Colors of
variables: wff
setvar class |
Syntax hints: class class
class wbr 5109 (class class class)co 7361
0cc0 11059 1c1 11060
+ caddc 11062 ≤
cle 11198 2c2 12216 |
This theorem was proved from axioms:
ax-mp 5 ax-1 6 ax-2 7
ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914
ax-6 1972 ax-7 2012 ax-8 2109
ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5260 ax-nul 5267 ax-pow 5324 ax-pr 5388 ax-un 7676 ax-resscn 11116 ax-1cn 11117 ax-icn 11118 ax-addcl 11119 ax-addrcl 11120 ax-mulcl 11121 ax-mulrcl 11122 ax-mulcom 11123 ax-addass 11124 ax-mulass 11125 ax-distr 11126 ax-i2m1 11127 ax-1ne0 11128 ax-1rid 11129 ax-rnegex 11130 ax-rrecex 11131 ax-cnre 11132 ax-pre-lttri 11133 ax-pre-lttrn 11134 ax-pre-ltadd 11135 ax-pre-mulgt0 11136 |
This theorem depends on definitions:
df-bi 206 df-an 398
df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3353 df-rab 3407 df-v 3449 df-sbc 3744 df-csb 3860 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4287 df-if 4491 df-pw 4566 df-sn 4591 df-pr 4593 df-op 4597 df-uni 4870 df-br 5110 df-opab 5172 df-mpt 5193 df-id 5535 df-po 5549 df-so 5550 df-xp 5643 df-rel 5644 df-cnv 5645 df-co 5646 df-dm 5647 df-rn 5648 df-res 5649 df-ima 5650 df-iota 6452 df-fun 6502 df-fn 6503 df-f 6504 df-f1 6505 df-fo 6506 df-f1o 6507 df-fv 6508 df-riota 7317 df-ov 7364 df-oprab 7365 df-mpo 7366 df-er 8654 df-en 8890 df-dom 8891 df-sdom 8892 df-pnf 11199 df-mnf 11200 df-xr 11201 df-ltxr 11202 df-le 11203 df-sub 11395 df-neg 11396 df-2 12224 |
This theorem is referenced by: expubnd
14091 4bc2eq6
14238 sqrt4
15166 sqrt2gt1lt2
15168 sqreulem
15253 amgm2
15263 efcllem
15968 ege2le3
15980 cos2bnd
16078 evennn2n
16241 6gcd4e2
16427 isprm7
16592 efgredleme
19533 abvtrivd
20342 zringndrg
20912 iihalf1
24317 minveclem2
24813 sincos4thpi
25893 tan4thpi
25894 2irrexpq
26108 log2tlbnd
26318 ppisval
26476 bposlem1
26655 bposlem8
26662 bposlem9
26663 lgslem1
26668 m1lgs
26759 2lgslem1a1
26760 2lgslem4
26777 2sqlem11
26800 2sq2
26804 2sqreultlem
26818 2sqreunnltlem
26821 dchrisumlem3
26862 mulog2sumlem2
26906 log2sumbnd
26915 chpdifbndlem1
26924 usgr2pthlem
28760 pthdlem2
28765 ex-abs
29448 ipidsq
29701 minvecolem2
29866 normpar2i
30147 wrdt2ind
31863 sqsscirc1
32553 nexple
32672 eulerpartlemgc
33026 knoppndvlem10
35037 knoppndvlem11
35038 knoppndvlem14
35041 lcm2un
40521 aks4d1p1p7
40581 2ap1caineq
40603 pellexlem2
41200 sqrtcval
42005 imo72b2lem0
42530 sumnnodd
43961 0ellimcdiv
43980 stoweidlem26
44357 wallispilem4
44399 wallispi
44401 wallispi2lem1
44402 wallispi2
44404 stirlinglem1
44405 stirlinglem5
44409 stirlinglem6
44410 stirlinglem7
44411 stirlinglem11
44415 stirlinglem15
44419 fourierdlem68
44505 fouriersw
44562 smfmullem4
45125 lighneallem4a
45890 fpprel2
46023 |