| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > negs1s | Structured version Visualization version GIF version | ||
| Description: An expression for negative surreal one. (Contributed by Scott Fenton, 24-Jul-2025.) |
| Ref | Expression |
|---|---|
| negs1s | ⊢ ( -us ‘ 1s ) = (∅ |s { 0s }) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1sno 27791 | . . 3 ⊢ 1s ∈ No | |
| 2 | negsval 27983 | . . 3 ⊢ ( 1s ∈ No → ( -us ‘ 1s ) = (( -us “ ( R ‘ 1s )) |s ( -us “ ( L ‘ 1s )))) | |
| 3 | 1, 2 | ax-mp 5 | . 2 ⊢ ( -us ‘ 1s ) = (( -us “ ( R ‘ 1s )) |s ( -us “ ( L ‘ 1s ))) |
| 4 | right1s 27859 | . . . . 5 ⊢ ( R ‘ 1s ) = ∅ | |
| 5 | 4 | imaeq2i 6045 | . . . 4 ⊢ ( -us “ ( R ‘ 1s )) = ( -us “ ∅) |
| 6 | ima0 6064 | . . . 4 ⊢ ( -us “ ∅) = ∅ | |
| 7 | 5, 6 | eqtri 2758 | . . 3 ⊢ ( -us “ ( R ‘ 1s )) = ∅ |
| 8 | left1s 27858 | . . . . 5 ⊢ ( L ‘ 1s ) = { 0s } | |
| 9 | 8 | imaeq2i 6045 | . . . 4 ⊢ ( -us “ ( L ‘ 1s )) = ( -us “ { 0s }) |
| 10 | negsfn 27981 | . . . . . . 7 ⊢ -us Fn No | |
| 11 | 0sno 27790 | . . . . . . 7 ⊢ 0s ∈ No | |
| 12 | fnimapr 6962 | . . . . . . 7 ⊢ (( -us Fn No ∧ 0s ∈ No ∧ 0s ∈ No ) → ( -us “ { 0s , 0s }) = {( -us ‘ 0s ), ( -us ‘ 0s )}) | |
| 13 | 10, 11, 11, 12 | mp3an 1463 | . . . . . 6 ⊢ ( -us “ { 0s , 0s }) = {( -us ‘ 0s ), ( -us ‘ 0s )} |
| 14 | negs0s 27984 | . . . . . . 7 ⊢ ( -us ‘ 0s ) = 0s | |
| 15 | 14, 14 | preq12i 4714 | . . . . . 6 ⊢ {( -us ‘ 0s ), ( -us ‘ 0s )} = { 0s , 0s } |
| 16 | 13, 15 | eqtri 2758 | . . . . 5 ⊢ ( -us “ { 0s , 0s }) = { 0s , 0s } |
| 17 | dfsn2 4614 | . . . . . 6 ⊢ { 0s } = { 0s , 0s } | |
| 18 | 17 | imaeq2i 6045 | . . . . 5 ⊢ ( -us “ { 0s }) = ( -us “ { 0s , 0s }) |
| 19 | 16, 18, 17 | 3eqtr4i 2768 | . . . 4 ⊢ ( -us “ { 0s }) = { 0s } |
| 20 | 9, 19 | eqtri 2758 | . . 3 ⊢ ( -us “ ( L ‘ 1s )) = { 0s } |
| 21 | 7, 20 | oveq12i 7417 | . 2 ⊢ (( -us “ ( R ‘ 1s )) |s ( -us “ ( L ‘ 1s ))) = (∅ |s { 0s }) |
| 22 | 3, 21 | eqtri 2758 | 1 ⊢ ( -us ‘ 1s ) = (∅ |s { 0s }) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2108 ∅c0 4308 {csn 4601 {cpr 4603 “ cima 5657 Fn wfn 6526 ‘cfv 6531 (class class class)co 7405 No csur 27603 |s cscut 27746 0s c0s 27786 1s c1s 27787 L cleft 27805 R cright 27806 -us cnegs 27977 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-tp 4606 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-se 5607 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-1o 8480 df-2o 8481 df-no 27606 df-slt 27607 df-bday 27608 df-sle 27709 df-sslt 27745 df-scut 27747 df-0s 27788 df-1s 27789 df-made 27807 df-old 27808 df-left 27810 df-right 27811 df-norec 27897 df-negs 27979 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |