = (𝐹𝑐))
6160negeqd 11361 . . . . . . 7 (𝑦 = 𝑐 → -(𝐹𝑦) = -(𝐹𝑐))
62 negex 11365 . . . . . . 7 -(𝐹𝑐) ∈ V
6361, 8, 62fvmpt 6935 . . . . . 6 (𝑐𝐷 → ((𝑦𝐷 ↦ -(𝐹𝑦))‘𝑐) = -(𝐹𝑐))
6459, 63syl 17 . . . . 5 ((𝜑𝑐 ∈ (𝐴(,)𝐵)) → ((𝑦𝐷 ↦ -(𝐹𝑦))‘𝑐) = -(𝐹𝑐))
6564eqeq1d 2735 . . . 4 ((𝜑𝑐 ∈ (𝐴(,)𝐵)) → (((𝑦𝐷 ↦ -(𝐹𝑦))‘𝑐) = -𝑈 ↔ -(𝐹𝑐) = -𝑈))
66 cncff 24814 . . . . . . . 8 (𝐹 ∈ (𝐷cn→ℂ) → 𝐹:𝐷⟶ℂ)
677, 66syl 17 . . . . . . 7 (𝜑𝐹:𝐷⟶ℂ)
6867ffvelcdmda 7023 . . . . . 6 ((𝜑𝑐𝐷) → (𝐹𝑐) ∈ ℂ)
6959, 68syldan 591 . . . . 5 ((𝜑𝑐 ∈ (𝐴(,)𝐵)) → (𝐹𝑐) ∈ ℂ)
703recnd 11147 . . . . . 6 (𝜑𝑈 ∈ ℂ)
7170adantr 480 . . . . 5 ((𝜑𝑐 ∈ (𝐴(,)𝐵)) → 𝑈 ∈ ℂ)
7269, 71neg11ad 11475 . . . 4 ((𝜑𝑐 ∈ (𝐴(,)𝐵)) → (-(𝐹𝑐) = -𝑈 ↔ (𝐹𝑐) = 𝑈))
7365, 72bitrd 279 . . 3 ((𝜑𝑐 ∈ (𝐴(,)𝐵)) → (((𝑦𝐷 ↦ -(𝐹𝑦))‘𝑐) = -𝑈 ↔ (𝐹𝑐) = 𝑈))
7473rexbidva 3155 . 2 (𝜑 → (∃𝑐 ∈ (𝐴(,)𝐵)((𝑦𝐷 ↦ -(𝐹𝑦))‘𝑐) = -𝑈 ↔ ∃𝑐 ∈ (𝐴(,)𝐵)(𝐹𝑐) = 𝑈))
7556, 74mpbid 232 1 (𝜑 → ∃𝑐 ∈ (𝐴(,)𝐵)(𝐹𝑐) = 𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  wrex 3057  wss 3898   class class class wbr 5093  cmpt 5174  wf 6482  cfv 6486  (class class class)co 7352  cc 11011  cr 11012  *cxr 11152   < clt 11153  cle 11154  -cneg 11352  (,)cioo 13247  [,]cicc 13250  cnccncf 24797
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090  ax-pre-sup 11091
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-tp 4580  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-iin 4944  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-of 7616  df-om 7803  df-1st 7927  df-2nd 7928  df-supp 8097  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-2o 8392  df-er 8628  df-map 8758  df-ixp 8828  df-en 8876  df-dom 8877  df-sdom 8878  df-fin 8879  df-fsupp 9253  df-fi 9302  df-sup 9333  df-inf 9334  df-oi 9403  df-card 9839  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-div 11782  df-nn 12133  df-2 12195  df-3 12196  df-4 12197  df-5 12198  df-6 12199  df-7 12200  df-8 12201  df-9 12202  df-n0 12389  df-z 12476  df-dec 12595  df-uz 12739  df-q 12849  df-rp 12893  df-xneg 13013  df-xadd 13014  df-xmul 13015  df-ioo 13251  df-icc 13254  df-fz 13410  df-fzo 13557  df-seq 13911  df-exp 13971  df-hash 14240  df-cj 15008  df-re 15009  df-im 15010  df-sqrt 15144  df-abs 15145  df-struct 17060  df-sets 17077  df-slot 17095  df-ndx 17107  df-base 17123  df-ress 17144  df-plusg 17176  df-mulr 17177  df-starv 17178  df-sca 17179  df-vsca 17180  df-ip 17181  df-tset 17182  df-ple 17183  df-ds 17185  df-unif 17186  df-hom 17187  df-cco 17188  df-rest 17328  df-topn 17329  df-0g 17347  df-gsum 17348  df-topgen 17349  df-pt 17350  df-prds 17353  df-xrs 17408  df-qtop 17413  df-imas 17414  df-xps 17416  df-mre 17490  df-mrc 17491  df-acs 17493  df-mgm 18550  df-sgrp 18629  df-mnd 18645  df-submnd 18694  df-mulg 18983  df-cntz 19231  df-cmn 19696  df-psmet 21285  df-xmet 21286  df-met 21287  df-bl 21288  df-mopn 21289  df-cnfld 21294  df-top 22810  df-topon 22827  df-topsp 22849  df-bases 22862  df-cn 23143  df-cnp 23144  df-tx 23478  df-hmeo 23671  df-xms 24236  df-ms 24237  df-tms 24238  df-cncf 24799
This theorem is referenced by:  ivthle2  25386  pilem3  26391  signsply0  34585
  Copyright terms: Public domain W3C validator