MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rediv Structured version   Visualization version   GIF version

Theorem rediv 14328
Description: Real part of a division. Related to remul2 14327. (Contributed by David A. Wheeler, 10-Jun-2015.)
Assertion
Ref Expression
rediv ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → (ℜ‘(𝐴 / 𝐵)) = ((ℜ‘𝐴) / 𝐵))

Proof of Theorem rediv
StepHypRef Expression
1 ancom 461 . . . . 5 (((𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐴 ∈ ℂ) ↔ (𝐴 ∈ ℂ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0)))
2 3anass 1088 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ↔ (𝐴 ∈ ℂ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0)))
31, 2bitr4i 279 . . . 4 (((𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐴 ∈ ℂ) ↔ (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0))
4 rereccl 11212 . . . . 5 ((𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → (1 / 𝐵) ∈ ℝ)
54anim1i 614 . . . 4 (((𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐴 ∈ ℂ) → ((1 / 𝐵) ∈ ℝ ∧ 𝐴 ∈ ℂ))
63, 5sylbir 236 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → ((1 / 𝐵) ∈ ℝ ∧ 𝐴 ∈ ℂ))
7 remul2 14327 . . 3 (((1 / 𝐵) ∈ ℝ ∧ 𝐴 ∈ ℂ) → (ℜ‘((1 / 𝐵) · 𝐴)) = ((1 / 𝐵) · (ℜ‘𝐴)))
86, 7syl 17 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → (ℜ‘((1 / 𝐵) · 𝐴)) = ((1 / 𝐵) · (ℜ‘𝐴)))
9 recn 10480 . . 3 (𝐵 ∈ ℝ → 𝐵 ∈ ℂ)
10 divrec2 11169 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → (𝐴 / 𝐵) = ((1 / 𝐵) · 𝐴))
1110fveq2d 6549 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → (ℜ‘(𝐴 / 𝐵)) = (ℜ‘((1 / 𝐵) · 𝐴)))
129, 11syl3an2 1157 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → (ℜ‘(𝐴 / 𝐵)) = (ℜ‘((1 / 𝐵) · 𝐴)))
13 recl 14307 . . . . 5 (𝐴 ∈ ℂ → (ℜ‘𝐴) ∈ ℝ)
1413recnd 10522 . . . 4 (𝐴 ∈ ℂ → (ℜ‘𝐴) ∈ ℂ)
15143ad2ant1 1126 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → (ℜ‘𝐴) ∈ ℂ)
1693ad2ant2 1127 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → 𝐵 ∈ ℂ)
17 simp3 1131 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → 𝐵 ≠ 0)
1815, 16, 17divrec2d 11274 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → ((ℜ‘𝐴) / 𝐵) = ((1 / 𝐵) · (ℜ‘𝐴)))
198, 12, 183eqtr4d 2843 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → (ℜ‘(𝐴 / 𝐵)) = ((ℜ‘𝐴) / 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1080   = wceq 1525  wcel 2083  wne 2986  cfv 6232  (class class class)co 7023  cc 10388  cr 10389  0cc0 10390  1c1 10391   · cmul 10395   / cdiv 11151  cre 14294
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1781  ax-4 1795  ax-5 1892  ax-6 1951  ax-7 1996  ax-8 2085  ax-9 2093  ax-10 2114  ax-11 2128  ax-12 2143  ax-13 2346  ax-ext 2771  ax-sep 5101  ax-nul 5108  ax-pow 5164  ax-pr 5228  ax-un 7326  ax-resscn 10447  ax-1cn 10448  ax-icn 10449  ax-addcl 10450  ax-addrcl 10451  ax-mulcl 10452  ax-mulrcl 10453  ax-mulcom 10454  ax-addass 10455  ax-mulass 10456  ax-distr 10457  ax-i2m1 10458  ax-1ne0 10459  ax-1rid 10460  ax-rnegex 10461  ax-rrecex 10462  ax-cnre 10463  ax-pre-lttri 10464  ax-pre-lttrn 10465  ax-pre-ltadd 10466  ax-pre-mulgt0 10467
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1528  df-ex 1766  df-nf 1770  df-sb 2045  df-mo 2578  df-eu 2614  df-clab 2778  df-cleq 2790  df-clel 2865  df-nfc 2937  df-ne 2987  df-nel 3093  df-ral 3112  df-rex 3113  df-reu 3114  df-rmo 3115  df-rab 3116  df-v 3442  df-sbc 3712  df-csb 3818  df-dif 3868  df-un 3870  df-in 3872  df-ss 3880  df-nul 4218  df-if 4388  df-pw 4461  df-sn 4479  df-pr 4481  df-op 4485  df-uni 4752  df-br 4969  df-opab 5031  df-mpt 5048  df-id 5355  df-po 5369  df-so 5370  df-xp 5456  df-rel 5457  df-cnv 5458  df-co 5459  df-dm 5460  df-rn 5461  df-res 5462  df-ima 5463  df-iota 6196  df-fun 6234  df-fn 6235  df-f 6236  df-f1 6237  df-fo 6238  df-f1o 6239  df-fv 6240  df-riota 6984  df-ov 7026  df-oprab 7027  df-mpo 7028  df-er 8146  df-en 8365  df-dom 8366  df-sdom 8367  df-pnf 10530  df-mnf 10531  df-xr 10532  df-ltxr 10533  df-le 10534  df-sub 10725  df-neg 10726  df-div 11152  df-2 11554  df-cj 14296  df-re 14297  df-im 14298
This theorem is referenced by:  redivd  14426
  Copyright terms: Public domain W3C validator