MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  noseqrdglem Structured version   Visualization version   GIF version

Theorem noseqrdglem 28251
Description: A helper lemma for the value of a recursive defintion generator on surreal sequences. (Contributed by Scott Fenton, 18-Apr-2025.)
Hypotheses
Ref Expression
om2noseq.1 (𝜑𝐶 No )
om2noseq.2 (𝜑𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) ↾ ω))
om2noseq.3 (𝜑𝑍 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) “ ω))
noseqrdg.1 (𝜑𝐴𝑉)
noseqrdg.2 (𝜑𝑅 = (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 +s 1s ), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩) ↾ ω))
Assertion
Ref Expression
noseqrdglem ((𝜑𝐵𝑍) → ⟨𝐵, (2nd ‘(𝑅‘(𝐺𝐵)))⟩ ∈ ran 𝑅)
Distinct variable groups:   𝑥,𝐹,𝑦   𝑥,𝐶
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐴(𝑥,𝑦)   𝐵(𝑥,𝑦)   𝐶(𝑦)   𝑅(𝑥,𝑦)   𝐺(𝑥,𝑦)   𝑉(𝑥,𝑦)   𝑍(𝑥,𝑦)

Proof of Theorem noseqrdglem
StepHypRef Expression
1 om2noseq.1 . . . . . 6 (𝜑𝐶 No )
2 om2noseq.2 . . . . . 6 (𝜑𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) ↾ ω))
3 om2noseq.3 . . . . . 6 (𝜑𝑍 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) “ ω))
41, 2, 3om2noseqf1o 28247 . . . . 5 (𝜑𝐺:ω–1-1-onto𝑍)
5 f1ocnvdm 7278 . . . . 5 ((𝐺:ω–1-1-onto𝑍𝐵𝑍) → (𝐺𝐵) ∈ ω)
64, 5sylan 580 . . . 4 ((𝜑𝐵𝑍) → (𝐺𝐵) ∈ ω)
7 noseqrdg.1 . . . . 5 (𝜑𝐴𝑉)
8 noseqrdg.2 . . . . 5 (𝜑𝑅 = (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 +s 1s ), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩) ↾ ω))
91, 2, 3, 7, 8om2noseqrdg 28250 . . . 4 ((𝜑 ∧ (𝐺𝐵) ∈ ω) → (𝑅‘(𝐺𝐵)) = ⟨(𝐺‘(𝐺𝐵)), (2nd ‘(𝑅‘(𝐺𝐵)))⟩)
106, 9syldan 591 . . 3 ((𝜑𝐵𝑍) → (𝑅‘(𝐺𝐵)) = ⟨(𝐺‘(𝐺𝐵)), (2nd ‘(𝑅‘(𝐺𝐵)))⟩)
11 f1ocnvfv2 7270 . . . . 5 ((𝐺:ω–1-1-onto𝑍𝐵𝑍) → (𝐺‘(𝐺𝐵)) = 𝐵)
124, 11sylan 580 . . . 4 ((𝜑𝐵𝑍) → (𝐺‘(𝐺𝐵)) = 𝐵)
1312opeq1d 4855 . . 3 ((𝜑𝐵𝑍) → ⟨(𝐺‘(𝐺𝐵)), (2nd ‘(𝑅‘(𝐺𝐵)))⟩ = ⟨𝐵, (2nd ‘(𝑅‘(𝐺𝐵)))⟩)
1410, 13eqtrd 2770 . 2 ((𝜑𝐵𝑍) → (𝑅‘(𝐺𝐵)) = ⟨𝐵, (2nd ‘(𝑅‘(𝐺𝐵)))⟩)
15 frfnom 8449 . . . . 5 (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 +s 1s ), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩) ↾ ω) Fn ω
168fneq1d 6631 . . . . 5 (𝜑 → (𝑅 Fn ω ↔ (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 +s 1s ), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩) ↾ ω) Fn ω))
1715, 16mpbiri 258 . . . 4 (𝜑𝑅 Fn ω)
1817adantr 480 . . 3 ((𝜑𝐵𝑍) → 𝑅 Fn ω)
1918, 6fnfvelrnd 7072 . 2 ((𝜑𝐵𝑍) → (𝑅‘(𝐺𝐵)) ∈ ran 𝑅)
2014, 19eqeltrrd 2835 1 ((𝜑𝐵𝑍) → ⟨𝐵, (2nd ‘(𝑅‘(𝐺𝐵)))⟩ ∈ ran 𝑅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  Vcvv 3459  cop 4607  cmpt 5201  ccnv 5653  ran crn 5655  cres 5656  cima 5657   Fn wfn 6526  1-1-ontowf1o 6530  cfv 6531  (class class class)co 7405  cmpo 7407  ωcom 7861  2nd c2nd 7987  reccrdg 8423   No csur 27603   1s c1s 27787   +s cadds 27918
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-ot 4610  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-oadd 8484  df-nadd 8678  df-no 27606  df-slt 27607  df-bday 27608  df-sle 27709  df-sslt 27745  df-scut 27747  df-0s 27788  df-1s 27789  df-made 27807  df-old 27808  df-left 27810  df-right 27811  df-norec2 27908  df-adds 27919
This theorem is referenced by:  noseqrdgfn  28252  noseqrdgsuc  28254
  Copyright terms: Public domain W3C validator