MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  negs1s Structured version   Visualization version   GIF version

Theorem negs1s 27975
Description: An expression for negative surreal one. (Contributed by Scott Fenton, 24-Jul-2025.)
Assertion
Ref Expression
negs1s ( -us ‘ 1s ) = (∅ |s { 0s })

Proof of Theorem negs1s
StepHypRef Expression
1 1sno 27777 . . 3 1s No
2 negsval 27973 . . 3 ( 1s No → ( -us ‘ 1s ) = (( -us “ ( R ‘ 1s )) |s ( -us “ ( L ‘ 1s ))))
31, 2ax-mp 5 . 2 ( -us ‘ 1s ) = (( -us “ ( R ‘ 1s )) |s ( -us “ ( L ‘ 1s )))
4 right1s 27847 . . . . 5 ( R ‘ 1s ) = ∅
54imaeq2i 6012 . . . 4 ( -us “ ( R ‘ 1s )) = ( -us “ ∅)
6 ima0 6031 . . . 4 ( -us “ ∅) = ∅
75, 6eqtri 2754 . . 3 ( -us “ ( R ‘ 1s )) = ∅
8 left1s 27846 . . . . 5 ( L ‘ 1s ) = { 0s }
98imaeq2i 6012 . . . 4 ( -us “ ( L ‘ 1s )) = ( -us “ { 0s })
10 negsfn 27971 . . . . . . 7 -us Fn No
11 0sno 27776 . . . . . . 7 0s No
12 fnimapr 6911 . . . . . . 7 (( -us Fn No ∧ 0s No ∧ 0s No ) → ( -us “ { 0s , 0s }) = {( -us ‘ 0s ), ( -us ‘ 0s )})
1310, 11, 11, 12mp3an 1463 . . . . . 6 ( -us “ { 0s , 0s }) = {( -us ‘ 0s ), ( -us ‘ 0s )}
14 negs0s 27974 . . . . . . 7 ( -us ‘ 0s ) = 0s
1514, 14preq12i 4690 . . . . . 6 {( -us ‘ 0s ), ( -us ‘ 0s )} = { 0s , 0s }
1613, 15eqtri 2754 . . . . 5 ( -us “ { 0s , 0s }) = { 0s , 0s }
17 dfsn2 4588 . . . . . 6 { 0s } = { 0s , 0s }
1817imaeq2i 6012 . . . . 5 ( -us “ { 0s }) = ( -us “ { 0s , 0s })
1916, 18, 173eqtr4i 2764 . . . 4 ( -us “ { 0s }) = { 0s }
209, 19eqtri 2754 . . 3 ( -us “ ( L ‘ 1s )) = { 0s }
217, 20oveq12i 7364 . 2 (( -us “ ( R ‘ 1s )) |s ( -us “ ( L ‘ 1s ))) = (∅ |s { 0s })
223, 21eqtri 2754 1 ( -us ‘ 1s ) = (∅ |s { 0s })
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  wcel 2111  c0 4282  {csn 4575  {cpr 4577  cima 5622   Fn wfn 6482  cfv 6487  (class class class)co 7352   No csur 27584   |s cscut 27728   0s c0s 27772   1s c1s 27773   L cleft 27792   R cright 27793   -us cnegs 27967
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-tp 4580  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6254  df-ord 6315  df-on 6316  df-suc 6318  df-iota 6443  df-fun 6489  df-fn 6490  df-f 6491  df-f1 6492  df-fo 6493  df-f1o 6494  df-fv 6495  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-1o 8391  df-2o 8392  df-no 27587  df-slt 27588  df-bday 27589  df-sle 27690  df-sslt 27727  df-scut 27729  df-0s 27774  df-1s 27775  df-made 27794  df-old 27795  df-left 27797  df-right 27798  df-norec 27887  df-negs 27969
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator