MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  negs1s Structured version   Visualization version   GIF version

Theorem negs1s 27995
Description: An expression for negative surreal one. (Contributed by Scott Fenton, 24-Jul-2025.)
Assertion
Ref Expression
negs1s ( -us ‘ 1s ) = (∅ |s { 0s })

Proof of Theorem negs1s
StepHypRef Expression
1 1sno 27808 . . 3 1s No
2 negsval 27993 . . 3 ( 1s No → ( -us ‘ 1s ) = (( -us “ ( R ‘ 1s )) |s ( -us “ ( L ‘ 1s ))))
31, 2ax-mp 5 . 2 ( -us ‘ 1s ) = (( -us “ ( R ‘ 1s )) |s ( -us “ ( L ‘ 1s )))
4 right1s 27870 . . . . 5 ( R ‘ 1s ) = ∅
54imaeq2i 6056 . . . 4 ( -us “ ( R ‘ 1s )) = ( -us “ ∅)
6 ima0 6075 . . . 4 ( -us “ ∅) = ∅
75, 6eqtri 2757 . . 3 ( -us “ ( R ‘ 1s )) = ∅
8 left1s 27869 . . . . 5 ( L ‘ 1s ) = { 0s }
98imaeq2i 6056 . . . 4 ( -us “ ( L ‘ 1s )) = ( -us “ { 0s })
10 negsfn 27991 . . . . . . 7 -us Fn No
11 0sno 27807 . . . . . . 7 0s No
12 fnimapr 6972 . . . . . . 7 (( -us Fn No ∧ 0s No ∧ 0s No ) → ( -us “ { 0s , 0s }) = {( -us ‘ 0s ), ( -us ‘ 0s )})
1310, 11, 11, 12mp3an 1462 . . . . . 6 ( -us “ { 0s , 0s }) = {( -us ‘ 0s ), ( -us ‘ 0s )}
14 negs0s 27994 . . . . . . 7 ( -us ‘ 0s ) = 0s
1514, 14preq12i 4718 . . . . . 6 {( -us ‘ 0s ), ( -us ‘ 0s )} = { 0s , 0s }
1613, 15eqtri 2757 . . . . 5 ( -us “ { 0s , 0s }) = { 0s , 0s }
17 dfsn2 4619 . . . . . 6 { 0s } = { 0s , 0s }
1817imaeq2i 6056 . . . . 5 ( -us “ { 0s }) = ( -us “ { 0s , 0s })
1916, 18, 173eqtr4i 2767 . . . 4 ( -us “ { 0s }) = { 0s }
209, 19eqtri 2757 . . 3 ( -us “ ( L ‘ 1s )) = { 0s }
217, 20oveq12i 7425 . 2 (( -us “ ( R ‘ 1s )) |s ( -us “ ( L ‘ 1s ))) = (∅ |s { 0s })
223, 21eqtri 2757 1 ( -us ‘ 1s ) = (∅ |s { 0s })
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  wcel 2107  c0 4313  {csn 4606  {cpr 4608  cima 5668   Fn wfn 6536  cfv 6541  (class class class)co 7413   No csur 27620   |s cscut 27763   0s c0s 27803   1s c1s 27804   L cleft 27820   R cright 27821   -us cnegs 27987
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4888  df-int 4927  df-iun 4973  df-br 5124  df-opab 5186  df-mpt 5206  df-tr 5240  df-id 5558  df-eprel 5564  df-po 5572  df-so 5573  df-fr 5617  df-se 5618  df-we 5619  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-pred 6301  df-ord 6366  df-on 6367  df-suc 6369  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-riota 7370  df-ov 7416  df-oprab 7417  df-mpo 7418  df-2nd 7997  df-frecs 8288  df-wrecs 8319  df-recs 8393  df-1o 8488  df-2o 8489  df-no 27623  df-slt 27624  df-bday 27625  df-sle 27726  df-sslt 27762  df-scut 27764  df-0s 27805  df-1s 27806  df-made 27822  df-old 27823  df-left 27825  df-right 27826  df-norec 27907  df-negs 27989
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator