| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > negs1s | Structured version Visualization version GIF version | ||
| Description: An expression for negative surreal one. (Contributed by Scott Fenton, 24-Jul-2025.) |
| Ref | Expression |
|---|---|
| negs1s | ⊢ ( -us ‘ 1s ) = (∅ |s { 0s }) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1sno 27759 | . . 3 ⊢ 1s ∈ No | |
| 2 | negsval 27954 | . . 3 ⊢ ( 1s ∈ No → ( -us ‘ 1s ) = (( -us “ ( R ‘ 1s )) |s ( -us “ ( L ‘ 1s )))) | |
| 3 | 1, 2 | ax-mp 5 | . 2 ⊢ ( -us ‘ 1s ) = (( -us “ ( R ‘ 1s )) |s ( -us “ ( L ‘ 1s ))) |
| 4 | right1s 27828 | . . . . 5 ⊢ ( R ‘ 1s ) = ∅ | |
| 5 | 4 | imaeq2i 6013 | . . . 4 ⊢ ( -us “ ( R ‘ 1s )) = ( -us “ ∅) |
| 6 | ima0 6032 | . . . 4 ⊢ ( -us “ ∅) = ∅ | |
| 7 | 5, 6 | eqtri 2752 | . . 3 ⊢ ( -us “ ( R ‘ 1s )) = ∅ |
| 8 | left1s 27827 | . . . . 5 ⊢ ( L ‘ 1s ) = { 0s } | |
| 9 | 8 | imaeq2i 6013 | . . . 4 ⊢ ( -us “ ( L ‘ 1s )) = ( -us “ { 0s }) |
| 10 | negsfn 27952 | . . . . . . 7 ⊢ -us Fn No | |
| 11 | 0sno 27758 | . . . . . . 7 ⊢ 0s ∈ No | |
| 12 | fnimapr 6910 | . . . . . . 7 ⊢ (( -us Fn No ∧ 0s ∈ No ∧ 0s ∈ No ) → ( -us “ { 0s , 0s }) = {( -us ‘ 0s ), ( -us ‘ 0s )}) | |
| 13 | 10, 11, 11, 12 | mp3an 1463 | . . . . . 6 ⊢ ( -us “ { 0s , 0s }) = {( -us ‘ 0s ), ( -us ‘ 0s )} |
| 14 | negs0s 27955 | . . . . . . 7 ⊢ ( -us ‘ 0s ) = 0s | |
| 15 | 14, 14 | preq12i 4692 | . . . . . 6 ⊢ {( -us ‘ 0s ), ( -us ‘ 0s )} = { 0s , 0s } |
| 16 | 13, 15 | eqtri 2752 | . . . . 5 ⊢ ( -us “ { 0s , 0s }) = { 0s , 0s } |
| 17 | dfsn2 4592 | . . . . . 6 ⊢ { 0s } = { 0s , 0s } | |
| 18 | 17 | imaeq2i 6013 | . . . . 5 ⊢ ( -us “ { 0s }) = ( -us “ { 0s , 0s }) |
| 19 | 16, 18, 17 | 3eqtr4i 2762 | . . . 4 ⊢ ( -us “ { 0s }) = { 0s } |
| 20 | 9, 19 | eqtri 2752 | . . 3 ⊢ ( -us “ ( L ‘ 1s )) = { 0s } |
| 21 | 7, 20 | oveq12i 7365 | . 2 ⊢ (( -us “ ( R ‘ 1s )) |s ( -us “ ( L ‘ 1s ))) = (∅ |s { 0s }) |
| 22 | 3, 21 | eqtri 2752 | 1 ⊢ ( -us ‘ 1s ) = (∅ |s { 0s }) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 ∅c0 4286 {csn 4579 {cpr 4581 “ cima 5626 Fn wfn 6481 ‘cfv 6486 (class class class)co 7353 No csur 27567 |s cscut 27711 0s c0s 27754 1s c1s 27755 L cleft 27773 R cright 27774 -us cnegs 27948 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-tp 4584 df-op 4586 df-uni 4862 df-int 4900 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-se 5577 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-1o 8395 df-2o 8396 df-no 27570 df-slt 27571 df-bday 27572 df-sle 27673 df-sslt 27710 df-scut 27712 df-0s 27756 df-1s 27757 df-made 27775 df-old 27776 df-left 27778 df-right 27779 df-norec 27868 df-negs 27950 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |