![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 0le2 | Structured version Visualization version GIF version |
Description: The number 0 is less than or equal to 2. (Contributed by David A. Wheeler, 7-Dec-2018.) |
Ref | Expression |
---|---|
0le2 | ⊢ 0 ≤ 2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0le1 11784 | . . 3 ⊢ 0 ≤ 1 | |
2 | 1re 11259 | . . . 4 ⊢ 1 ∈ ℝ | |
3 | 2, 2 | addge0i 11801 | . . 3 ⊢ ((0 ≤ 1 ∧ 0 ≤ 1) → 0 ≤ (1 + 1)) |
4 | 1, 1, 3 | mp2an 692 | . 2 ⊢ 0 ≤ (1 + 1) |
5 | df-2 12327 | . 2 ⊢ 2 = (1 + 1) | |
6 | 4, 5 | breqtrri 5175 | 1 ⊢ 0 ≤ 2 |
Colors of variables: wff setvar class |
Syntax hints: class class class wbr 5148 (class class class)co 7431 0cc0 11153 1c1 11154 + caddc 11156 ≤ cle 11294 2c2 12319 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-po 5597 df-so 5598 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-er 8744 df-en 8985 df-dom 8986 df-sdom 8987 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-2 12327 |
This theorem is referenced by: expubnd 14214 4bc2eq6 14365 sqrt4 15308 sqrt2gt1lt2 15310 sqreulem 15395 amgm2 15405 efcllem 16110 ege2le3 16123 cos2bnd 16221 evennn2n 16385 6gcd4e2 16572 isprm7 16742 efgredleme 19776 abvtrivd 20850 zringndrg 21497 iihalf1 24972 minveclem2 25474 sincos4thpi 26570 tan4thpiOLD 26572 2irrexpq 26788 log2tlbnd 27003 ppisval 27162 bposlem1 27343 bposlem8 27350 bposlem9 27351 lgslem1 27356 m1lgs 27447 2lgslem1a1 27448 2lgslem4 27465 2sqlem11 27488 2sq2 27492 2sqreultlem 27506 2sqreunnltlem 27509 dchrisumlem3 27550 mulog2sumlem2 27594 log2sumbnd 27603 chpdifbndlem1 27612 usgr2pthlem 29796 pthdlem2 29801 ex-abs 30484 nrt2irr 30502 ipidsq 30739 minvecolem2 30904 normpar2i 31185 wrdt2ind 32923 sqsscirc1 33869 nexple 33990 eulerpartlemgc 34344 knoppndvlem10 36504 knoppndvlem11 36505 knoppndvlem14 36508 lcm2un 41996 aks4d1p1p7 42056 posbezout 42082 2ap1caineq 42127 pellexlem2 42818 sqrtcval 43631 imo72b2lem0 44155 sumnnodd 45586 0ellimcdiv 45605 stoweidlem26 45982 wallispilem4 46024 wallispi 46026 wallispi2lem1 46027 wallispi2 46029 stirlinglem1 46030 stirlinglem5 46034 stirlinglem6 46035 stirlinglem7 46036 stirlinglem11 46040 stirlinglem15 46044 fourierdlem68 46130 fouriersw 46187 smfmullem4 46750 lighneallem4a 47533 fpprel2 47666 |
Copyright terms: Public domain | W3C validator |