MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ivth2 Structured version   Visualization version   GIF version

Theorem ivth2 23749
Description: The intermediate value theorem, decreasing case. (Contributed by Paul Chapman, 22-Jan-2008.) (Revised by Mario Carneiro, 30-Apr-2014.)
Hypotheses
Ref Expression
ivth.1 (𝜑𝐴 ∈ ℝ)
ivth.2 (𝜑𝐵 ∈ ℝ)
ivth.3 (𝜑𝑈 ∈ ℝ)
ivth.4 (𝜑𝐴 < 𝐵)
ivth.5 (𝜑 → (𝐴[,]𝐵) ⊆ 𝐷)
ivth.7 (𝜑𝐹 ∈ (𝐷cn→ℂ))
ivth.8 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝐹𝑥) ∈ ℝ)
ivth2.9 (𝜑 → ((𝐹𝐵) < 𝑈𝑈 < (𝐹𝐴)))
Assertion
Ref Expression
ivth2 (𝜑 → ∃𝑐 ∈ (𝐴(,)𝐵)(𝐹𝑐) = 𝑈)
Distinct variable groups:   𝑥,𝑐,𝐵   𝐷,𝑐,𝑥   𝐹,𝑐,𝑥   𝜑,𝑐,𝑥   𝐴,𝑐,𝑥   𝑈,𝑐,𝑥

Proof of Theorem ivth2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 ivth.1 . . 3 (𝜑𝐴 ∈ ℝ)
2 ivth.2 . . 3 (𝜑𝐵 ∈ ℝ)
3 ivth.3 . . . 4 (𝜑𝑈 ∈ ℝ)
43renegcld 10860 . . 3 (𝜑 → -𝑈 ∈ ℝ)
5 ivth.4 . . 3 (𝜑𝐴 < 𝐵)
6 ivth.5 . . 3 (𝜑 → (𝐴[,]𝐵) ⊆ 𝐷)
7 ivth.7 . . . 4 (𝜑𝐹 ∈ (𝐷cn→ℂ))
8 eqid 2772 . . . . 5 (𝑦𝐷 ↦ -(𝐹𝑦)) = (𝑦𝐷 ↦ -(𝐹𝑦))
98negfcncf 23220 . . . 4 (𝐹 ∈ (𝐷cn→ℂ) → (𝑦𝐷 ↦ -(𝐹𝑦)) ∈ (𝐷cn→ℂ))
107, 9syl 17 . . 3 (𝜑 → (𝑦𝐷 ↦ -(𝐹𝑦)) ∈ (𝐷cn→ℂ))
116sselda 3854 . . . . 5 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝑥𝐷)
12 fveq2 6493 . . . . . . 7 (𝑦 = 𝑥 → (𝐹𝑦) = (𝐹𝑥))
1312negeqd 10672 . . . . . 6 (𝑦 = 𝑥 → -(𝐹𝑦) = -(𝐹𝑥))
14 negex 10676 . . . . . 6 -(𝐹𝑥) ∈ V
1513, 8, 14fvmpt 6589 . . . . 5 (𝑥𝐷 → ((𝑦𝐷 ↦ -(𝐹𝑦))‘𝑥) = -(𝐹𝑥))
1611, 15syl 17 . . . 4 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → ((𝑦𝐷 ↦ -(𝐹𝑦))‘𝑥) = -(𝐹𝑥))
17 ivth.8 . . . . 5 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝐹𝑥) ∈ ℝ)
1817renegcld 10860 . . . 4 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → -(𝐹𝑥) ∈ ℝ)
1916, 18eqeltrd 2860 . . 3 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → ((𝑦𝐷 ↦ -(𝐹𝑦))‘𝑥) ∈ ℝ)
201rexrd 10482 . . . . . . . 8 (𝜑𝐴 ∈ ℝ*)
212rexrd 10482 . . . . . . . 8 (𝜑𝐵 ∈ ℝ*)
221, 2, 5ltled 10580 . . . . . . . 8 (𝜑𝐴𝐵)
23 lbicc2 12661 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → 𝐴 ∈ (𝐴[,]𝐵))
2420, 21, 22, 23syl3anc 1351 . . . . . . 7 (𝜑𝐴 ∈ (𝐴[,]𝐵))
256, 24sseldd 3855 . . . . . 6 (𝜑𝐴𝐷)
26 fveq2 6493 . . . . . . . 8 (𝑦 = 𝐴 → (𝐹𝑦) = (𝐹𝐴))
2726negeqd 10672 . . . . . . 7 (𝑦 = 𝐴 → -(𝐹𝑦) = -(𝐹𝐴))
28 negex 10676 . . . . . . 7 -(𝐹𝐴) ∈ V
2927, 8, 28fvmpt 6589 . . . . . 6 (𝐴𝐷 → ((𝑦𝐷 ↦ -(𝐹𝑦))‘𝐴) = -(𝐹𝐴))
3025, 29syl 17 . . . . 5 (𝜑 → ((𝑦𝐷 ↦ -(𝐹𝑦))‘𝐴) = -(𝐹𝐴))
31 ivth2.9 . . . . . . 7 (𝜑 → ((𝐹𝐵) < 𝑈𝑈 < (𝐹𝐴)))
3231simprd 488 . . . . . 6 (𝜑𝑈 < (𝐹𝐴))
33 fveq2 6493 . . . . . . . . 9 (𝑥 = 𝐴 → (𝐹𝑥) = (𝐹𝐴))
3433eleq1d 2844 . . . . . . . 8 (𝑥 = 𝐴 → ((𝐹𝑥) ∈ ℝ ↔ (𝐹𝐴) ∈ ℝ))
3517ralrimiva 3126 . . . . . . . 8 (𝜑 → ∀𝑥 ∈ (𝐴[,]𝐵)(𝐹𝑥) ∈ ℝ)
3634, 35, 24rspcdva 3535 . . . . . . 7 (𝜑 → (𝐹𝐴) ∈ ℝ)
373, 36ltnegd 11011 . . . . . 6 (𝜑 → (𝑈 < (𝐹𝐴) ↔ -(𝐹𝐴) < -𝑈))
3832, 37mpbid 224 . . . . 5 (𝜑 → -(𝐹𝐴) < -𝑈)
3930, 38eqbrtrd 4945 . . . 4 (𝜑 → ((𝑦𝐷 ↦ -(𝐹𝑦))‘𝐴) < -𝑈)
4031simpld 487 . . . . . 6 (𝜑 → (𝐹𝐵) < 𝑈)
41 fveq2 6493 . . . . . . . . 9 (𝑥 = 𝐵 → (𝐹𝑥) = (𝐹𝐵))
4241eleq1d 2844 . . . . . . . 8 (𝑥 = 𝐵 → ((𝐹𝑥) ∈ ℝ ↔ (𝐹𝐵) ∈ ℝ))
43 ubicc2 12662 . . . . . . . . 9 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → 𝐵 ∈ (𝐴[,]𝐵))
4420, 21, 22, 43syl3anc 1351 . . . . . . . 8 (𝜑𝐵 ∈ (𝐴[,]𝐵))
4542, 35, 44rspcdva 3535 . . . . . . 7 (𝜑 → (𝐹𝐵) ∈ ℝ)
4645, 3ltnegd 11011 . . . . . 6 (𝜑 → ((𝐹𝐵) < 𝑈 ↔ -𝑈 < -(𝐹𝐵)))
4740, 46mpbid 224 . . . . 5 (𝜑 → -𝑈 < -(𝐹𝐵))
486, 44sseldd 3855 . . . . . 6 (𝜑𝐵𝐷)
49 fveq2 6493 . . . . . . . 8 (𝑦 = 𝐵 → (𝐹𝑦) = (𝐹𝐵))
5049negeqd 10672 . . . . . . 7 (𝑦 = 𝐵 → -(𝐹𝑦) = -(𝐹𝐵))
51 negex 10676 . . . . . . 7 -(𝐹𝐵) ∈ V
5250, 8, 51fvmpt 6589 . . . . . 6 (𝐵𝐷 → ((𝑦𝐷 ↦ -(𝐹𝑦))‘𝐵) = -(𝐹𝐵))
5348, 52syl 17 . . . . 5 (𝜑 → ((𝑦𝐷 ↦ -(𝐹𝑦))‘𝐵) = -(𝐹𝐵))
5447, 53breqtrrd 4951 . . . 4 (𝜑 → -𝑈 < ((𝑦𝐷 ↦ -(𝐹𝑦))‘𝐵))
5539, 54jca 504 . . 3 (𝜑 → (((𝑦𝐷 ↦ -(𝐹𝑦))‘𝐴) < -𝑈 ∧ -𝑈 < ((𝑦𝐷 ↦ -(𝐹𝑦))‘𝐵)))
561, 2, 4, 5, 6, 10, 19, 55ivth 23748 . 2 (𝜑 → ∃𝑐 ∈ (𝐴(,)𝐵)((𝑦𝐷 ↦ -(𝐹𝑦))‘𝑐) = -𝑈)
57 ioossicc 12631 . . . . . . . 8 (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵)
5857, 6syl5ss 3865 . . . . . . 7 (𝜑 → (𝐴(,)𝐵) ⊆ 𝐷)
5958sselda 3854 . . . . . 6 ((𝜑𝑐 ∈ (𝐴(,)𝐵)) → 𝑐𝐷)
60 fveq2 6493 . . . . . . . 8 (𝑦 = 𝑐 → (𝐹𝑦) = (𝐹𝑐))
6160negeqd 10672 . . . . . . 7 (𝑦 = 𝑐 → -(𝐹𝑦) = -(𝐹𝑐))
62 negex 10676 . . . . . . 7 -(𝐹𝑐) ∈ V
6361, 8, 62fvmpt 6589 . . . . . 6 (𝑐𝐷 → ((𝑦𝐷 ↦ -(𝐹𝑦))‘𝑐) = -(𝐹𝑐))
6459, 63syl 17 . . . . 5 ((𝜑𝑐 ∈ (𝐴(,)𝐵)) → ((𝑦𝐷 ↦ -(𝐹𝑦))‘𝑐) = -(𝐹𝑐))
6564eqeq1d 2774 . . . 4 ((𝜑𝑐 ∈ (𝐴(,)𝐵)) → (((𝑦𝐷 ↦ -(𝐹𝑦))‘𝑐) = -𝑈 ↔ -(𝐹𝑐) = -𝑈))
66 cncff 23194 . . . . . . . 8 (𝐹 ∈ (𝐷cn→ℂ) → 𝐹:𝐷⟶ℂ)
677, 66syl 17 . . . . . . 7 (𝜑𝐹:𝐷⟶ℂ)
6867ffvelrnda 6670 . . . . . 6 ((𝜑𝑐𝐷) → (𝐹𝑐) ∈ ℂ)
6959, 68syldan 582 . . . . 5 ((𝜑𝑐 ∈ (𝐴(,)𝐵)) → (𝐹𝑐) ∈ ℂ)
703recnd 10460 . . . . . 6 (𝜑𝑈 ∈ ℂ)
7170adantr 473 . . . . 5 ((𝜑𝑐 ∈ (𝐴(,)𝐵)) → 𝑈 ∈ ℂ)
7269, 71neg11ad 10786 . . . 4 ((𝜑𝑐 ∈ (𝐴(,)𝐵)) → (-(𝐹𝑐) = -𝑈 ↔ (𝐹𝑐) = 𝑈))
7365, 72bitrd 271 . . 3 ((𝜑𝑐 ∈ (𝐴(,)𝐵)) → (((𝑦𝐷 ↦ -(𝐹𝑦))‘𝑐) = -𝑈 ↔ (𝐹𝑐) = 𝑈))
7473rexbidva 3235 . 2 (𝜑 → (∃𝑐 ∈ (𝐴(,)𝐵)((𝑦𝐷 ↦ -(𝐹𝑦))‘𝑐) = -𝑈 ↔ ∃𝑐 ∈ (𝐴(,)𝐵)(𝐹𝑐) = 𝑈))
7556, 74mpbid 224 1 (𝜑 → ∃𝑐 ∈ (𝐴(,)𝐵)(𝐹𝑐) = 𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 387   = wceq 1507  wcel 2048  wrex 3083  wss 3825   class class class wbr 4923  cmpt 5002  wf 6178  cfv 6182  (class class class)co 6970  cc 10325  cr 10326  *cxr 10465   < clt 10466  cle 10467  -cneg 10663  (,)cioo 12547  [,]cicc 12550  cnccncf 23177
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1964  ax-8 2050  ax-9 2057  ax-10 2077  ax-11 2091  ax-12 2104  ax-13 2299  ax-ext 2745  ax-rep 5043  ax-sep 5054  ax-nul 5061  ax-pow 5113  ax-pr 5180  ax-un 7273  ax-cnex 10383  ax-resscn 10384  ax-1cn 10385  ax-icn 10386  ax-addcl 10387  ax-addrcl 10388  ax-mulcl 10389  ax-mulrcl 10390  ax-mulcom 10391  ax-addass 10392  ax-mulass 10393  ax-distr 10394  ax-i2m1 10395  ax-1ne0 10396  ax-1rid 10397  ax-rnegex 10398  ax-rrecex 10399  ax-cnre 10400  ax-pre-lttri 10401  ax-pre-lttrn 10402  ax-pre-ltadd 10403  ax-pre-mulgt0 10404  ax-pre-sup 10405  ax-mulf 10407
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2014  df-mo 2544  df-eu 2580  df-clab 2754  df-cleq 2765  df-clel 2840  df-nfc 2912  df-ne 2962  df-nel 3068  df-ral 3087  df-rex 3088  df-reu 3089  df-rmo 3090  df-rab 3091  df-v 3411  df-sbc 3678  df-csb 3783  df-dif 3828  df-un 3830  df-in 3832  df-ss 3839  df-pss 3841  df-nul 4174  df-if 4345  df-pw 4418  df-sn 4436  df-pr 4438  df-tp 4440  df-op 4442  df-uni 4707  df-int 4744  df-iun 4788  df-iin 4789  df-br 4924  df-opab 4986  df-mpt 5003  df-tr 5025  df-id 5305  df-eprel 5310  df-po 5319  df-so 5320  df-fr 5359  df-se 5360  df-we 5361  df-xp 5406  df-rel 5407  df-cnv 5408  df-co 5409  df-dm 5410  df-rn 5411  df-res 5412  df-ima 5413  df-pred 5980  df-ord 6026  df-on 6027  df-lim 6028  df-suc 6029  df-iota 6146  df-fun 6184  df-fn 6185  df-f 6186  df-f1 6187  df-fo 6188  df-f1o 6189  df-fv 6190  df-isom 6191  df-riota 6931  df-ov 6973  df-oprab 6974  df-mpo 6975  df-of 7221  df-om 7391  df-1st 7494  df-2nd 7495  df-supp 7627  df-wrecs 7743  df-recs 7805  df-rdg 7843  df-1o 7897  df-2o 7898  df-oadd 7901  df-er 8081  df-map 8200  df-ixp 8252  df-en 8299  df-dom 8300  df-sdom 8301  df-fin 8302  df-fsupp 8621  df-fi 8662  df-sup 8693  df-inf 8694  df-oi 8761  df-card 9154  df-cda 9380  df-pnf 10468  df-mnf 10469  df-xr 10470  df-ltxr 10471  df-le 10472  df-sub 10664  df-neg 10665  df-div 11091  df-nn 11432  df-2 11496  df-3 11497  df-4 11498  df-5 11499  df-6 11500  df-7 11501  df-8 11502  df-9 11503  df-n0 11701  df-z 11787  df-dec 11905  df-uz 12052  df-q 12156  df-rp 12198  df-xneg 12317  df-xadd 12318  df-xmul 12319  df-ioo 12551  df-icc 12554  df-fz 12702  df-fzo 12843  df-seq 13178  df-exp 13238  df-hash 13499  df-cj 14309  df-re 14310  df-im 14311  df-sqrt 14445  df-abs 14446  df-struct 16331  df-ndx 16332  df-slot 16333  df-base 16335  df-sets 16336  df-ress 16337  df-plusg 16424  df-mulr 16425  df-starv 16426  df-sca 16427  df-vsca 16428  df-ip 16429  df-tset 16430  df-ple 16431  df-ds 16433  df-unif 16434  df-hom 16435  df-cco 16436  df-rest 16542  df-topn 16543  df-0g 16561  df-gsum 16562  df-topgen 16563  df-pt 16564  df-prds 16567  df-xrs 16621  df-qtop 16626  df-imas 16627  df-xps 16629  df-mre 16705  df-mrc 16706  df-acs 16708  df-mgm 17700  df-sgrp 17742  df-mnd 17753  df-submnd 17794  df-mulg 18002  df-cntz 18208  df-cmn 18658  df-psmet 20229  df-xmet 20230  df-met 20231  df-bl 20232  df-mopn 20233  df-cnfld 20238  df-top 21196  df-topon 21213  df-topsp 21235  df-bases 21248  df-cn 21529  df-cnp 21530  df-tx 21864  df-hmeo 22057  df-xms 22623  df-ms 22624  df-tms 22625  df-cncf 23179
This theorem is referenced by:  ivthle2  23751  pilem3  24734  signsply0  31428
  Copyright terms: Public domain W3C validator