Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > divrec2d | Structured version Visualization version GIF version |
Description: Relationship between division and reciprocal. (Contributed by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
div1d.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
divcld.2 | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
divcld.3 | ⊢ (𝜑 → 𝐵 ≠ 0) |
Ref | Expression |
---|---|
divrec2d | ⊢ (𝜑 → (𝐴 / 𝐵) = ((1 / 𝐵) · 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | div1d.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
2 | divcld.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
3 | divcld.3 | . 2 ⊢ (𝜑 → 𝐵 ≠ 0) | |
4 | divrec2 11580 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → (𝐴 / 𝐵) = ((1 / 𝐵) · 𝐴)) | |
5 | 1, 2, 3, 4 | syl3anc 1369 | 1 ⊢ (𝜑 → (𝐴 / 𝐵) = ((1 / 𝐵) · 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 (class class class)co 7255 ℂcc 10800 0cc0 10802 1c1 10803 · cmul 10807 / cdiv 11562 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-po 5494 df-so 5495 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 |
This theorem is referenced by: expaddzlem 13754 rediv 14770 imdiv 14777 geo2sum 15513 clim2div 15529 efaddlem 15730 sinhval 15791 cvsmuleqdivd 24203 sca2rab 24581 itg2mulclem 24816 itg2mulc 24817 dvmptdivc 25034 dvexp3 25047 dvlip 25062 dvradcnv 25485 tanregt0 25600 logtayl 25720 cxpeq 25815 chordthmlem2 25888 chordthmlem4 25890 heron 25893 dquartlem1 25906 asinlem3 25926 asinsin 25947 efiatan2 25972 atantayl2 25993 amgmlem 26044 basellem8 26142 chebbnd1lem3 26524 dchrmusum2 26547 dchrvmasumlem3 26552 dchrisum0lem1 26569 selberg2lem 26603 logdivbnd 26609 pntrsumo1 26618 pntrlog2bndlem5 26634 pntibndlem2 26644 pntlemr 26655 pntlemo 26660 nmblolbii 29062 blocnilem 29067 nmbdoplbi 30287 nmcoplbi 30291 nmbdfnlbi 30312 nmcfnlbi 30315 logdivsqrle 32530 knoppndvlem7 34625 dvtan 35754 dvasin 35788 areacirclem1 35792 areacirclem4 35795 areaquad 40963 wallispi2lem1 43502 stirlinglem4 43508 stirlinglem5 43509 stirlinglem15 43519 dirkertrigeqlem2 43530 dirkertrigeq 43532 dirkercncflem2 43535 fourierdlem30 43568 fourierdlem57 43594 fourierdlem58 43595 fourierdlem62 43599 fourierdlem95 43632 nn0digval 45834 eenglngeehlnmlem1 45971 eenglngeehlnmlem2 45972 |
Copyright terms: Public domain | W3C validator |