MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  negs1s Structured version   Visualization version   GIF version

Theorem negs1s 27985
Description: An expression for negative surreal one. (Contributed by Scott Fenton, 24-Jul-2025.)
Assertion
Ref Expression
negs1s ( -us ‘ 1s ) = (∅ |s { 0s })

Proof of Theorem negs1s
StepHypRef Expression
1 1sno 27791 . . 3 1s No
2 negsval 27983 . . 3 ( 1s No → ( -us ‘ 1s ) = (( -us “ ( R ‘ 1s )) |s ( -us “ ( L ‘ 1s ))))
31, 2ax-mp 5 . 2 ( -us ‘ 1s ) = (( -us “ ( R ‘ 1s )) |s ( -us “ ( L ‘ 1s )))
4 right1s 27859 . . . . 5 ( R ‘ 1s ) = ∅
54imaeq2i 6045 . . . 4 ( -us “ ( R ‘ 1s )) = ( -us “ ∅)
6 ima0 6064 . . . 4 ( -us “ ∅) = ∅
75, 6eqtri 2758 . . 3 ( -us “ ( R ‘ 1s )) = ∅
8 left1s 27858 . . . . 5 ( L ‘ 1s ) = { 0s }
98imaeq2i 6045 . . . 4 ( -us “ ( L ‘ 1s )) = ( -us “ { 0s })
10 negsfn 27981 . . . . . . 7 -us Fn No
11 0sno 27790 . . . . . . 7 0s No
12 fnimapr 6962 . . . . . . 7 (( -us Fn No ∧ 0s No ∧ 0s No ) → ( -us “ { 0s , 0s }) = {( -us ‘ 0s ), ( -us ‘ 0s )})
1310, 11, 11, 12mp3an 1463 . . . . . 6 ( -us “ { 0s , 0s }) = {( -us ‘ 0s ), ( -us ‘ 0s )}
14 negs0s 27984 . . . . . . 7 ( -us ‘ 0s ) = 0s
1514, 14preq12i 4714 . . . . . 6 {( -us ‘ 0s ), ( -us ‘ 0s )} = { 0s , 0s }
1613, 15eqtri 2758 . . . . 5 ( -us “ { 0s , 0s }) = { 0s , 0s }
17 dfsn2 4614 . . . . . 6 { 0s } = { 0s , 0s }
1817imaeq2i 6045 . . . . 5 ( -us “ { 0s }) = ( -us “ { 0s , 0s })
1916, 18, 173eqtr4i 2768 . . . 4 ( -us “ { 0s }) = { 0s }
209, 19eqtri 2758 . . 3 ( -us “ ( L ‘ 1s )) = { 0s }
217, 20oveq12i 7417 . 2 (( -us “ ( R ‘ 1s )) |s ( -us “ ( L ‘ 1s ))) = (∅ |s { 0s })
223, 21eqtri 2758 1 ( -us ‘ 1s ) = (∅ |s { 0s })
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2108  c0 4308  {csn 4601  {cpr 4603  cima 5657   Fn wfn 6526  cfv 6531  (class class class)co 7405   No csur 27603   |s cscut 27746   0s c0s 27786   1s c1s 27787   L cleft 27805   R cright 27806   -us cnegs 27977
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-1o 8480  df-2o 8481  df-no 27606  df-slt 27607  df-bday 27608  df-sle 27709  df-sslt 27745  df-scut 27747  df-0s 27788  df-1s 27789  df-made 27807  df-old 27808  df-left 27810  df-right 27811  df-norec 27897  df-negs 27979
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator