Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ceilhalfnn Structured version   Visualization version   GIF version

Theorem ceilhalfnn 47313
Description: The ceiling of half of a positive integer is a positive integer. (Contributed by AV, 2-Nov-2025.)
Assertion
Ref Expression
ceilhalfnn (𝑁 ∈ ℕ → (⌈‘(𝑁 / 2)) ∈ ℕ)

Proof of Theorem ceilhalfnn
StepHypRef Expression
1 nnre 12245 . . . 4 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
21rehalfcld 12486 . . 3 (𝑁 ∈ ℕ → (𝑁 / 2) ∈ ℝ)
32ceilcld 13858 . 2 (𝑁 ∈ ℕ → (⌈‘(𝑁 / 2)) ∈ ℤ)
4 elnn1uz2 12939 . . 3 (𝑁 ∈ ℕ ↔ (𝑁 = 1 ∨ 𝑁 ∈ (ℤ‘2)))
5 1le1 11863 . . . . 5 1 ≤ 1
6 fvoveq1 7426 . . . . . 6 (𝑁 = 1 → (⌈‘(𝑁 / 2)) = (⌈‘(1 / 2)))
7 ceilhalf1 47311 . . . . . 6 (⌈‘(1 / 2)) = 1
86, 7eqtrdi 2786 . . . . 5 (𝑁 = 1 → (⌈‘(𝑁 / 2)) = 1)
95, 8breqtrrid 5157 . . . 4 (𝑁 = 1 → 1 ≤ (⌈‘(𝑁 / 2)))
10 1red 11234 . . . . 5 (𝑁 ∈ (ℤ‘2) → 1 ∈ ℝ)
11 eluzelre 12861 . . . . . 6 (𝑁 ∈ (ℤ‘2) → 𝑁 ∈ ℝ)
1211rehalfcld 12486 . . . . 5 (𝑁 ∈ (ℤ‘2) → (𝑁 / 2) ∈ ℝ)
1312ceilcld 13858 . . . . . 6 (𝑁 ∈ (ℤ‘2) → (⌈‘(𝑁 / 2)) ∈ ℤ)
1413zred 12695 . . . . 5 (𝑁 ∈ (ℤ‘2) → (⌈‘(𝑁 / 2)) ∈ ℝ)
15 eluzle 12863 . . . . . . 7 (𝑁 ∈ (ℤ‘2) → 2 ≤ 𝑁)
16 2re 12312 . . . . . . . 8 2 ∈ ℝ
17 elicopnf 13460 . . . . . . . 8 (2 ∈ ℝ → (𝑁 ∈ (2[,)+∞) ↔ (𝑁 ∈ ℝ ∧ 2 ≤ 𝑁)))
1816, 17ax-mp 5 . . . . . . 7 (𝑁 ∈ (2[,)+∞) ↔ (𝑁 ∈ ℝ ∧ 2 ≤ 𝑁))
1911, 15, 18sylanbrc 583 . . . . . 6 (𝑁 ∈ (ℤ‘2) → 𝑁 ∈ (2[,)+∞))
20 rehalfge1 47312 . . . . . 6 (𝑁 ∈ (2[,)+∞) → 1 ≤ (𝑁 / 2))
2119, 20syl 17 . . . . 5 (𝑁 ∈ (ℤ‘2) → 1 ≤ (𝑁 / 2))
2212ceilged 13861 . . . . 5 (𝑁 ∈ (ℤ‘2) → (𝑁 / 2) ≤ (⌈‘(𝑁 / 2)))
2310, 12, 14, 21, 22letrd 11390 . . . 4 (𝑁 ∈ (ℤ‘2) → 1 ≤ (⌈‘(𝑁 / 2)))
249, 23jaoi 857 . . 3 ((𝑁 = 1 ∨ 𝑁 ∈ (ℤ‘2)) → 1 ≤ (⌈‘(𝑁 / 2)))
254, 24sylbi 217 . 2 (𝑁 ∈ ℕ → 1 ≤ (⌈‘(𝑁 / 2)))
26 elnnz1 12616 . 2 ((⌈‘(𝑁 / 2)) ∈ ℕ ↔ ((⌈‘(𝑁 / 2)) ∈ ℤ ∧ 1 ≤ (⌈‘(𝑁 / 2))))
273, 25, 26sylanbrc 583 1 (𝑁 ∈ ℕ → (⌈‘(𝑁 / 2)) ∈ ℕ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2108   class class class wbr 5119  cfv 6530  (class class class)co 7403  cr 11126  1c1 11128  +∞cpnf 11264  cle 11268   / cdiv 11892  cn 12238  2c2 12293  cz 12586  cuz 12850  [,)cico 13362  cceil 13806
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727  ax-cnex 11183  ax-resscn 11184  ax-1cn 11185  ax-icn 11186  ax-addcl 11187  ax-addrcl 11188  ax-mulcl 11189  ax-mulrcl 11190  ax-mulcom 11191  ax-addass 11192  ax-mulass 11193  ax-distr 11194  ax-i2m1 11195  ax-1ne0 11196  ax-1rid 11197  ax-rnegex 11198  ax-rrecex 11199  ax-cnre 11200  ax-pre-lttri 11201  ax-pre-lttrn 11202  ax-pre-ltadd 11203  ax-pre-mulgt0 11204  ax-pre-sup 11205
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-riota 7360  df-ov 7406  df-oprab 7407  df-mpo 7408  df-om 7860  df-1st 7986  df-2nd 7987  df-frecs 8278  df-wrecs 8309  df-recs 8383  df-rdg 8422  df-er 8717  df-en 8958  df-dom 8959  df-sdom 8960  df-sup 9452  df-inf 9453  df-pnf 11269  df-mnf 11270  df-xr 11271  df-ltxr 11272  df-le 11273  df-sub 11466  df-neg 11467  df-div 11893  df-nn 12239  df-2 12301  df-n0 12500  df-z 12587  df-uz 12851  df-rp 13007  df-ico 13366  df-fl 13807  df-ceil 13808
This theorem is referenced by:  1elfzo1ceilhalf1  47314
  Copyright terms: Public domain W3C validator