| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0le2 | Structured version Visualization version GIF version | ||
| Description: The number 0 is less than or equal to 2. (Contributed by David A. Wheeler, 7-Dec-2018.) |
| Ref | Expression |
|---|---|
| 0le2 | ⊢ 0 ≤ 2 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0le1 11661 | . . 3 ⊢ 0 ≤ 1 | |
| 2 | 1re 11134 | . . . 4 ⊢ 1 ∈ ℝ | |
| 3 | 2, 2 | addge0i 11678 | . . 3 ⊢ ((0 ≤ 1 ∧ 0 ≤ 1) → 0 ≤ (1 + 1)) |
| 4 | 1, 1, 3 | mp2an 692 | . 2 ⊢ 0 ≤ (1 + 1) |
| 5 | df-2 12209 | . 2 ⊢ 2 = (1 + 1) | |
| 6 | 4, 5 | breqtrri 5122 | 1 ⊢ 0 ≤ 2 |
| Colors of variables: wff setvar class |
| Syntax hints: class class class wbr 5095 (class class class)co 7353 0cc0 11028 1c1 11029 + caddc 11031 ≤ cle 11169 2c2 12201 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-po 5531 df-so 5532 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-2 12209 |
| This theorem is referenced by: expubnd 14103 4bc2eq6 14254 sqrt4 15197 sqrt2gt1lt2 15199 sqreulem 15285 amgm2 15295 efcllem 16002 ege2le3 16015 cos2bnd 16115 evennn2n 16280 6gcd4e2 16467 isprm7 16637 efgredleme 19640 abvtrivd 20735 zringndrg 21393 iihalf1 24841 minveclem2 25342 sincos4thpi 26438 tan4thpiOLD 26440 2irrexpq 26656 log2tlbnd 26871 ppisval 27030 bposlem1 27211 bposlem8 27218 bposlem9 27219 lgslem1 27224 m1lgs 27315 2lgslem1a1 27316 2lgslem4 27333 2sqlem11 27356 2sq2 27360 2sqreultlem 27374 2sqreunnltlem 27377 dchrisumlem3 27418 mulog2sumlem2 27462 log2sumbnd 27471 chpdifbndlem1 27480 usgr2pthlem 29726 pthdlem2 29731 ex-abs 30417 nrt2irr 30435 ipidsq 30672 minvecolem2 30837 normpar2i 31118 nexple 32802 wrdt2ind 32908 iconstr 33735 sqsscirc1 33877 eulerpartlemgc 34332 knoppndvlem10 36497 knoppndvlem11 36498 knoppndvlem14 36501 lcm2un 41990 aks4d1p1p7 42050 posbezout 42076 2ap1caineq 42121 pellexlem2 42806 sqrtcval 43617 imo72b2lem0 44141 sumnnodd 45615 0ellimcdiv 45634 stoweidlem26 46011 wallispilem4 46053 wallispi 46055 wallispi2lem1 46056 wallispi2 46058 stirlinglem1 46059 stirlinglem5 46063 stirlinglem6 46064 stirlinglem7 46065 stirlinglem11 46069 stirlinglem15 46073 fourierdlem68 46159 fouriersw 46216 smfmullem4 46779 rehalfge1 47323 lighneallem4a 47596 fpprel2 47729 |
| Copyright terms: Public domain | W3C validator |