MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  negs1s Structured version   Visualization version   GIF version

Theorem negs1s 27962
Description: An expression for negative surreal one. (Contributed by Scott Fenton, 24-Jul-2025.)
Assertion
Ref Expression
negs1s ( -us ‘ 1s ) = (∅ |s { 0s })

Proof of Theorem negs1s
StepHypRef Expression
1 1sno 27764 . . 3 1s No
2 negsval 27960 . . 3 ( 1s No → ( -us ‘ 1s ) = (( -us “ ( R ‘ 1s )) |s ( -us “ ( L ‘ 1s ))))
31, 2ax-mp 5 . 2 ( -us ‘ 1s ) = (( -us “ ( R ‘ 1s )) |s ( -us “ ( L ‘ 1s )))
4 right1s 27834 . . . . 5 ( R ‘ 1s ) = ∅
54imaeq2i 6004 . . . 4 ( -us “ ( R ‘ 1s )) = ( -us “ ∅)
6 ima0 6023 . . . 4 ( -us “ ∅) = ∅
75, 6eqtri 2753 . . 3 ( -us “ ( R ‘ 1s )) = ∅
8 left1s 27833 . . . . 5 ( L ‘ 1s ) = { 0s }
98imaeq2i 6004 . . . 4 ( -us “ ( L ‘ 1s )) = ( -us “ { 0s })
10 negsfn 27958 . . . . . . 7 -us Fn No
11 0sno 27763 . . . . . . 7 0s No
12 fnimapr 6900 . . . . . . 7 (( -us Fn No ∧ 0s No ∧ 0s No ) → ( -us “ { 0s , 0s }) = {( -us ‘ 0s ), ( -us ‘ 0s )})
1310, 11, 11, 12mp3an 1463 . . . . . 6 ( -us “ { 0s , 0s }) = {( -us ‘ 0s ), ( -us ‘ 0s )}
14 negs0s 27961 . . . . . . 7 ( -us ‘ 0s ) = 0s
1514, 14preq12i 4689 . . . . . 6 {( -us ‘ 0s ), ( -us ‘ 0s )} = { 0s , 0s }
1613, 15eqtri 2753 . . . . 5 ( -us “ { 0s , 0s }) = { 0s , 0s }
17 dfsn2 4587 . . . . . 6 { 0s } = { 0s , 0s }
1817imaeq2i 6004 . . . . 5 ( -us “ { 0s }) = ( -us “ { 0s , 0s })
1916, 18, 173eqtr4i 2763 . . . 4 ( -us “ { 0s }) = { 0s }
209, 19eqtri 2753 . . 3 ( -us “ ( L ‘ 1s )) = { 0s }
217, 20oveq12i 7353 . 2 (( -us “ ( R ‘ 1s )) |s ( -us “ ( L ‘ 1s ))) = (∅ |s { 0s })
223, 21eqtri 2753 1 ( -us ‘ 1s ) = (∅ |s { 0s })
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  wcel 2110  c0 4281  {csn 4574  {cpr 4576  cima 5617   Fn wfn 6472  cfv 6477  (class class class)co 7341   No csur 27571   |s cscut 27715   0s c0s 27759   1s c1s 27760   L cleft 27779   R cright 27780   -us cnegs 27954
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7663
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3344  df-reu 3345  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-pss 3920  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-tp 4579  df-op 4581  df-uni 4858  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6244  df-ord 6305  df-on 6306  df-suc 6308  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-f1 6482  df-fo 6483  df-f1o 6484  df-fv 6485  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-1o 8380  df-2o 8381  df-no 27574  df-slt 27575  df-bday 27576  df-sle 27677  df-sslt 27714  df-scut 27716  df-0s 27761  df-1s 27762  df-made 27781  df-old 27782  df-left 27784  df-right 27785  df-norec 27874  df-negs 27956
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator