| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > noseqrdglem | Structured version Visualization version GIF version | ||
| Description: A helper lemma for the value of a recursive defintion generator on surreal sequences. (Contributed by Scott Fenton, 18-Apr-2025.) |
| Ref | Expression |
|---|---|
| om2noseq.1 | ⊢ (𝜑 → 𝐶 ∈ No ) |
| om2noseq.2 | ⊢ (𝜑 → 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) ↾ ω)) |
| om2noseq.3 | ⊢ (𝜑 → 𝑍 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) “ ω)) |
| noseqrdg.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| noseqrdg.2 | ⊢ (𝜑 → 𝑅 = (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 +s 1s ), (𝑥𝐹𝑦)〉), 〈𝐶, 𝐴〉) ↾ ω)) |
| Ref | Expression |
|---|---|
| noseqrdglem | ⊢ ((𝜑 ∧ 𝐵 ∈ 𝑍) → 〈𝐵, (2nd ‘(𝑅‘(◡𝐺‘𝐵)))〉 ∈ ran 𝑅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | om2noseq.1 | . . . . . 6 ⊢ (𝜑 → 𝐶 ∈ No ) | |
| 2 | om2noseq.2 | . . . . . 6 ⊢ (𝜑 → 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) ↾ ω)) | |
| 3 | om2noseq.3 | . . . . . 6 ⊢ (𝜑 → 𝑍 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) “ ω)) | |
| 4 | 1, 2, 3 | om2noseqf1o 28247 | . . . . 5 ⊢ (𝜑 → 𝐺:ω–1-1-onto→𝑍) |
| 5 | f1ocnvdm 7278 | . . . . 5 ⊢ ((𝐺:ω–1-1-onto→𝑍 ∧ 𝐵 ∈ 𝑍) → (◡𝐺‘𝐵) ∈ ω) | |
| 6 | 4, 5 | sylan 580 | . . . 4 ⊢ ((𝜑 ∧ 𝐵 ∈ 𝑍) → (◡𝐺‘𝐵) ∈ ω) |
| 7 | noseqrdg.1 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 8 | noseqrdg.2 | . . . . 5 ⊢ (𝜑 → 𝑅 = (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 +s 1s ), (𝑥𝐹𝑦)〉), 〈𝐶, 𝐴〉) ↾ ω)) | |
| 9 | 1, 2, 3, 7, 8 | om2noseqrdg 28250 | . . . 4 ⊢ ((𝜑 ∧ (◡𝐺‘𝐵) ∈ ω) → (𝑅‘(◡𝐺‘𝐵)) = 〈(𝐺‘(◡𝐺‘𝐵)), (2nd ‘(𝑅‘(◡𝐺‘𝐵)))〉) |
| 10 | 6, 9 | syldan 591 | . . 3 ⊢ ((𝜑 ∧ 𝐵 ∈ 𝑍) → (𝑅‘(◡𝐺‘𝐵)) = 〈(𝐺‘(◡𝐺‘𝐵)), (2nd ‘(𝑅‘(◡𝐺‘𝐵)))〉) |
| 11 | f1ocnvfv2 7270 | . . . . 5 ⊢ ((𝐺:ω–1-1-onto→𝑍 ∧ 𝐵 ∈ 𝑍) → (𝐺‘(◡𝐺‘𝐵)) = 𝐵) | |
| 12 | 4, 11 | sylan 580 | . . . 4 ⊢ ((𝜑 ∧ 𝐵 ∈ 𝑍) → (𝐺‘(◡𝐺‘𝐵)) = 𝐵) |
| 13 | 12 | opeq1d 4855 | . . 3 ⊢ ((𝜑 ∧ 𝐵 ∈ 𝑍) → 〈(𝐺‘(◡𝐺‘𝐵)), (2nd ‘(𝑅‘(◡𝐺‘𝐵)))〉 = 〈𝐵, (2nd ‘(𝑅‘(◡𝐺‘𝐵)))〉) |
| 14 | 10, 13 | eqtrd 2770 | . 2 ⊢ ((𝜑 ∧ 𝐵 ∈ 𝑍) → (𝑅‘(◡𝐺‘𝐵)) = 〈𝐵, (2nd ‘(𝑅‘(◡𝐺‘𝐵)))〉) |
| 15 | frfnom 8449 | . . . . 5 ⊢ (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 +s 1s ), (𝑥𝐹𝑦)〉), 〈𝐶, 𝐴〉) ↾ ω) Fn ω | |
| 16 | 8 | fneq1d 6631 | . . . . 5 ⊢ (𝜑 → (𝑅 Fn ω ↔ (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 +s 1s ), (𝑥𝐹𝑦)〉), 〈𝐶, 𝐴〉) ↾ ω) Fn ω)) |
| 17 | 15, 16 | mpbiri 258 | . . . 4 ⊢ (𝜑 → 𝑅 Fn ω) |
| 18 | 17 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝐵 ∈ 𝑍) → 𝑅 Fn ω) |
| 19 | 18, 6 | fnfvelrnd 7072 | . 2 ⊢ ((𝜑 ∧ 𝐵 ∈ 𝑍) → (𝑅‘(◡𝐺‘𝐵)) ∈ ran 𝑅) |
| 20 | 14, 19 | eqeltrrd 2835 | 1 ⊢ ((𝜑 ∧ 𝐵 ∈ 𝑍) → 〈𝐵, (2nd ‘(𝑅‘(◡𝐺‘𝐵)))〉 ∈ ran 𝑅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 Vcvv 3459 〈cop 4607 ↦ cmpt 5201 ◡ccnv 5653 ran crn 5655 ↾ cres 5656 “ cima 5657 Fn wfn 6526 –1-1-onto→wf1o 6530 ‘cfv 6531 (class class class)co 7405 ∈ cmpo 7407 ωcom 7861 2nd c2nd 7987 reccrdg 8423 No csur 27603 1s c1s 27787 +s cadds 27918 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-tp 4606 df-op 4608 df-ot 4610 df-uni 4884 df-int 4923 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-se 5607 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-1st 7988 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-2o 8481 df-oadd 8484 df-nadd 8678 df-no 27606 df-slt 27607 df-bday 27608 df-sle 27709 df-sslt 27745 df-scut 27747 df-0s 27788 df-1s 27789 df-made 27807 df-old 27808 df-left 27810 df-right 27811 df-norec2 27908 df-adds 27919 |
| This theorem is referenced by: noseqrdgfn 28252 noseqrdgsuc 28254 |
| Copyright terms: Public domain | W3C validator |