MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  divrec2d Structured version   Visualization version   GIF version

Theorem divrec2d 12074
Description: Relationship between division and reciprocal. (Contributed by Mario Carneiro, 27-May-2016.)
Hypotheses
Ref Expression
div1d.1 (𝜑𝐴 ∈ ℂ)
divcld.2 (𝜑𝐵 ∈ ℂ)
divcld.3 (𝜑𝐵 ≠ 0)
Assertion
Ref Expression
divrec2d (𝜑 → (𝐴 / 𝐵) = ((1 / 𝐵) · 𝐴))

Proof of Theorem divrec2d
StepHypRef Expression
1 div1d.1 . 2 (𝜑𝐴 ∈ ℂ)
2 divcld.2 . 2 (𝜑𝐵 ∈ ℂ)
3 divcld.3 . 2 (𝜑𝐵 ≠ 0)
4 divrec2 11966 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → (𝐴 / 𝐵) = ((1 / 𝐵) · 𝐴))
51, 2, 3, 4syl3anc 1371 1 (𝜑 → (𝐴 / 𝐵) = ((1 / 𝐵) · 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2108  wne 2946  (class class class)co 7448  cc 11182  0cc0 11184  1c1 11185   · cmul 11189   / cdiv 11947
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-po 5607  df-so 5608  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948
This theorem is referenced by:  expaddzlem  14156  rediv  15180  imdiv  15187  geo2sum  15921  clim2div  15937  efaddlem  16141  sinhval  16202  cvsmuleqdivd  25186  sca2rab  25566  itg2mulclem  25801  itg2mulc  25802  dvmptdivc  26023  dvexp3  26036  dvlip  26052  dvradcnv  26482  tanregt0  26599  logtayl  26720  cxpeq  26818  chordthmlem2  26894  chordthmlem4  26896  heron  26899  dquartlem1  26912  asinlem3  26932  asinsin  26953  efiatan2  26978  atantayl2  26999  amgmlem  27051  basellem8  27149  chebbnd1lem3  27533  dchrmusum2  27556  dchrvmasumlem3  27561  dchrisum0lem1  27578  selberg2lem  27612  logdivbnd  27618  pntrsumo1  27627  pntrlog2bndlem5  27643  pntibndlem2  27653  pntlemr  27664  pntlemo  27669  nmblolbii  30831  blocnilem  30836  nmbdoplbi  32056  nmcoplbi  32060  nmbdfnlbi  32081  nmcfnlbi  32084  logdivsqrle  34627  knoppndvlem7  36484  dvtan  37630  dvasin  37664  areacirclem1  37668  areacirclem4  37671  areaquad  43177  wallispi2lem1  45992  stirlinglem4  45998  stirlinglem5  45999  stirlinglem15  46009  dirkertrigeqlem2  46020  dirkertrigeq  46022  dirkercncflem2  46025  fourierdlem30  46058  fourierdlem57  46084  fourierdlem58  46085  fourierdlem62  46089  fourierdlem95  46122  nn0digval  48334  eenglngeehlnmlem1  48471  eenglngeehlnmlem2  48472
  Copyright terms: Public domain W3C validator