![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 0le2 | Structured version Visualization version GIF version |
Description: The number 0 is less than or equal to 2. (Contributed by David A. Wheeler, 7-Dec-2018.) |
Ref | Expression |
---|---|
0le2 | ⊢ 0 ≤ 2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0le1 11813 | . . 3 ⊢ 0 ≤ 1 | |
2 | 1re 11290 | . . . 4 ⊢ 1 ∈ ℝ | |
3 | 2, 2 | addge0i 11830 | . . 3 ⊢ ((0 ≤ 1 ∧ 0 ≤ 1) → 0 ≤ (1 + 1)) |
4 | 1, 1, 3 | mp2an 691 | . 2 ⊢ 0 ≤ (1 + 1) |
5 | df-2 12356 | . 2 ⊢ 2 = (1 + 1) | |
6 | 4, 5 | breqtrri 5193 | 1 ⊢ 0 ≤ 2 |
Colors of variables: wff setvar class |
Syntax hints: class class class wbr 5166 (class class class)co 7448 0cc0 11184 1c1 11185 + caddc 11187 ≤ cle 11325 2c2 12348 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-po 5607 df-so 5608 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-2 12356 |
This theorem is referenced by: expubnd 14227 4bc2eq6 14378 sqrt4 15321 sqrt2gt1lt2 15323 sqreulem 15408 amgm2 15418 efcllem 16125 ege2le3 16138 cos2bnd 16236 evennn2n 16399 6gcd4e2 16585 isprm7 16755 efgredleme 19785 abvtrivd 20855 zringndrg 21502 iihalf1 24977 minveclem2 25479 sincos4thpi 26573 tan4thpiOLD 26575 2irrexpq 26791 log2tlbnd 27006 ppisval 27165 bposlem1 27346 bposlem8 27353 bposlem9 27354 lgslem1 27359 m1lgs 27450 2lgslem1a1 27451 2lgslem4 27468 2sqlem11 27491 2sq2 27495 2sqreultlem 27509 2sqreunnltlem 27512 dchrisumlem3 27553 mulog2sumlem2 27597 log2sumbnd 27606 chpdifbndlem1 27615 usgr2pthlem 29799 pthdlem2 29804 ex-abs 30487 nrt2irr 30505 ipidsq 30742 minvecolem2 30907 normpar2i 31188 wrdt2ind 32920 sqsscirc1 33854 nexple 33973 eulerpartlemgc 34327 knoppndvlem10 36487 knoppndvlem11 36488 knoppndvlem14 36491 lcm2un 41971 aks4d1p1p7 42031 posbezout 42057 2ap1caineq 42102 pellexlem2 42786 sqrtcval 43603 imo72b2lem0 44127 sumnnodd 45551 0ellimcdiv 45570 stoweidlem26 45947 wallispilem4 45989 wallispi 45991 wallispi2lem1 45992 wallispi2 45994 stirlinglem1 45995 stirlinglem5 45999 stirlinglem6 46000 stirlinglem7 46001 stirlinglem11 46005 stirlinglem15 46009 fourierdlem68 46095 fouriersw 46152 smfmullem4 46715 lighneallem4a 47482 fpprel2 47615 |
Copyright terms: Public domain | W3C validator |