Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 0le2 | Structured version Visualization version GIF version |
Description: The number 0 is less than or equal to 2. (Contributed by David A. Wheeler, 7-Dec-2018.) |
Ref | Expression |
---|---|
0le2 | ⊢ 0 ≤ 2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0le1 11428 | . . 3 ⊢ 0 ≤ 1 | |
2 | 1re 10906 | . . . 4 ⊢ 1 ∈ ℝ | |
3 | 2, 2 | addge0i 11445 | . . 3 ⊢ ((0 ≤ 1 ∧ 0 ≤ 1) → 0 ≤ (1 + 1)) |
4 | 1, 1, 3 | mp2an 688 | . 2 ⊢ 0 ≤ (1 + 1) |
5 | df-2 11966 | . 2 ⊢ 2 = (1 + 1) | |
6 | 4, 5 | breqtrri 5097 | 1 ⊢ 0 ≤ 2 |
Colors of variables: wff setvar class |
Syntax hints: class class class wbr 5070 (class class class)co 7255 0cc0 10802 1c1 10803 + caddc 10805 ≤ cle 10941 2c2 11958 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-po 5494 df-so 5495 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-2 11966 |
This theorem is referenced by: expubnd 13823 4bc2eq6 13971 sqrt4 14912 sqrt2gt1lt2 14914 sqreulem 14999 amgm2 15009 efcllem 15715 ege2le3 15727 cos2bnd 15825 evennn2n 15988 6gcd4e2 16174 isprm7 16341 efgredleme 19264 abvtrivd 20015 zringndrg 20602 iihalf1 24000 minveclem2 24495 sincos4thpi 25575 tan4thpi 25576 2irrexpq 25790 log2tlbnd 26000 ppisval 26158 bposlem1 26337 bposlem8 26344 bposlem9 26345 lgslem1 26350 m1lgs 26441 2lgslem1a1 26442 2lgslem4 26459 2sqlem11 26482 2sq2 26486 2sqreultlem 26500 2sqreunnltlem 26503 dchrisumlem3 26544 mulog2sumlem2 26588 log2sumbnd 26597 chpdifbndlem1 26606 usgr2pthlem 28032 pthdlem2 28037 ex-abs 28720 ipidsq 28973 minvecolem2 29138 normpar2i 29419 wrdt2ind 31127 sqsscirc1 31760 nexple 31877 eulerpartlemgc 32229 knoppndvlem10 34628 knoppndvlem11 34629 knoppndvlem14 34632 lcm2un 39950 aks4d1p1p7 40010 2ap1caineq 40029 pellexlem2 40568 sqrtcval 41138 imo72b2lem0 41665 sumnnodd 43061 0ellimcdiv 43080 stoweidlem26 43457 wallispilem4 43499 wallispi 43501 wallispi2lem1 43502 wallispi2 43504 stirlinglem1 43505 stirlinglem5 43509 stirlinglem6 43510 stirlinglem7 43511 stirlinglem11 43515 stirlinglem15 43519 fourierdlem68 43605 fouriersw 43662 smfmullem4 44215 lighneallem4a 44948 fpprel2 45081 |
Copyright terms: Public domain | W3C validator |