| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > negs1s | Structured version Visualization version GIF version | ||
| Description: An expression for negative surreal one. (Contributed by Scott Fenton, 24-Jul-2025.) |
| Ref | Expression |
|---|---|
| negs1s | ⊢ ( -us ‘ 1s ) = (∅ |s { 0s }) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1sno 27808 | . . 3 ⊢ 1s ∈ No | |
| 2 | negsval 27993 | . . 3 ⊢ ( 1s ∈ No → ( -us ‘ 1s ) = (( -us “ ( R ‘ 1s )) |s ( -us “ ( L ‘ 1s )))) | |
| 3 | 1, 2 | ax-mp 5 | . 2 ⊢ ( -us ‘ 1s ) = (( -us “ ( R ‘ 1s )) |s ( -us “ ( L ‘ 1s ))) |
| 4 | right1s 27870 | . . . . 5 ⊢ ( R ‘ 1s ) = ∅ | |
| 5 | 4 | imaeq2i 6056 | . . . 4 ⊢ ( -us “ ( R ‘ 1s )) = ( -us “ ∅) |
| 6 | ima0 6075 | . . . 4 ⊢ ( -us “ ∅) = ∅ | |
| 7 | 5, 6 | eqtri 2757 | . . 3 ⊢ ( -us “ ( R ‘ 1s )) = ∅ |
| 8 | left1s 27869 | . . . . 5 ⊢ ( L ‘ 1s ) = { 0s } | |
| 9 | 8 | imaeq2i 6056 | . . . 4 ⊢ ( -us “ ( L ‘ 1s )) = ( -us “ { 0s }) |
| 10 | negsfn 27991 | . . . . . . 7 ⊢ -us Fn No | |
| 11 | 0sno 27807 | . . . . . . 7 ⊢ 0s ∈ No | |
| 12 | fnimapr 6972 | . . . . . . 7 ⊢ (( -us Fn No ∧ 0s ∈ No ∧ 0s ∈ No ) → ( -us “ { 0s , 0s }) = {( -us ‘ 0s ), ( -us ‘ 0s )}) | |
| 13 | 10, 11, 11, 12 | mp3an 1462 | . . . . . 6 ⊢ ( -us “ { 0s , 0s }) = {( -us ‘ 0s ), ( -us ‘ 0s )} |
| 14 | negs0s 27994 | . . . . . . 7 ⊢ ( -us ‘ 0s ) = 0s | |
| 15 | 14, 14 | preq12i 4718 | . . . . . 6 ⊢ {( -us ‘ 0s ), ( -us ‘ 0s )} = { 0s , 0s } |
| 16 | 13, 15 | eqtri 2757 | . . . . 5 ⊢ ( -us “ { 0s , 0s }) = { 0s , 0s } |
| 17 | dfsn2 4619 | . . . . . 6 ⊢ { 0s } = { 0s , 0s } | |
| 18 | 17 | imaeq2i 6056 | . . . . 5 ⊢ ( -us “ { 0s }) = ( -us “ { 0s , 0s }) |
| 19 | 16, 18, 17 | 3eqtr4i 2767 | . . . 4 ⊢ ( -us “ { 0s }) = { 0s } |
| 20 | 9, 19 | eqtri 2757 | . . 3 ⊢ ( -us “ ( L ‘ 1s )) = { 0s } |
| 21 | 7, 20 | oveq12i 7425 | . 2 ⊢ (( -us “ ( R ‘ 1s )) |s ( -us “ ( L ‘ 1s ))) = (∅ |s { 0s }) |
| 22 | 3, 21 | eqtri 2757 | 1 ⊢ ( -us ‘ 1s ) = (∅ |s { 0s }) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1539 ∈ wcel 2107 ∅c0 4313 {csn 4606 {cpr 4608 “ cima 5668 Fn wfn 6536 ‘cfv 6541 (class class class)co 7413 No csur 27620 |s cscut 27763 0s c0s 27803 1s c1s 27804 L cleft 27820 R cright 27821 -us cnegs 27987 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-tp 4611 df-op 4613 df-uni 4888 df-int 4927 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-se 5618 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-suc 6369 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-riota 7370 df-ov 7416 df-oprab 7417 df-mpo 7418 df-2nd 7997 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-1o 8488 df-2o 8489 df-no 27623 df-slt 27624 df-bday 27625 df-sle 27726 df-sslt 27762 df-scut 27764 df-0s 27805 df-1s 27806 df-made 27822 df-old 27823 df-left 27825 df-right 27826 df-norec 27907 df-negs 27989 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |