| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > noseqrdglem | Structured version Visualization version GIF version | ||
| Description: A helper lemma for the value of a recursive defintion generator on surreal sequences. (Contributed by Scott Fenton, 18-Apr-2025.) |
| Ref | Expression |
|---|---|
| om2noseq.1 | ⊢ (𝜑 → 𝐶 ∈ No ) |
| om2noseq.2 | ⊢ (𝜑 → 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) ↾ ω)) |
| om2noseq.3 | ⊢ (𝜑 → 𝑍 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) “ ω)) |
| noseqrdg.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| noseqrdg.2 | ⊢ (𝜑 → 𝑅 = (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 +s 1s ), (𝑥𝐹𝑦)〉), 〈𝐶, 𝐴〉) ↾ ω)) |
| Ref | Expression |
|---|---|
| noseqrdglem | ⊢ ((𝜑 ∧ 𝐵 ∈ 𝑍) → 〈𝐵, (2nd ‘(𝑅‘(◡𝐺‘𝐵)))〉 ∈ ran 𝑅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | om2noseq.1 | . . . . . 6 ⊢ (𝜑 → 𝐶 ∈ No ) | |
| 2 | om2noseq.2 | . . . . . 6 ⊢ (𝜑 → 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) ↾ ω)) | |
| 3 | om2noseq.3 | . . . . . 6 ⊢ (𝜑 → 𝑍 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) “ ω)) | |
| 4 | 1, 2, 3 | om2noseqf1o 28195 | . . . . 5 ⊢ (𝜑 → 𝐺:ω–1-1-onto→𝑍) |
| 5 | f1ocnvdm 7260 | . . . . 5 ⊢ ((𝐺:ω–1-1-onto→𝑍 ∧ 𝐵 ∈ 𝑍) → (◡𝐺‘𝐵) ∈ ω) | |
| 6 | 4, 5 | sylan 580 | . . . 4 ⊢ ((𝜑 ∧ 𝐵 ∈ 𝑍) → (◡𝐺‘𝐵) ∈ ω) |
| 7 | noseqrdg.1 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 8 | noseqrdg.2 | . . . . 5 ⊢ (𝜑 → 𝑅 = (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 +s 1s ), (𝑥𝐹𝑦)〉), 〈𝐶, 𝐴〉) ↾ ω)) | |
| 9 | 1, 2, 3, 7, 8 | om2noseqrdg 28198 | . . . 4 ⊢ ((𝜑 ∧ (◡𝐺‘𝐵) ∈ ω) → (𝑅‘(◡𝐺‘𝐵)) = 〈(𝐺‘(◡𝐺‘𝐵)), (2nd ‘(𝑅‘(◡𝐺‘𝐵)))〉) |
| 10 | 6, 9 | syldan 591 | . . 3 ⊢ ((𝜑 ∧ 𝐵 ∈ 𝑍) → (𝑅‘(◡𝐺‘𝐵)) = 〈(𝐺‘(◡𝐺‘𝐵)), (2nd ‘(𝑅‘(◡𝐺‘𝐵)))〉) |
| 11 | f1ocnvfv2 7252 | . . . . 5 ⊢ ((𝐺:ω–1-1-onto→𝑍 ∧ 𝐵 ∈ 𝑍) → (𝐺‘(◡𝐺‘𝐵)) = 𝐵) | |
| 12 | 4, 11 | sylan 580 | . . . 4 ⊢ ((𝜑 ∧ 𝐵 ∈ 𝑍) → (𝐺‘(◡𝐺‘𝐵)) = 𝐵) |
| 13 | 12 | opeq1d 4843 | . . 3 ⊢ ((𝜑 ∧ 𝐵 ∈ 𝑍) → 〈(𝐺‘(◡𝐺‘𝐵)), (2nd ‘(𝑅‘(◡𝐺‘𝐵)))〉 = 〈𝐵, (2nd ‘(𝑅‘(◡𝐺‘𝐵)))〉) |
| 14 | 10, 13 | eqtrd 2764 | . 2 ⊢ ((𝜑 ∧ 𝐵 ∈ 𝑍) → (𝑅‘(◡𝐺‘𝐵)) = 〈𝐵, (2nd ‘(𝑅‘(◡𝐺‘𝐵)))〉) |
| 15 | frfnom 8403 | . . . . 5 ⊢ (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 +s 1s ), (𝑥𝐹𝑦)〉), 〈𝐶, 𝐴〉) ↾ ω) Fn ω | |
| 16 | 8 | fneq1d 6611 | . . . . 5 ⊢ (𝜑 → (𝑅 Fn ω ↔ (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 +s 1s ), (𝑥𝐹𝑦)〉), 〈𝐶, 𝐴〉) ↾ ω) Fn ω)) |
| 17 | 15, 16 | mpbiri 258 | . . . 4 ⊢ (𝜑 → 𝑅 Fn ω) |
| 18 | 17 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝐵 ∈ 𝑍) → 𝑅 Fn ω) |
| 19 | 18, 6 | fnfvelrnd 7054 | . 2 ⊢ ((𝜑 ∧ 𝐵 ∈ 𝑍) → (𝑅‘(◡𝐺‘𝐵)) ∈ ran 𝑅) |
| 20 | 14, 19 | eqeltrrd 2829 | 1 ⊢ ((𝜑 ∧ 𝐵 ∈ 𝑍) → 〈𝐵, (2nd ‘(𝑅‘(◡𝐺‘𝐵)))〉 ∈ ran 𝑅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3447 〈cop 4595 ↦ cmpt 5188 ◡ccnv 5637 ran crn 5639 ↾ cres 5640 “ cima 5641 Fn wfn 6506 –1-1-onto→wf1o 6510 ‘cfv 6511 (class class class)co 7387 ∈ cmpo 7389 ωcom 7842 2nd c2nd 7967 reccrdg 8377 No csur 27551 1s c1s 27735 +s cadds 27866 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-tp 4594 df-op 4596 df-ot 4598 df-uni 4872 df-int 4911 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-se 5592 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-2o 8435 df-oadd 8438 df-nadd 8630 df-no 27554 df-slt 27555 df-bday 27556 df-sle 27657 df-sslt 27693 df-scut 27695 df-0s 27736 df-1s 27737 df-made 27755 df-old 27756 df-left 27758 df-right 27759 df-norec2 27856 df-adds 27867 |
| This theorem is referenced by: noseqrdgfn 28200 noseqrdgsuc 28202 |
| Copyright terms: Public domain | W3C validator |