| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > divrec2d | Structured version Visualization version GIF version | ||
| Description: Relationship between division and reciprocal. (Contributed by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| div1d.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| divcld.2 | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
| divcld.3 | ⊢ (𝜑 → 𝐵 ≠ 0) |
| Ref | Expression |
|---|---|
| divrec2d | ⊢ (𝜑 → (𝐴 / 𝐵) = ((1 / 𝐵) · 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | div1d.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
| 2 | divcld.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
| 3 | divcld.3 | . 2 ⊢ (𝜑 → 𝐵 ≠ 0) | |
| 4 | divrec2 11854 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → (𝐴 / 𝐵) = ((1 / 𝐵) · 𝐴)) | |
| 5 | 1, 2, 3, 4 | syl3anc 1373 | 1 ⊢ (𝜑 → (𝐴 / 𝐵) = ((1 / 𝐵) · 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 (class class class)co 7387 ℂcc 11066 0cc0 11068 1c1 11069 · cmul 11073 / cdiv 11835 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-po 5546 df-so 5547 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 |
| This theorem is referenced by: expaddzlem 14070 rediv 15097 imdiv 15104 geo2sum 15839 clim2div 15855 efaddlem 16059 sinhval 16122 cvsmuleqdivd 25034 sca2rab 25413 itg2mulclem 25647 itg2mulc 25648 dvmptdivc 25869 dvexp3 25882 dvlip 25898 dvradcnv 26330 tanregt0 26448 logtayl 26569 cxpeq 26667 chordthmlem2 26743 chordthmlem4 26745 heron 26748 dquartlem1 26761 asinlem3 26781 asinsin 26802 efiatan2 26827 atantayl2 26848 amgmlem 26900 basellem8 26998 chebbnd1lem3 27382 dchrmusum2 27405 dchrvmasumlem3 27410 dchrisum0lem1 27427 selberg2lem 27461 logdivbnd 27467 pntrsumo1 27476 pntrlog2bndlem5 27492 pntibndlem2 27502 pntlemr 27513 pntlemo 27518 nmblolbii 30728 blocnilem 30733 nmbdoplbi 31953 nmcoplbi 31957 nmbdfnlbi 31978 nmcfnlbi 31981 constrdircl 33755 constrrecl 33759 cos9thpiminplylem2 33773 logdivsqrle 34641 knoppndvlem7 36506 dvtan 37664 dvasin 37698 areacirclem1 37702 areacirclem4 37705 readvcot 42352 areaquad 43205 wallispi2lem1 46069 stirlinglem4 46075 stirlinglem5 46076 stirlinglem15 46086 dirkertrigeqlem2 46097 dirkertrigeq 46099 dirkercncflem2 46102 fourierdlem30 46135 fourierdlem57 46161 fourierdlem58 46162 fourierdlem62 46166 fourierdlem95 46199 nn0digval 48589 eenglngeehlnmlem1 48726 eenglngeehlnmlem2 48727 |
| Copyright terms: Public domain | W3C validator |