![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > negs1s | Structured version Visualization version GIF version |
Description: An expression for negative surreal one. (Contributed by Scott Fenton, 24-Jul-2025.) |
Ref | Expression |
---|---|
negs1s | ⊢ ( -us ‘ 1s ) = (∅ |s { 0s }) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1sno 27890 | . . 3 ⊢ 1s ∈ No | |
2 | negsval 28075 | . . 3 ⊢ ( 1s ∈ No → ( -us ‘ 1s ) = (( -us “ ( R ‘ 1s )) |s ( -us “ ( L ‘ 1s )))) | |
3 | 1, 2 | ax-mp 5 | . 2 ⊢ ( -us ‘ 1s ) = (( -us “ ( R ‘ 1s )) |s ( -us “ ( L ‘ 1s ))) |
4 | right1s 27952 | . . . . 5 ⊢ ( R ‘ 1s ) = ∅ | |
5 | 4 | imaeq2i 6087 | . . . 4 ⊢ ( -us “ ( R ‘ 1s )) = ( -us “ ∅) |
6 | ima0 6106 | . . . 4 ⊢ ( -us “ ∅) = ∅ | |
7 | 5, 6 | eqtri 2768 | . . 3 ⊢ ( -us “ ( R ‘ 1s )) = ∅ |
8 | left1s 27951 | . . . . 5 ⊢ ( L ‘ 1s ) = { 0s } | |
9 | 8 | imaeq2i 6087 | . . . 4 ⊢ ( -us “ ( L ‘ 1s )) = ( -us “ { 0s }) |
10 | negsfn 28073 | . . . . . . 7 ⊢ -us Fn No | |
11 | 0sno 27889 | . . . . . . 7 ⊢ 0s ∈ No | |
12 | fnimapr 7005 | . . . . . . 7 ⊢ (( -us Fn No ∧ 0s ∈ No ∧ 0s ∈ No ) → ( -us “ { 0s , 0s }) = {( -us ‘ 0s ), ( -us ‘ 0s )}) | |
13 | 10, 11, 11, 12 | mp3an 1461 | . . . . . 6 ⊢ ( -us “ { 0s , 0s }) = {( -us ‘ 0s ), ( -us ‘ 0s )} |
14 | negs0s 28076 | . . . . . . 7 ⊢ ( -us ‘ 0s ) = 0s | |
15 | 14, 14 | preq12i 4763 | . . . . . 6 ⊢ {( -us ‘ 0s ), ( -us ‘ 0s )} = { 0s , 0s } |
16 | 13, 15 | eqtri 2768 | . . . . 5 ⊢ ( -us “ { 0s , 0s }) = { 0s , 0s } |
17 | dfsn2 4661 | . . . . . 6 ⊢ { 0s } = { 0s , 0s } | |
18 | 17 | imaeq2i 6087 | . . . . 5 ⊢ ( -us “ { 0s }) = ( -us “ { 0s , 0s }) |
19 | 16, 18, 17 | 3eqtr4i 2778 | . . . 4 ⊢ ( -us “ { 0s }) = { 0s } |
20 | 9, 19 | eqtri 2768 | . . 3 ⊢ ( -us “ ( L ‘ 1s )) = { 0s } |
21 | 7, 20 | oveq12i 7460 | . 2 ⊢ (( -us “ ( R ‘ 1s )) |s ( -us “ ( L ‘ 1s ))) = (∅ |s { 0s }) |
22 | 3, 21 | eqtri 2768 | 1 ⊢ ( -us ‘ 1s ) = (∅ |s { 0s }) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ∈ wcel 2108 ∅c0 4352 {csn 4648 {cpr 4650 “ cima 5703 Fn wfn 6568 ‘cfv 6573 (class class class)co 7448 No csur 27702 |s cscut 27845 0s c0s 27885 1s c1s 27886 L cleft 27902 R cright 27903 -us cnegs 28069 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-tp 4653 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-se 5653 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-1o 8522 df-2o 8523 df-no 27705 df-slt 27706 df-bday 27707 df-sle 27808 df-sslt 27844 df-scut 27846 df-0s 27887 df-1s 27888 df-made 27904 df-old 27905 df-left 27907 df-right 27908 df-norec 27989 df-negs 28071 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |