Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > divrec2d | Structured version Visualization version GIF version |
Description: Relationship between division and reciprocal. (Contributed by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
div1d.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
divcld.2 | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
divcld.3 | ⊢ (𝜑 → 𝐵 ≠ 0) |
Ref | Expression |
---|---|
divrec2d | ⊢ (𝜑 → (𝐴 / 𝐵) = ((1 / 𝐵) · 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | div1d.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
2 | divcld.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
3 | divcld.3 | . 2 ⊢ (𝜑 → 𝐵 ≠ 0) | |
4 | divrec2 11648 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → (𝐴 / 𝐵) = ((1 / 𝐵) · 𝐴)) | |
5 | 1, 2, 3, 4 | syl3anc 1370 | 1 ⊢ (𝜑 → (𝐴 / 𝐵) = ((1 / 𝐵) · 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1542 ∈ wcel 2110 ≠ wne 2945 (class class class)co 7269 ℂcc 10868 0cc0 10870 1c1 10871 · cmul 10875 / cdiv 11630 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 ax-un 7580 ax-resscn 10927 ax-1cn 10928 ax-icn 10929 ax-addcl 10930 ax-addrcl 10931 ax-mulcl 10932 ax-mulrcl 10933 ax-mulcom 10934 ax-addass 10935 ax-mulass 10936 ax-distr 10937 ax-i2m1 10938 ax-1ne0 10939 ax-1rid 10940 ax-rnegex 10941 ax-rrecex 10942 ax-cnre 10943 ax-pre-lttri 10944 ax-pre-lttrn 10945 ax-pre-ltadd 10946 ax-pre-mulgt0 10947 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-nel 3052 df-ral 3071 df-rex 3072 df-reu 3073 df-rmo 3074 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-br 5080 df-opab 5142 df-mpt 5163 df-id 5489 df-po 5503 df-so 5504 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6389 df-fun 6433 df-fn 6434 df-f 6435 df-f1 6436 df-fo 6437 df-f1o 6438 df-fv 6439 df-riota 7226 df-ov 7272 df-oprab 7273 df-mpo 7274 df-er 8479 df-en 8715 df-dom 8716 df-sdom 8717 df-pnf 11010 df-mnf 11011 df-xr 11012 df-ltxr 11013 df-le 11014 df-sub 11205 df-neg 11206 df-div 11631 |
This theorem is referenced by: expaddzlem 13822 rediv 14838 imdiv 14845 geo2sum 15581 clim2div 15597 efaddlem 15798 sinhval 15859 cvsmuleqdivd 24293 sca2rab 24672 itg2mulclem 24907 itg2mulc 24908 dvmptdivc 25125 dvexp3 25138 dvlip 25153 dvradcnv 25576 tanregt0 25691 logtayl 25811 cxpeq 25906 chordthmlem2 25979 chordthmlem4 25981 heron 25984 dquartlem1 25997 asinlem3 26017 asinsin 26038 efiatan2 26063 atantayl2 26084 amgmlem 26135 basellem8 26233 chebbnd1lem3 26615 dchrmusum2 26638 dchrvmasumlem3 26643 dchrisum0lem1 26660 selberg2lem 26694 logdivbnd 26700 pntrsumo1 26709 pntrlog2bndlem5 26725 pntibndlem2 26735 pntlemr 26746 pntlemo 26751 nmblolbii 29155 blocnilem 29160 nmbdoplbi 30380 nmcoplbi 30384 nmbdfnlbi 30405 nmcfnlbi 30408 logdivsqrle 32624 knoppndvlem7 34692 dvtan 35821 dvasin 35855 areacirclem1 35859 areacirclem4 35862 areaquad 41042 wallispi2lem1 43581 stirlinglem4 43587 stirlinglem5 43588 stirlinglem15 43598 dirkertrigeqlem2 43609 dirkertrigeq 43611 dirkercncflem2 43614 fourierdlem30 43647 fourierdlem57 43673 fourierdlem58 43674 fourierdlem62 43678 fourierdlem95 43711 nn0digval 45913 eenglngeehlnmlem1 46050 eenglngeehlnmlem2 46051 |
Copyright terms: Public domain | W3C validator |