![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tdeglem3OLD | Structured version Visualization version GIF version |
Description: Obsolete version of tdeglem3 26009 as of 7-Aug-2024. (Contributed by Stefan O'Rear, 26-Mar-2015.) (Proof shortened by AV, 27-Jul-2019.) (New usage is discouraged.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
tdeglem.a | β’ π΄ = {π β (β0 βm πΌ) β£ (β‘π β β) β Fin} |
tdeglem.h | β’ π» = (β β π΄ β¦ (βfld Ξ£g β)) |
Ref | Expression |
---|---|
tdeglem3OLD | β’ ((πΌ β π β§ π β π΄ β§ π β π΄) β (π»β(π βf + π)) = ((π»βπ) + (π»βπ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnfldbas 21285 | . . 3 β’ β = (Baseββfld) | |
2 | cnfld0 21322 | . . 3 β’ 0 = (0gββfld) | |
3 | cnfldadd 21287 | . . 3 β’ + = (+gββfld) | |
4 | cnring 21320 | . . . 4 β’ βfld β Ring | |
5 | ringcmn 20220 | . . . 4 β’ (βfld β Ring β βfld β CMnd) | |
6 | 4, 5 | mp1i 13 | . . 3 β’ ((πΌ β π β§ π β π΄ β§ π β π΄) β βfld β CMnd) |
7 | simp1 1133 | . . 3 β’ ((πΌ β π β§ π β π΄ β§ π β π΄) β πΌ β π) | |
8 | tdeglem.a | . . . . . 6 β’ π΄ = {π β (β0 βm πΌ) β£ (β‘π β β) β Fin} | |
9 | 8 | psrbagfOLD 21854 | . . . . 5 β’ ((πΌ β π β§ π β π΄) β π:πΌβΆβ0) |
10 | nn0sscn 12505 | . . . . 5 β’ β0 β β | |
11 | fss 6732 | . . . . 5 β’ ((π:πΌβΆβ0 β§ β0 β β) β π:πΌβΆβ) | |
12 | 9, 10, 11 | sylancl 584 | . . . 4 β’ ((πΌ β π β§ π β π΄) β π:πΌβΆβ) |
13 | 12 | 3adant3 1129 | . . 3 β’ ((πΌ β π β§ π β π΄ β§ π β π΄) β π:πΌβΆβ) |
14 | 8 | psrbagfOLD 21854 | . . . . 5 β’ ((πΌ β π β§ π β π΄) β π:πΌβΆβ0) |
15 | fss 6732 | . . . . 5 β’ ((π:πΌβΆβ0 β§ β0 β β) β π:πΌβΆβ) | |
16 | 14, 10, 15 | sylancl 584 | . . . 4 β’ ((πΌ β π β§ π β π΄) β π:πΌβΆβ) |
17 | 16 | 3adant2 1128 | . . 3 β’ ((πΌ β π β§ π β π΄ β§ π β π΄) β π:πΌβΆβ) |
18 | 8 | psrbagfsuppOLD 21856 | . . . . 5 β’ ((π β π΄ β§ πΌ β π) β π finSupp 0) |
19 | 18 | ancoms 457 | . . . 4 β’ ((πΌ β π β§ π β π΄) β π finSupp 0) |
20 | 19 | 3adant3 1129 | . . 3 β’ ((πΌ β π β§ π β π΄ β§ π β π΄) β π finSupp 0) |
21 | 8 | psrbagfsuppOLD 21856 | . . . . 5 β’ ((π β π΄ β§ πΌ β π) β π finSupp 0) |
22 | 21 | ancoms 457 | . . . 4 β’ ((πΌ β π β§ π β π΄) β π finSupp 0) |
23 | 22 | 3adant2 1128 | . . 3 β’ ((πΌ β π β§ π β π΄ β§ π β π΄) β π finSupp 0) |
24 | 1, 2, 3, 6, 7, 13, 17, 20, 23 | gsumadd 19880 | . 2 β’ ((πΌ β π β§ π β π΄ β§ π β π΄) β (βfld Ξ£g (π βf + π)) = ((βfld Ξ£g π) + (βfld Ξ£g π))) |
25 | 8 | psrbagaddclOLD 21864 | . . 3 β’ ((πΌ β π β§ π β π΄ β§ π β π΄) β (π βf + π) β π΄) |
26 | oveq2 7422 | . . . 4 β’ (β = (π βf + π) β (βfld Ξ£g β) = (βfld Ξ£g (π βf + π))) | |
27 | tdeglem.h | . . . 4 β’ π» = (β β π΄ β¦ (βfld Ξ£g β)) | |
28 | ovex 7447 | . . . 4 β’ (βfld Ξ£g (π βf + π)) β V | |
29 | 26, 27, 28 | fvmpt 6998 | . . 3 β’ ((π βf + π) β π΄ β (π»β(π βf + π)) = (βfld Ξ£g (π βf + π))) |
30 | 25, 29 | syl 17 | . 2 β’ ((πΌ β π β§ π β π΄ β§ π β π΄) β (π»β(π βf + π)) = (βfld Ξ£g (π βf + π))) |
31 | oveq2 7422 | . . . . 5 β’ (β = π β (βfld Ξ£g β) = (βfld Ξ£g π)) | |
32 | ovex 7447 | . . . . 5 β’ (βfld Ξ£g π) β V | |
33 | 31, 27, 32 | fvmpt 6998 | . . . 4 β’ (π β π΄ β (π»βπ) = (βfld Ξ£g π)) |
34 | oveq2 7422 | . . . . 5 β’ (β = π β (βfld Ξ£g β) = (βfld Ξ£g π)) | |
35 | ovex 7447 | . . . . 5 β’ (βfld Ξ£g π) β V | |
36 | 34, 27, 35 | fvmpt 6998 | . . . 4 β’ (π β π΄ β (π»βπ) = (βfld Ξ£g π)) |
37 | 33, 36 | oveqan12d 7433 | . . 3 β’ ((π β π΄ β§ π β π΄) β ((π»βπ) + (π»βπ)) = ((βfld Ξ£g π) + (βfld Ξ£g π))) |
38 | 37 | 3adant1 1127 | . 2 β’ ((πΌ β π β§ π β π΄ β§ π β π΄) β ((π»βπ) + (π»βπ)) = ((βfld Ξ£g π) + (βfld Ξ£g π))) |
39 | 24, 30, 38 | 3eqtr4d 2775 | 1 β’ ((πΌ β π β§ π β π΄ β§ π β π΄) β (π»β(π βf + π)) = ((π»βπ) + (π»βπ))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 394 β§ w3a 1084 = wceq 1533 β wcel 2098 {crab 3419 β wss 3939 class class class wbr 5141 β¦ cmpt 5224 β‘ccnv 5669 β cima 5673 βΆwf 6537 βcfv 6541 (class class class)co 7414 βf cof 7678 βm cmap 8841 Fincfn 8960 finSupp cfsupp 9383 βcc 11134 0cc0 11136 + caddc 11139 βcn 12240 β0cn0 12500 Ξ£g cgsu 17419 CMndccmn 19737 Ringcrg 20175 βfldccnfld 21281 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5357 ax-pr 5421 ax-un 7736 ax-cnex 11192 ax-resscn 11193 ax-1cn 11194 ax-icn 11195 ax-addcl 11196 ax-addrcl 11197 ax-mulcl 11198 ax-mulrcl 11199 ax-mulcom 11200 ax-addass 11201 ax-mulass 11202 ax-distr 11203 ax-i2m1 11204 ax-1ne0 11205 ax-1rid 11206 ax-rnegex 11207 ax-rrecex 11208 ax-cnre 11209 ax-pre-lttri 11210 ax-pre-lttrn 11211 ax-pre-ltadd 11212 ax-pre-mulgt0 11213 ax-addf 11215 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3769 df-csb 3885 df-dif 3942 df-un 3944 df-in 3946 df-ss 3956 df-pss 3958 df-nul 4317 df-if 4523 df-pw 4598 df-sn 4623 df-pr 4625 df-tp 4627 df-op 4629 df-uni 4902 df-int 4943 df-iun 4991 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5568 df-eprel 5574 df-po 5582 df-so 5583 df-fr 5625 df-se 5626 df-we 5627 df-xp 5676 df-rel 5677 df-cnv 5678 df-co 5679 df-dm 5680 df-rn 5681 df-res 5682 df-ima 5683 df-pred 6298 df-ord 6365 df-on 6366 df-lim 6367 df-suc 6368 df-iota 6493 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-isom 6550 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-of 7680 df-om 7867 df-1st 7989 df-2nd 7990 df-supp 8162 df-frecs 8283 df-wrecs 8314 df-recs 8388 df-rdg 8427 df-1o 8483 df-er 8721 df-map 8843 df-en 8961 df-dom 8962 df-sdom 8963 df-fin 8964 df-fsupp 9384 df-oi 9531 df-card 9960 df-pnf 11278 df-mnf 11279 df-xr 11280 df-ltxr 11281 df-le 11282 df-sub 11474 df-neg 11475 df-nn 12241 df-2 12303 df-3 12304 df-4 12305 df-5 12306 df-6 12307 df-7 12308 df-8 12309 df-9 12310 df-n0 12501 df-z 12587 df-dec 12706 df-uz 12851 df-fz 13515 df-fzo 13658 df-seq 13997 df-hash 14320 df-struct 17113 df-sets 17130 df-slot 17148 df-ndx 17160 df-base 17178 df-ress 17207 df-plusg 17243 df-mulr 17244 df-starv 17245 df-tset 17249 df-ple 17250 df-ds 17252 df-unif 17253 df-0g 17420 df-gsum 17421 df-mgm 18597 df-sgrp 18676 df-mnd 18692 df-submnd 18738 df-grp 18895 df-minusg 18896 df-cntz 19270 df-cmn 19739 df-abl 19740 df-mgp 20077 df-ur 20124 df-ring 20177 df-cring 20178 df-cnfld 21282 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |