| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0le2 | Structured version Visualization version GIF version | ||
| Description: The number 0 is less than or equal to 2. (Contributed by David A. Wheeler, 7-Dec-2018.) |
| Ref | Expression |
|---|---|
| 0le2 | ⊢ 0 ≤ 2 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0le1 11677 | . . 3 ⊢ 0 ≤ 1 | |
| 2 | 1re 11150 | . . . 4 ⊢ 1 ∈ ℝ | |
| 3 | 2, 2 | addge0i 11694 | . . 3 ⊢ ((0 ≤ 1 ∧ 0 ≤ 1) → 0 ≤ (1 + 1)) |
| 4 | 1, 1, 3 | mp2an 692 | . 2 ⊢ 0 ≤ (1 + 1) |
| 5 | df-2 12225 | . 2 ⊢ 2 = (1 + 1) | |
| 6 | 4, 5 | breqtrri 5129 | 1 ⊢ 0 ≤ 2 |
| Colors of variables: wff setvar class |
| Syntax hints: class class class wbr 5102 (class class class)co 7369 0cc0 11044 1c1 11045 + caddc 11047 ≤ cle 11185 2c2 12217 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-po 5539 df-so 5540 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-2 12225 |
| This theorem is referenced by: expubnd 14119 4bc2eq6 14270 sqrt4 15214 sqrt2gt1lt2 15216 sqreulem 15302 amgm2 15312 efcllem 16019 ege2le3 16032 cos2bnd 16132 evennn2n 16297 6gcd4e2 16484 isprm7 16654 efgredleme 19649 abvtrivd 20717 zringndrg 21354 iihalf1 24801 minveclem2 25302 sincos4thpi 26398 tan4thpiOLD 26400 2irrexpq 26616 log2tlbnd 26831 ppisval 26990 bposlem1 27171 bposlem8 27178 bposlem9 27179 lgslem1 27184 m1lgs 27275 2lgslem1a1 27276 2lgslem4 27293 2sqlem11 27316 2sq2 27320 2sqreultlem 27334 2sqreunnltlem 27337 dchrisumlem3 27378 mulog2sumlem2 27422 log2sumbnd 27431 chpdifbndlem1 27440 usgr2pthlem 29666 pthdlem2 29671 ex-abs 30357 nrt2irr 30375 ipidsq 30612 minvecolem2 30777 normpar2i 31058 nexple 32742 wrdt2ind 32848 iconstr 33729 sqsscirc1 33871 eulerpartlemgc 34326 knoppndvlem10 36482 knoppndvlem11 36483 knoppndvlem14 36486 lcm2un 41975 aks4d1p1p7 42035 posbezout 42061 2ap1caineq 42106 pellexlem2 42791 sqrtcval 43603 imo72b2lem0 44127 sumnnodd 45601 0ellimcdiv 45620 stoweidlem26 45997 wallispilem4 46039 wallispi 46041 wallispi2lem1 46042 wallispi2 46044 stirlinglem1 46045 stirlinglem5 46049 stirlinglem6 46050 stirlinglem7 46051 stirlinglem11 46055 stirlinglem15 46059 fourierdlem68 46145 fouriersw 46202 smfmullem4 46765 rehalfge1 47309 lighneallem4a 47582 fpprel2 47715 |
| Copyright terms: Public domain | W3C validator |