Colors of
variables: wff
setvar class |
Syntax hints: class class
class wbr 5143 (class class class)co 7415
0cc0 11133 1c1 11134
+ caddc 11136 ≤
cle 11274 2c2 12292 |
This theorem was proved from axioms:
ax-mp 5 ax-1 6 ax-2 7
ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906
ax-6 1964 ax-7 2004 ax-8 2101
ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5294 ax-nul 5301 ax-pow 5360 ax-pr 5424 ax-un 7735 ax-resscn 11190 ax-1cn 11191 ax-icn 11192 ax-addcl 11193 ax-addrcl 11194 ax-mulcl 11195 ax-mulrcl 11196 ax-mulcom 11197 ax-addass 11198 ax-mulass 11199 ax-distr 11200 ax-i2m1 11201 ax-1ne0 11202 ax-1rid 11203 ax-rnegex 11204 ax-rrecex 11205 ax-cnre 11206 ax-pre-lttri 11207 ax-pre-lttrn 11208 ax-pre-ltadd 11209 ax-pre-mulgt0 11210 |
This theorem depends on definitions:
df-bi 206 df-an 396
df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2937 df-nel 3043 df-ral 3058 df-rex 3067 df-reu 3373 df-rab 3429 df-v 3472 df-sbc 3776 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-nul 4320 df-if 4526 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4905 df-br 5144 df-opab 5206 df-mpt 5227 df-id 5571 df-po 5585 df-so 5586 df-xp 5679 df-rel 5680 df-cnv 5681 df-co 5682 df-dm 5683 df-rn 5684 df-res 5685 df-ima 5686 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7371 df-ov 7418 df-oprab 7419 df-mpo 7420 df-er 8719 df-en 8959 df-dom 8960 df-sdom 8961 df-pnf 11275 df-mnf 11276 df-xr 11277 df-ltxr 11278 df-le 11279 df-sub 11471 df-neg 11472 df-2 12300 |
This theorem is referenced by: expubnd
14168 4bc2eq6
14315 sqrt4
15246 sqrt2gt1lt2
15248 sqreulem
15333 amgm2
15343 efcllem
16048 ege2le3
16061 cos2bnd
16159 evennn2n
16322 6gcd4e2
16508 isprm7
16673 efgredleme
19692 abvtrivd
20714 zringndrg
21388 iihalf1
24846 minveclem2
25348 sincos4thpi
26442 tan4thpi
26443 2irrexpq
26659 log2tlbnd
26871 ppisval
27030 bposlem1
27211 bposlem8
27218 bposlem9
27219 lgslem1
27224 m1lgs
27315 2lgslem1a1
27316 2lgslem4
27333 2sqlem11
27356 2sq2
27360 2sqreultlem
27374 2sqreunnltlem
27377 dchrisumlem3
27418 mulog2sumlem2
27462 log2sumbnd
27471 chpdifbndlem1
27480 usgr2pthlem
29571 pthdlem2
29576 ex-abs
30259 nrt2irr
30277 ipidsq
30514 minvecolem2
30679 normpar2i
30960 wrdt2ind
32669 sqsscirc1
33504 nexple
33623 eulerpartlemgc
33977 knoppndvlem10
35991 knoppndvlem11
35992 knoppndvlem14
35995 lcm2un
41480 aks4d1p1p7
41540 posbezout
41566 2ap1caineq
41612 pellexlem2
42241 sqrtcval
43062 imo72b2lem0
43586 sumnnodd
45009 0ellimcdiv
45028 stoweidlem26
45405 wallispilem4
45447 wallispi
45449 wallispi2lem1
45450 wallispi2
45452 stirlinglem1
45453 stirlinglem5
45457 stirlinglem6
45458 stirlinglem7
45459 stirlinglem11
45463 stirlinglem15
45467 fourierdlem68
45553 fouriersw
45610 smfmullem4
46173 lighneallem4a
46939 fpprel2
47072 |