Colors of
variables: wff
setvar class |
Syntax hints: class class
class wbr 5148 (class class class)co 7408
0cc0 11109 1c1 11110
+ caddc 11112 ≤
cle 11248 2c2 12266 |
This theorem was proved from axioms:
ax-mp 5 ax-1 6 ax-2 7
ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913
ax-6 1971 ax-7 2011 ax-8 2108
ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 |
This theorem depends on definitions:
df-bi 206 df-an 397
df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-po 5588 df-so 5589 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7364 df-ov 7411 df-oprab 7412 df-mpo 7413 df-er 8702 df-en 8939 df-dom 8940 df-sdom 8941 df-pnf 11249 df-mnf 11250 df-xr 11251 df-ltxr 11252 df-le 11253 df-sub 11445 df-neg 11446 df-2 12274 |
This theorem is referenced by: expubnd
14141 4bc2eq6
14288 sqrt4
15218 sqrt2gt1lt2
15220 sqreulem
15305 amgm2
15315 efcllem
16020 ege2le3
16032 cos2bnd
16130 evennn2n
16293 6gcd4e2
16479 isprm7
16644 efgredleme
19610 abvtrivd
20447 zringndrg
21037 iihalf1
24446 minveclem2
24942 sincos4thpi
26022 tan4thpi
26023 2irrexpq
26237 log2tlbnd
26447 ppisval
26605 bposlem1
26784 bposlem8
26791 bposlem9
26792 lgslem1
26797 m1lgs
26888 2lgslem1a1
26889 2lgslem4
26906 2sqlem11
26929 2sq2
26933 2sqreultlem
26947 2sqreunnltlem
26950 dchrisumlem3
26991 mulog2sumlem2
27035 log2sumbnd
27044 chpdifbndlem1
27053 usgr2pthlem
29017 pthdlem2
29022 ex-abs
29705 ipidsq
29958 minvecolem2
30123 normpar2i
30404 wrdt2ind
32112 sqsscirc1
32883 nexple
33002 eulerpartlemgc
33356 knoppndvlem10
35392 knoppndvlem11
35393 knoppndvlem14
35396 lcm2un
40874 aks4d1p1p7
40934 2ap1caineq
40956 pellexlem2
41558 sqrtcval
42382 imo72b2lem0
42907 sumnnodd
44336 0ellimcdiv
44355 stoweidlem26
44732 wallispilem4
44774 wallispi
44776 wallispi2lem1
44777 wallispi2
44779 stirlinglem1
44780 stirlinglem5
44784 stirlinglem6
44785 stirlinglem7
44786 stirlinglem11
44790 stirlinglem15
44794 fourierdlem68
44880 fouriersw
44937 smfmullem4
45500 lighneallem4a
46266 fpprel2
46399 |