| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0le2 | Structured version Visualization version GIF version | ||
| Description: The number 0 is less than or equal to 2. (Contributed by David A. Wheeler, 7-Dec-2018.) |
| Ref | Expression |
|---|---|
| 0le2 | ⊢ 0 ≤ 2 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0le1 11708 | . . 3 ⊢ 0 ≤ 1 | |
| 2 | 1re 11181 | . . . 4 ⊢ 1 ∈ ℝ | |
| 3 | 2, 2 | addge0i 11725 | . . 3 ⊢ ((0 ≤ 1 ∧ 0 ≤ 1) → 0 ≤ (1 + 1)) |
| 4 | 1, 1, 3 | mp2an 692 | . 2 ⊢ 0 ≤ (1 + 1) |
| 5 | df-2 12256 | . 2 ⊢ 2 = (1 + 1) | |
| 6 | 4, 5 | breqtrri 5137 | 1 ⊢ 0 ≤ 2 |
| Colors of variables: wff setvar class |
| Syntax hints: class class class wbr 5110 (class class class)co 7390 0cc0 11075 1c1 11076 + caddc 11078 ≤ cle 11216 2c2 12248 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-po 5549 df-so 5550 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-2 12256 |
| This theorem is referenced by: expubnd 14150 4bc2eq6 14301 sqrt4 15245 sqrt2gt1lt2 15247 sqreulem 15333 amgm2 15343 efcllem 16050 ege2le3 16063 cos2bnd 16163 evennn2n 16328 6gcd4e2 16515 isprm7 16685 efgredleme 19680 abvtrivd 20748 zringndrg 21385 iihalf1 24832 minveclem2 25333 sincos4thpi 26429 tan4thpiOLD 26431 2irrexpq 26647 log2tlbnd 26862 ppisval 27021 bposlem1 27202 bposlem8 27209 bposlem9 27210 lgslem1 27215 m1lgs 27306 2lgslem1a1 27307 2lgslem4 27324 2sqlem11 27347 2sq2 27351 2sqreultlem 27365 2sqreunnltlem 27368 dchrisumlem3 27409 mulog2sumlem2 27453 log2sumbnd 27462 chpdifbndlem1 27471 usgr2pthlem 29700 pthdlem2 29705 ex-abs 30391 nrt2irr 30409 ipidsq 30646 minvecolem2 30811 normpar2i 31092 nexple 32776 wrdt2ind 32882 iconstr 33763 sqsscirc1 33905 eulerpartlemgc 34360 knoppndvlem10 36516 knoppndvlem11 36517 knoppndvlem14 36520 lcm2un 42009 aks4d1p1p7 42069 posbezout 42095 2ap1caineq 42140 pellexlem2 42825 sqrtcval 43637 imo72b2lem0 44161 sumnnodd 45635 0ellimcdiv 45654 stoweidlem26 46031 wallispilem4 46073 wallispi 46075 wallispi2lem1 46076 wallispi2 46078 stirlinglem1 46079 stirlinglem5 46083 stirlinglem6 46084 stirlinglem7 46085 stirlinglem11 46089 stirlinglem15 46093 fourierdlem68 46179 fouriersw 46236 smfmullem4 46799 rehalfge1 47340 lighneallem4a 47613 fpprel2 47746 |
| Copyright terms: Public domain | W3C validator |