| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > divrec2d | Structured version Visualization version GIF version | ||
| Description: Relationship between division and reciprocal. (Contributed by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| div1d.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| divcld.2 | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
| divcld.3 | ⊢ (𝜑 → 𝐵 ≠ 0) |
| Ref | Expression |
|---|---|
| divrec2d | ⊢ (𝜑 → (𝐴 / 𝐵) = ((1 / 𝐵) · 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | div1d.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
| 2 | divcld.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
| 3 | divcld.3 | . 2 ⊢ (𝜑 → 𝐵 ≠ 0) | |
| 4 | divrec2 11814 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → (𝐴 / 𝐵) = ((1 / 𝐵) · 𝐴)) | |
| 5 | 1, 2, 3, 4 | syl3anc 1373 | 1 ⊢ (𝜑 → (𝐴 / 𝐵) = ((1 / 𝐵) · 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 (class class class)co 7353 ℂcc 11026 0cc0 11028 1c1 11029 · cmul 11033 / cdiv 11795 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-po 5531 df-so 5532 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-div 11796 |
| This theorem is referenced by: expaddzlem 14030 rediv 15056 imdiv 15063 geo2sum 15798 clim2div 15814 efaddlem 16018 sinhval 16081 cvsmuleqdivd 25050 sca2rab 25429 itg2mulclem 25663 itg2mulc 25664 dvmptdivc 25885 dvexp3 25898 dvlip 25914 dvradcnv 26346 tanregt0 26464 logtayl 26585 cxpeq 26683 chordthmlem2 26759 chordthmlem4 26761 heron 26764 dquartlem1 26777 asinlem3 26797 asinsin 26818 efiatan2 26843 atantayl2 26864 amgmlem 26916 basellem8 27014 chebbnd1lem3 27398 dchrmusum2 27421 dchrvmasumlem3 27426 dchrisum0lem1 27443 selberg2lem 27477 logdivbnd 27483 pntrsumo1 27492 pntrlog2bndlem5 27508 pntibndlem2 27518 pntlemr 27529 pntlemo 27534 nmblolbii 30761 blocnilem 30766 nmbdoplbi 31986 nmcoplbi 31990 nmbdfnlbi 32011 nmcfnlbi 32014 constrdircl 33731 constrrecl 33735 cos9thpiminplylem2 33749 logdivsqrle 34617 knoppndvlem7 36491 dvtan 37649 dvasin 37683 areacirclem1 37687 areacirclem4 37690 readvcot 42337 areaquad 43189 wallispi2lem1 46053 stirlinglem4 46059 stirlinglem5 46060 stirlinglem15 46070 dirkertrigeqlem2 46081 dirkertrigeq 46083 dirkercncflem2 46086 fourierdlem30 46119 fourierdlem57 46145 fourierdlem58 46146 fourierdlem62 46150 fourierdlem95 46183 nn0digval 48573 eenglngeehlnmlem1 48710 eenglngeehlnmlem2 48711 |
| Copyright terms: Public domain | W3C validator |