MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  negsubdi2i Structured version   Visualization version   GIF version

Theorem negsubdi2i 11543
Description: Distribution of negative over subtraction. (Contributed by NM, 1-Oct-1999.)
Hypotheses
Ref Expression
negidi.1 𝐴 ∈ ℂ
pncan3i.2 𝐵 ∈ ℂ
Assertion
Ref Expression
negsubdi2i -(𝐴𝐵) = (𝐵𝐴)

Proof of Theorem negsubdi2i
StepHypRef Expression
1 negidi.1 . . 3 𝐴 ∈ ℂ
2 pncan3i.2 . . 3 𝐵 ∈ ℂ
31, 2negsubdii 11542 . 2 -(𝐴𝐵) = (-𝐴 + 𝐵)
41negcli 11525 . . 3 -𝐴 ∈ ℂ
52, 1negsubi 11535 . . 3 (𝐵 + -𝐴) = (𝐵𝐴)
62, 4, 5addcomli 11403 . 2 (-𝐴 + 𝐵) = (𝐵𝐴)
73, 6eqtri 2752 1 -(𝐴𝐵) = (𝐵𝐴)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1533  wcel 2098  (class class class)co 7401  cc 11104   + caddc 11109  cmin 11441  -cneg 11442
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-sep 5289  ax-nul 5296  ax-pow 5353  ax-pr 5417  ax-un 7718  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-nel 3039  df-ral 3054  df-rex 3063  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-br 5139  df-opab 5201  df-mpt 5222  df-id 5564  df-po 5578  df-so 5579  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-riota 7357  df-ov 7404  df-oprab 7405  df-mpo 7406  df-er 8699  df-en 8936  df-dom 8937  df-sdom 8938  df-pnf 11247  df-mnf 11248  df-ltxr 11250  df-sub 11443  df-neg 11444
This theorem is referenced by:  zeo  12645  geo2sum2  15817  bpoly2  15998  bpoly3  15999  cos2bnd  16128  3dvds  16271  ppiub  27053  ax5seglem7  28662  ipasslem10  30561  norm3adifii  30870  lnophmlem2  31739  ballotlem2  33976  lhe4.4ex1a  43577  stoweidlem26  45227  dirkertrigeqlem3  45301
  Copyright terms: Public domain W3C validator