![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > divrec2d | Structured version Visualization version GIF version |
Description: Relationship between division and reciprocal. (Contributed by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
div1d.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
divcld.2 | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
divcld.3 | ⊢ (𝜑 → 𝐵 ≠ 0) |
Ref | Expression |
---|---|
divrec2d | ⊢ (𝜑 → (𝐴 / 𝐵) = ((1 / 𝐵) · 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | div1d.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
2 | divcld.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
3 | divcld.3 | . 2 ⊢ (𝜑 → 𝐵 ≠ 0) | |
4 | divrec2 11936 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → (𝐴 / 𝐵) = ((1 / 𝐵) · 𝐴)) | |
5 | 1, 2, 3, 4 | syl3anc 1370 | 1 ⊢ (𝜑 → (𝐴 / 𝐵) = ((1 / 𝐵) · 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1536 ∈ wcel 2105 ≠ wne 2937 (class class class)co 7430 ℂcc 11150 0cc0 11152 1c1 11153 · cmul 11157 / cdiv 11917 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pow 5370 ax-pr 5437 ax-un 7753 ax-resscn 11209 ax-1cn 11210 ax-icn 11211 ax-addcl 11212 ax-addrcl 11213 ax-mulcl 11214 ax-mulrcl 11215 ax-mulcom 11216 ax-addass 11217 ax-mulass 11218 ax-distr 11219 ax-i2m1 11220 ax-1ne0 11221 ax-1rid 11222 ax-rnegex 11223 ax-rrecex 11224 ax-cnre 11225 ax-pre-lttri 11226 ax-pre-lttrn 11227 ax-pre-ltadd 11228 ax-pre-mulgt0 11229 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3377 df-reu 3378 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5582 df-po 5596 df-so 5597 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-f1 6567 df-fo 6568 df-f1o 6569 df-fv 6570 df-riota 7387 df-ov 7433 df-oprab 7434 df-mpo 7435 df-er 8743 df-en 8984 df-dom 8985 df-sdom 8986 df-pnf 11294 df-mnf 11295 df-xr 11296 df-ltxr 11297 df-le 11298 df-sub 11491 df-neg 11492 df-div 11918 |
This theorem is referenced by: expaddzlem 14142 rediv 15166 imdiv 15173 geo2sum 15905 clim2div 15921 efaddlem 16125 sinhval 16186 cvsmuleqdivd 25180 sca2rab 25560 itg2mulclem 25795 itg2mulc 25796 dvmptdivc 26017 dvexp3 26030 dvlip 26046 dvradcnv 26478 tanregt0 26595 logtayl 26716 cxpeq 26814 chordthmlem2 26890 chordthmlem4 26892 heron 26895 dquartlem1 26908 asinlem3 26928 asinsin 26949 efiatan2 26974 atantayl2 26995 amgmlem 27047 basellem8 27145 chebbnd1lem3 27529 dchrmusum2 27552 dchrvmasumlem3 27557 dchrisum0lem1 27574 selberg2lem 27608 logdivbnd 27614 pntrsumo1 27623 pntrlog2bndlem5 27639 pntibndlem2 27649 pntlemr 27660 pntlemo 27665 nmblolbii 30827 blocnilem 30832 nmbdoplbi 32052 nmcoplbi 32056 nmbdfnlbi 32077 nmcfnlbi 32080 logdivsqrle 34643 knoppndvlem7 36500 dvtan 37656 dvasin 37690 areacirclem1 37694 areacirclem4 37697 areaquad 43204 wallispi2lem1 46026 stirlinglem4 46032 stirlinglem5 46033 stirlinglem15 46043 dirkertrigeqlem2 46054 dirkertrigeq 46056 dirkercncflem2 46059 fourierdlem30 46092 fourierdlem57 46118 fourierdlem58 46119 fourierdlem62 46123 fourierdlem95 46156 nn0digval 48449 eenglngeehlnmlem1 48586 eenglngeehlnmlem2 48587 |
Copyright terms: Public domain | W3C validator |