| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0le2 | Structured version Visualization version GIF version | ||
| Description: The number 0 is less than or equal to 2. (Contributed by David A. Wheeler, 7-Dec-2018.) |
| Ref | Expression |
|---|---|
| 0le2 | ⊢ 0 ≤ 2 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0le1 11651 | . . 3 ⊢ 0 ≤ 1 | |
| 2 | 1re 11123 | . . . 4 ⊢ 1 ∈ ℝ | |
| 3 | 2, 2 | addge0i 11668 | . . 3 ⊢ ((0 ≤ 1 ∧ 0 ≤ 1) → 0 ≤ (1 + 1)) |
| 4 | 1, 1, 3 | mp2an 692 | . 2 ⊢ 0 ≤ (1 + 1) |
| 5 | df-2 12199 | . 2 ⊢ 2 = (1 + 1) | |
| 6 | 4, 5 | breqtrri 5122 | 1 ⊢ 0 ≤ 2 |
| Colors of variables: wff setvar class |
| Syntax hints: class class class wbr 5095 (class class class)co 7355 0cc0 11017 1c1 11018 + caddc 11020 ≤ cle 11158 2c2 12191 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-resscn 11074 ax-1cn 11075 ax-icn 11076 ax-addcl 11077 ax-addrcl 11078 ax-mulcl 11079 ax-mulrcl 11080 ax-mulcom 11081 ax-addass 11082 ax-mulass 11083 ax-distr 11084 ax-i2m1 11085 ax-1ne0 11086 ax-1rid 11087 ax-rnegex 11088 ax-rrecex 11089 ax-cnre 11090 ax-pre-lttri 11091 ax-pre-lttrn 11092 ax-pre-ltadd 11093 ax-pre-mulgt0 11094 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-po 5529 df-so 5530 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-er 8631 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11159 df-mnf 11160 df-xr 11161 df-ltxr 11162 df-le 11163 df-sub 11357 df-neg 11358 df-2 12199 |
| This theorem is referenced by: expubnd 14092 4bc2eq6 14243 sqrt4 15186 sqrt2gt1lt2 15188 sqreulem 15274 amgm2 15284 efcllem 15991 ege2le3 16004 cos2bnd 16104 evennn2n 16269 6gcd4e2 16456 isprm7 16626 efgredleme 19663 abvtrivd 20756 zringndrg 21414 iihalf1 24872 minveclem2 25373 sincos4thpi 26469 tan4thpiOLD 26471 2irrexpq 26687 log2tlbnd 26902 ppisval 27061 bposlem1 27242 bposlem8 27249 bposlem9 27250 lgslem1 27255 m1lgs 27346 2lgslem1a1 27347 2lgslem4 27364 2sqlem11 27387 2sq2 27391 2sqreultlem 27405 2sqreunnltlem 27408 dchrisumlem3 27449 mulog2sumlem2 27493 log2sumbnd 27502 chpdifbndlem1 27511 usgr2pthlem 29762 pthdlem2 29767 ex-abs 30456 nrt2irr 30474 ipidsq 30711 minvecolem2 30876 normpar2i 31157 nexple 32853 wrdt2ind 32963 iconstr 33851 sqsscirc1 33993 eulerpartlemgc 34447 knoppndvlem10 36637 knoppndvlem11 36638 knoppndvlem14 36641 lcm2un 42180 aks4d1p1p7 42240 posbezout 42266 2ap1caineq 42311 pellexlem2 42987 sqrtcval 43798 imo72b2lem0 44322 sumnnodd 45792 0ellimcdiv 45809 stoweidlem26 46186 wallispilem4 46228 wallispi 46230 wallispi2lem1 46231 wallispi2 46233 stirlinglem1 46234 stirlinglem5 46238 stirlinglem6 46239 stirlinglem7 46240 stirlinglem11 46244 stirlinglem15 46248 fourierdlem68 46334 fouriersw 46391 smfmullem4 46954 rehalfge1 47497 lighneallem4a 47770 fpprel2 47903 |
| Copyright terms: Public domain | W3C validator |