Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 0le2 | Structured version Visualization version GIF version |
Description: The number 0 is less than or equal to 2. (Contributed by David A. Wheeler, 7-Dec-2018.) |
Ref | Expression |
---|---|
0le2 | ⊢ 0 ≤ 2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0le1 11498 | . . 3 ⊢ 0 ≤ 1 | |
2 | 1re 10975 | . . . 4 ⊢ 1 ∈ ℝ | |
3 | 2, 2 | addge0i 11515 | . . 3 ⊢ ((0 ≤ 1 ∧ 0 ≤ 1) → 0 ≤ (1 + 1)) |
4 | 1, 1, 3 | mp2an 689 | . 2 ⊢ 0 ≤ (1 + 1) |
5 | df-2 12036 | . 2 ⊢ 2 = (1 + 1) | |
6 | 4, 5 | breqtrri 5101 | 1 ⊢ 0 ≤ 2 |
Colors of variables: wff setvar class |
Syntax hints: class class class wbr 5074 (class class class)co 7275 0cc0 10871 1c1 10872 + caddc 10874 ≤ cle 11010 2c2 12028 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-po 5503 df-so 5504 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-2 12036 |
This theorem is referenced by: expubnd 13895 4bc2eq6 14043 sqrt4 14984 sqrt2gt1lt2 14986 sqreulem 15071 amgm2 15081 efcllem 15787 ege2le3 15799 cos2bnd 15897 evennn2n 16060 6gcd4e2 16246 isprm7 16413 efgredleme 19349 abvtrivd 20100 zringndrg 20690 iihalf1 24094 minveclem2 24590 sincos4thpi 25670 tan4thpi 25671 2irrexpq 25885 log2tlbnd 26095 ppisval 26253 bposlem1 26432 bposlem8 26439 bposlem9 26440 lgslem1 26445 m1lgs 26536 2lgslem1a1 26537 2lgslem4 26554 2sqlem11 26577 2sq2 26581 2sqreultlem 26595 2sqreunnltlem 26598 dchrisumlem3 26639 mulog2sumlem2 26683 log2sumbnd 26692 chpdifbndlem1 26701 usgr2pthlem 28131 pthdlem2 28136 ex-abs 28819 ipidsq 29072 minvecolem2 29237 normpar2i 29518 wrdt2ind 31225 sqsscirc1 31858 nexple 31977 eulerpartlemgc 32329 knoppndvlem10 34701 knoppndvlem11 34702 knoppndvlem14 34705 lcm2un 40022 aks4d1p1p7 40082 2ap1caineq 40101 pellexlem2 40652 sqrtcval 41249 imo72b2lem0 41776 sumnnodd 43171 0ellimcdiv 43190 stoweidlem26 43567 wallispilem4 43609 wallispi 43611 wallispi2lem1 43612 wallispi2 43614 stirlinglem1 43615 stirlinglem5 43619 stirlinglem6 43620 stirlinglem7 43621 stirlinglem11 43625 stirlinglem15 43629 fourierdlem68 43715 fouriersw 43772 smfmullem4 44328 lighneallem4a 45060 fpprel2 45193 |
Copyright terms: Public domain | W3C validator |