| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > negs1s | Structured version Visualization version GIF version | ||
| Description: An expression for negative surreal one. (Contributed by Scott Fenton, 24-Jul-2025.) |
| Ref | Expression |
|---|---|
| negs1s | ⊢ ( -us ‘ 1s ) = (∅ |s { 0s }) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1sno 27777 | . . 3 ⊢ 1s ∈ No | |
| 2 | negsval 27973 | . . 3 ⊢ ( 1s ∈ No → ( -us ‘ 1s ) = (( -us “ ( R ‘ 1s )) |s ( -us “ ( L ‘ 1s )))) | |
| 3 | 1, 2 | ax-mp 5 | . 2 ⊢ ( -us ‘ 1s ) = (( -us “ ( R ‘ 1s )) |s ( -us “ ( L ‘ 1s ))) |
| 4 | right1s 27847 | . . . . 5 ⊢ ( R ‘ 1s ) = ∅ | |
| 5 | 4 | imaeq2i 6012 | . . . 4 ⊢ ( -us “ ( R ‘ 1s )) = ( -us “ ∅) |
| 6 | ima0 6031 | . . . 4 ⊢ ( -us “ ∅) = ∅ | |
| 7 | 5, 6 | eqtri 2754 | . . 3 ⊢ ( -us “ ( R ‘ 1s )) = ∅ |
| 8 | left1s 27846 | . . . . 5 ⊢ ( L ‘ 1s ) = { 0s } | |
| 9 | 8 | imaeq2i 6012 | . . . 4 ⊢ ( -us “ ( L ‘ 1s )) = ( -us “ { 0s }) |
| 10 | negsfn 27971 | . . . . . . 7 ⊢ -us Fn No | |
| 11 | 0sno 27776 | . . . . . . 7 ⊢ 0s ∈ No | |
| 12 | fnimapr 6911 | . . . . . . 7 ⊢ (( -us Fn No ∧ 0s ∈ No ∧ 0s ∈ No ) → ( -us “ { 0s , 0s }) = {( -us ‘ 0s ), ( -us ‘ 0s )}) | |
| 13 | 10, 11, 11, 12 | mp3an 1463 | . . . . . 6 ⊢ ( -us “ { 0s , 0s }) = {( -us ‘ 0s ), ( -us ‘ 0s )} |
| 14 | negs0s 27974 | . . . . . . 7 ⊢ ( -us ‘ 0s ) = 0s | |
| 15 | 14, 14 | preq12i 4690 | . . . . . 6 ⊢ {( -us ‘ 0s ), ( -us ‘ 0s )} = { 0s , 0s } |
| 16 | 13, 15 | eqtri 2754 | . . . . 5 ⊢ ( -us “ { 0s , 0s }) = { 0s , 0s } |
| 17 | dfsn2 4588 | . . . . . 6 ⊢ { 0s } = { 0s , 0s } | |
| 18 | 17 | imaeq2i 6012 | . . . . 5 ⊢ ( -us “ { 0s }) = ( -us “ { 0s , 0s }) |
| 19 | 16, 18, 17 | 3eqtr4i 2764 | . . . 4 ⊢ ( -us “ { 0s }) = { 0s } |
| 20 | 9, 19 | eqtri 2754 | . . 3 ⊢ ( -us “ ( L ‘ 1s )) = { 0s } |
| 21 | 7, 20 | oveq12i 7364 | . 2 ⊢ (( -us “ ( R ‘ 1s )) |s ( -us “ ( L ‘ 1s ))) = (∅ |s { 0s }) |
| 22 | 3, 21 | eqtri 2754 | 1 ⊢ ( -us ‘ 1s ) = (∅ |s { 0s }) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∈ wcel 2111 ∅c0 4282 {csn 4575 {cpr 4577 “ cima 5622 Fn wfn 6482 ‘cfv 6487 (class class class)co 7352 No csur 27584 |s cscut 27728 0s c0s 27772 1s c1s 27773 L cleft 27792 R cright 27793 -us cnegs 27967 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-tp 4580 df-op 4582 df-uni 4859 df-int 4898 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6254 df-ord 6315 df-on 6316 df-suc 6318 df-iota 6443 df-fun 6489 df-fn 6490 df-f 6491 df-f1 6492 df-fo 6493 df-f1o 6494 df-fv 6495 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-1o 8391 df-2o 8392 df-no 27587 df-slt 27588 df-bday 27589 df-sle 27690 df-sslt 27727 df-scut 27729 df-0s 27774 df-1s 27775 df-made 27794 df-old 27795 df-left 27797 df-right 27798 df-norec 27887 df-negs 27969 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |