| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0le2 | Structured version Visualization version GIF version | ||
| Description: The number 0 is less than or equal to 2. (Contributed by David A. Wheeler, 7-Dec-2018.) |
| Ref | Expression |
|---|---|
| 0le2 | ⊢ 0 ≤ 2 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0le1 11701 | . . 3 ⊢ 0 ≤ 1 | |
| 2 | 1re 11174 | . . . 4 ⊢ 1 ∈ ℝ | |
| 3 | 2, 2 | addge0i 11718 | . . 3 ⊢ ((0 ≤ 1 ∧ 0 ≤ 1) → 0 ≤ (1 + 1)) |
| 4 | 1, 1, 3 | mp2an 692 | . 2 ⊢ 0 ≤ (1 + 1) |
| 5 | df-2 12249 | . 2 ⊢ 2 = (1 + 1) | |
| 6 | 4, 5 | breqtrri 5134 | 1 ⊢ 0 ≤ 2 |
| Colors of variables: wff setvar class |
| Syntax hints: class class class wbr 5107 (class class class)co 7387 0cc0 11068 1c1 11069 + caddc 11071 ≤ cle 11209 2c2 12241 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-po 5546 df-so 5547 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-2 12249 |
| This theorem is referenced by: expubnd 14143 4bc2eq6 14294 sqrt4 15238 sqrt2gt1lt2 15240 sqreulem 15326 amgm2 15336 efcllem 16043 ege2le3 16056 cos2bnd 16156 evennn2n 16321 6gcd4e2 16508 isprm7 16678 efgredleme 19673 abvtrivd 20741 zringndrg 21378 iihalf1 24825 minveclem2 25326 sincos4thpi 26422 tan4thpiOLD 26424 2irrexpq 26640 log2tlbnd 26855 ppisval 27014 bposlem1 27195 bposlem8 27202 bposlem9 27203 lgslem1 27208 m1lgs 27299 2lgslem1a1 27300 2lgslem4 27317 2sqlem11 27340 2sq2 27344 2sqreultlem 27358 2sqreunnltlem 27361 dchrisumlem3 27402 mulog2sumlem2 27446 log2sumbnd 27455 chpdifbndlem1 27464 usgr2pthlem 29693 pthdlem2 29698 ex-abs 30384 nrt2irr 30402 ipidsq 30639 minvecolem2 30804 normpar2i 31085 nexple 32769 wrdt2ind 32875 iconstr 33756 sqsscirc1 33898 eulerpartlemgc 34353 knoppndvlem10 36509 knoppndvlem11 36510 knoppndvlem14 36513 lcm2un 42002 aks4d1p1p7 42062 posbezout 42088 2ap1caineq 42133 pellexlem2 42818 sqrtcval 43630 imo72b2lem0 44154 sumnnodd 45628 0ellimcdiv 45647 stoweidlem26 46024 wallispilem4 46066 wallispi 46068 wallispi2lem1 46069 wallispi2 46071 stirlinglem1 46072 stirlinglem5 46076 stirlinglem6 46077 stirlinglem7 46078 stirlinglem11 46082 stirlinglem15 46086 fourierdlem68 46172 fouriersw 46229 smfmullem4 46792 rehalfge1 47336 lighneallem4a 47609 fpprel2 47742 |
| Copyright terms: Public domain | W3C validator |