MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ivth2 Structured version   Visualization version   GIF version

Theorem ivth2 25363
Description: The intermediate value theorem, decreasing case. (Contributed by Paul Chapman, 22-Jan-2008.) (Revised by Mario Carneiro, 30-Apr-2014.)
Hypotheses
Ref Expression
ivth.1 (𝜑𝐴 ∈ ℝ)
ivth.2 (𝜑𝐵 ∈ ℝ)
ivth.3 (𝜑𝑈 ∈ ℝ)
ivth.4 (𝜑𝐴 < 𝐵)
ivth.5 (𝜑 → (𝐴[,]𝐵) ⊆ 𝐷)
ivth.7 (𝜑𝐹 ∈ (𝐷cn→ℂ))
ivth.8 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝐹𝑥) ∈ ℝ)
ivth2.9 (𝜑 → ((𝐹𝐵) < 𝑈𝑈 < (𝐹𝐴)))
Assertion
Ref Expression
ivth2 (𝜑 → ∃𝑐 ∈ (𝐴(,)𝐵)(𝐹𝑐) = 𝑈)
Distinct variable groups:   𝑥,𝑐,𝐵   𝐷,𝑐,𝑥   𝐹,𝑐,𝑥   𝜑,𝑐,𝑥   𝐴,𝑐,𝑥   𝑈,𝑐,𝑥

Proof of Theorem ivth2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 ivth.1 . . 3 (𝜑𝐴 ∈ ℝ)
2 ivth.2 . . 3 (𝜑𝐵 ∈ ℝ)
3 ivth.3 . . . 4 (𝜑𝑈 ∈ ℝ)
43renegcld 11612 . . 3 (𝜑 → -𝑈 ∈ ℝ)
5 ivth.4 . . 3 (𝜑𝐴 < 𝐵)
6 ivth.5 . . 3 (𝜑 → (𝐴[,]𝐵) ⊆ 𝐷)
7 ivth.7 . . . 4 (𝜑𝐹 ∈ (𝐷cn→ℂ))
8 eqid 2730 . . . . 5 (𝑦𝐷 ↦ -(𝐹𝑦)) = (𝑦𝐷 ↦ -(𝐹𝑦))
98negfcncf 24824 . . . 4 (𝐹 ∈ (𝐷cn→ℂ) → (𝑦𝐷 ↦ -(𝐹𝑦)) ∈ (𝐷cn→ℂ))
107, 9syl 17 . . 3 (𝜑 → (𝑦𝐷 ↦ -(𝐹𝑦)) ∈ (𝐷cn→ℂ))
116sselda 3949 . . . . 5 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝑥𝐷)
12 fveq2 6861 . . . . . . 7 (𝑦 = 𝑥 → (𝐹𝑦) = (𝐹𝑥))
1312negeqd 11422 . . . . . 6 (𝑦 = 𝑥 → -(𝐹𝑦) = -(𝐹𝑥))
14 negex 11426 . . . . . 6 -(𝐹𝑥) ∈ V
1513, 8, 14fvmpt 6971 . . . . 5 (𝑥𝐷 → ((𝑦𝐷 ↦ -(𝐹𝑦))‘𝑥) = -(𝐹𝑥))
1611, 15syl 17 . . . 4 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → ((𝑦𝐷 ↦ -(𝐹𝑦))‘𝑥) = -(𝐹𝑥))
17 ivth.8 . . . . 5 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝐹𝑥) ∈ ℝ)
1817renegcld 11612 . . . 4 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → -(𝐹𝑥) ∈ ℝ)
1916, 18eqeltrd 2829 . . 3 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → ((𝑦𝐷 ↦ -(𝐹𝑦))‘𝑥) ∈ ℝ)
201rexrd 11231 . . . . . . . 8 (𝜑𝐴 ∈ ℝ*)
212rexrd 11231 . . . . . . . 8 (𝜑𝐵 ∈ ℝ*)
221, 2, 5ltled 11329 . . . . . . . 8 (𝜑𝐴𝐵)
23 lbicc2 13432 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → 𝐴 ∈ (𝐴[,]𝐵))
2420, 21, 22, 23syl3anc 1373 . . . . . . 7 (𝜑𝐴 ∈ (𝐴[,]𝐵))
256, 24sseldd 3950 . . . . . 6 (𝜑𝐴𝐷)
26 fveq2 6861 . . . . . . . 8 (𝑦 = 𝐴 → (𝐹𝑦) = (𝐹𝐴))
2726negeqd 11422 . . . . . . 7 (𝑦 = 𝐴 → -(𝐹𝑦) = -(𝐹𝐴))
28 negex 11426 . . . . . . 7 -(𝐹𝐴) ∈ V
2927, 8, 28fvmpt 6971 . . . . . 6 (𝐴𝐷 → ((𝑦𝐷 ↦ -(𝐹𝑦))‘𝐴) = -(𝐹𝐴))
3025, 29syl 17 . . . . 5 (𝜑 → ((𝑦𝐷 ↦ -(𝐹𝑦))‘𝐴) = -(𝐹𝐴))
31 ivth2.9 . . . . . . 7 (𝜑 → ((𝐹𝐵) < 𝑈𝑈 < (𝐹𝐴)))
3231simprd 495 . . . . . 6 (𝜑𝑈 < (𝐹𝐴))
33 fveq2 6861 . . . . . . . . 9 (𝑥 = 𝐴 → (𝐹𝑥) = (𝐹𝐴))
3433eleq1d 2814 . . . . . . . 8 (𝑥 = 𝐴 → ((𝐹𝑥) ∈ ℝ ↔ (𝐹𝐴) ∈ ℝ))
3517ralrimiva 3126 . . . . . . . 8 (𝜑 → ∀𝑥 ∈ (𝐴[,]𝐵)(𝐹𝑥) ∈ ℝ)
3634, 35, 24rspcdva 3592 . . . . . . 7 (𝜑 → (𝐹𝐴) ∈ ℝ)
373, 36ltnegd 11763 . . . . . 6 (𝜑 → (𝑈 < (𝐹𝐴) ↔ -(𝐹𝐴) < -𝑈))
3832, 37mpbid 232 . . . . 5 (𝜑 → -(𝐹𝐴) < -𝑈)
3930, 38eqbrtrd 5132 . . . 4 (𝜑 → ((𝑦𝐷 ↦ -(𝐹𝑦))‘𝐴) < -𝑈)
4031simpld 494 . . . . . 6 (𝜑 → (𝐹𝐵) < 𝑈)
41 fveq2 6861 . . . . . . . . 9 (𝑥 = 𝐵 → (𝐹𝑥) = (𝐹𝐵))
4241eleq1d 2814 . . . . . . . 8 (𝑥 = 𝐵 → ((𝐹𝑥) ∈ ℝ ↔ (𝐹𝐵) ∈ ℝ))
43 ubicc2 13433 . . . . . . . . 9 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → 𝐵 ∈ (𝐴[,]𝐵))
4420, 21, 22, 43syl3anc 1373 . . . . . . . 8 (𝜑𝐵 ∈ (𝐴[,]𝐵))
4542, 35, 44rspcdva 3592 . . . . . . 7 (𝜑 → (𝐹𝐵) ∈ ℝ)
4645, 3ltnegd 11763 . . . . . 6 (𝜑 → ((𝐹𝐵) < 𝑈 ↔ -𝑈 < -(𝐹𝐵)))
4740, 46mpbid 232 . . . . 5 (𝜑 → -𝑈 < -(𝐹𝐵))
486, 44sseldd 3950 . . . . . 6 (𝜑𝐵𝐷)
49 fveq2 6861 . . . . . . . 8 (𝑦 = 𝐵 → (𝐹𝑦) = (𝐹𝐵))
5049negeqd 11422 . . . . . . 7 (𝑦 = 𝐵 → -(𝐹𝑦) = -(𝐹𝐵))
51 negex 11426 . . . . . . 7 -(𝐹𝐵) ∈ V
5250, 8, 51fvmpt 6971 . . . . . 6 (𝐵𝐷 → ((𝑦𝐷 ↦ -(𝐹𝑦))‘𝐵) = -(𝐹𝐵))
5348, 52syl 17 . . . . 5 (𝜑 → ((𝑦𝐷 ↦ -(𝐹𝑦))‘𝐵) = -(𝐹𝐵))
5447, 53breqtrrd 5138 . . . 4 (𝜑 → -𝑈 < ((𝑦𝐷 ↦ -(𝐹𝑦))‘𝐵))
5539, 54jca 511 . . 3 (𝜑 → (((𝑦𝐷 ↦ -(𝐹𝑦))‘𝐴) < -𝑈 ∧ -𝑈 < ((𝑦𝐷 ↦ -(𝐹𝑦))‘𝐵)))
561, 2, 4, 5, 6, 10, 19, 55ivth 25362 . 2 (𝜑 → ∃𝑐 ∈ (𝐴(,)𝐵)((𝑦𝐷 ↦ -(𝐹𝑦))‘𝑐) = -𝑈)
57 ioossicc 13401 . . . . . . . 8 (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵)
5857, 6sstrid 3961 . . . . . . 7 (𝜑 → (𝐴(,)𝐵) ⊆ 𝐷)
5958sselda 3949 . . . . . 6 ((𝜑𝑐 ∈ (𝐴(,)𝐵)) → 𝑐𝐷)
60 fveq2 6861 . . . . . . . 8 (𝑦 = 𝑐 → (𝐹𝑦) = (𝐹𝑐))
6160negeqd 11422 . . . . . . 7 (𝑦 = 𝑐 → -(𝐹𝑦) = -(𝐹𝑐))
62 negex 11426 . . . . . . 7 -(𝐹𝑐) ∈ V
6361, 8, 62fvmpt 6971 . . . . . 6 (𝑐𝐷 → ((𝑦𝐷 ↦ -(𝐹𝑦))‘𝑐) = -(𝐹𝑐))
6459, 63syl 17 . . . . 5 ((𝜑𝑐 ∈ (𝐴(,)𝐵)) → ((𝑦𝐷 ↦ -(𝐹𝑦))‘𝑐) = -(𝐹𝑐))
6564eqeq1d 2732 . . . 4 ((𝜑𝑐 ∈ (𝐴(,)𝐵)) → (((𝑦𝐷 ↦ -(𝐹𝑦))‘𝑐) = -𝑈 ↔ -(𝐹𝑐) = -𝑈))
66 cncff 24793 . . . . . . . 8 (𝐹 ∈ (𝐷cn→ℂ) → 𝐹:𝐷⟶ℂ)
677, 66syl 17 . . . . . . 7 (𝜑𝐹:𝐷⟶ℂ)
6867ffvelcdmda 7059 . . . . . 6 ((𝜑𝑐𝐷) → (𝐹𝑐) ∈ ℂ)
6959, 68syldan 591 . . . . 5 ((𝜑𝑐 ∈ (𝐴(,)𝐵)) → (𝐹𝑐) ∈ ℂ)
703recnd 11209 . . . . . 6 (𝜑𝑈 ∈ ℂ)
7170adantr 480 . . . . 5 ((𝜑𝑐 ∈ (𝐴(,)𝐵)) → 𝑈 ∈ ℂ)
7269, 71neg11ad 11536 . . . 4 ((𝜑𝑐 ∈ (𝐴(,)𝐵)) → (-(𝐹𝑐) = -𝑈 ↔ (𝐹𝑐) = 𝑈))
7365, 72bitrd 279 . . 3 ((𝜑𝑐 ∈ (𝐴(,)𝐵)) → (((𝑦𝐷 ↦ -(𝐹𝑦))‘𝑐) = -𝑈 ↔ (𝐹𝑐) = 𝑈))
7473rexbidva 3156 . 2 (𝜑 → (∃𝑐 ∈ (𝐴(,)𝐵)((𝑦𝐷 ↦ -(𝐹𝑦))‘𝑐) = -𝑈 ↔ ∃𝑐 ∈ (𝐴(,)𝐵)(𝐹𝑐) = 𝑈))
7556, 74mpbid 232 1 (𝜑 → ∃𝑐 ∈ (𝐴(,)𝐵)(𝐹𝑐) = 𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wrex 3054  wss 3917   class class class wbr 5110  cmpt 5191  wf 6510  cfv 6514  (class class class)co 7390  cc 11073  cr 11074  *cxr 11214   < clt 11215  cle 11216  -cneg 11413  (,)cioo 13313  [,]cicc 13316  cnccncf 24776
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-om 7846  df-1st 7971  df-2nd 7972  df-supp 8143  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-er 8674  df-map 8804  df-ixp 8874  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fsupp 9320  df-fi 9369  df-sup 9400  df-inf 9401  df-oi 9470  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-dec 12657  df-uz 12801  df-q 12915  df-rp 12959  df-xneg 13079  df-xadd 13080  df-xmul 13081  df-ioo 13317  df-icc 13320  df-fz 13476  df-fzo 13623  df-seq 13974  df-exp 14034  df-hash 14303  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-starv 17242  df-sca 17243  df-vsca 17244  df-ip 17245  df-tset 17246  df-ple 17247  df-ds 17249  df-unif 17250  df-hom 17251  df-cco 17252  df-rest 17392  df-topn 17393  df-0g 17411  df-gsum 17412  df-topgen 17413  df-pt 17414  df-prds 17417  df-xrs 17472  df-qtop 17477  df-imas 17478  df-xps 17480  df-mre 17554  df-mrc 17555  df-acs 17557  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-submnd 18718  df-mulg 19007  df-cntz 19256  df-cmn 19719  df-psmet 21263  df-xmet 21264  df-met 21265  df-bl 21266  df-mopn 21267  df-cnfld 21272  df-top 22788  df-topon 22805  df-topsp 22827  df-bases 22840  df-cn 23121  df-cnp 23122  df-tx 23456  df-hmeo 23649  df-xms 24215  df-ms 24216  df-tms 24217  df-cncf 24778
This theorem is referenced by:  ivthle2  25365  pilem3  26370  signsply0  34549
  Copyright terms: Public domain W3C validator