| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > divrec2d | Structured version Visualization version GIF version | ||
| Description: Relationship between division and reciprocal. (Contributed by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| div1d.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| divcld.2 | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
| divcld.3 | ⊢ (𝜑 → 𝐵 ≠ 0) |
| Ref | Expression |
|---|---|
| divrec2d | ⊢ (𝜑 → (𝐴 / 𝐵) = ((1 / 𝐵) · 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | div1d.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
| 2 | divcld.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
| 3 | divcld.3 | . 2 ⊢ (𝜑 → 𝐵 ≠ 0) | |
| 4 | divrec2 11911 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → (𝐴 / 𝐵) = ((1 / 𝐵) · 𝐴)) | |
| 5 | 1, 2, 3, 4 | syl3anc 1373 | 1 ⊢ (𝜑 → (𝐴 / 𝐵) = ((1 / 𝐵) · 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 ≠ wne 2932 (class class class)co 7403 ℂcc 11125 0cc0 11127 1c1 11128 · cmul 11132 / cdiv 11892 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 ax-resscn 11184 ax-1cn 11185 ax-icn 11186 ax-addcl 11187 ax-addrcl 11188 ax-mulcl 11189 ax-mulrcl 11190 ax-mulcom 11191 ax-addass 11192 ax-mulass 11193 ax-distr 11194 ax-i2m1 11195 ax-1ne0 11196 ax-1rid 11197 ax-rnegex 11198 ax-rrecex 11199 ax-cnre 11200 ax-pre-lttri 11201 ax-pre-lttrn 11202 ax-pre-ltadd 11203 ax-pre-mulgt0 11204 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-po 5561 df-so 5562 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-riota 7360 df-ov 7406 df-oprab 7407 df-mpo 7408 df-er 8717 df-en 8958 df-dom 8959 df-sdom 8960 df-pnf 11269 df-mnf 11270 df-xr 11271 df-ltxr 11272 df-le 11273 df-sub 11466 df-neg 11467 df-div 11893 |
| This theorem is referenced by: expaddzlem 14121 rediv 15148 imdiv 15155 geo2sum 15887 clim2div 15903 efaddlem 16107 sinhval 16170 cvsmuleqdivd 25083 sca2rab 25463 itg2mulclem 25697 itg2mulc 25698 dvmptdivc 25919 dvexp3 25932 dvlip 25948 dvradcnv 26380 tanregt0 26498 logtayl 26619 cxpeq 26717 chordthmlem2 26793 chordthmlem4 26795 heron 26798 dquartlem1 26811 asinlem3 26831 asinsin 26852 efiatan2 26877 atantayl2 26898 amgmlem 26950 basellem8 27048 chebbnd1lem3 27432 dchrmusum2 27455 dchrvmasumlem3 27460 dchrisum0lem1 27477 selberg2lem 27511 logdivbnd 27517 pntrsumo1 27526 pntrlog2bndlem5 27542 pntibndlem2 27552 pntlemr 27563 pntlemo 27568 nmblolbii 30726 blocnilem 30731 nmbdoplbi 31951 nmcoplbi 31955 nmbdfnlbi 31976 nmcfnlbi 31979 constrdircl 33745 constrrecl 33749 cos9thpiminplylem2 33763 logdivsqrle 34628 knoppndvlem7 36482 dvtan 37640 dvasin 37674 areacirclem1 37678 areacirclem4 37681 readvcot 42354 areaquad 43187 wallispi2lem1 46048 stirlinglem4 46054 stirlinglem5 46055 stirlinglem15 46065 dirkertrigeqlem2 46076 dirkertrigeq 46078 dirkercncflem2 46081 fourierdlem30 46114 fourierdlem57 46140 fourierdlem58 46141 fourierdlem62 46145 fourierdlem95 46178 nn0digval 48528 eenglngeehlnmlem1 48665 eenglngeehlnmlem2 48666 |
| Copyright terms: Public domain | W3C validator |