MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  negs1s Structured version   Visualization version   GIF version

Theorem negs1s 27956
Description: An expression for negative surreal one. (Contributed by Scott Fenton, 24-Jul-2025.)
Assertion
Ref Expression
negs1s ( -us ‘ 1s ) = (∅ |s { 0s })

Proof of Theorem negs1s
StepHypRef Expression
1 1sno 27759 . . 3 1s No
2 negsval 27954 . . 3 ( 1s No → ( -us ‘ 1s ) = (( -us “ ( R ‘ 1s )) |s ( -us “ ( L ‘ 1s ))))
31, 2ax-mp 5 . 2 ( -us ‘ 1s ) = (( -us “ ( R ‘ 1s )) |s ( -us “ ( L ‘ 1s )))
4 right1s 27828 . . . . 5 ( R ‘ 1s ) = ∅
54imaeq2i 6013 . . . 4 ( -us “ ( R ‘ 1s )) = ( -us “ ∅)
6 ima0 6032 . . . 4 ( -us “ ∅) = ∅
75, 6eqtri 2752 . . 3 ( -us “ ( R ‘ 1s )) = ∅
8 left1s 27827 . . . . 5 ( L ‘ 1s ) = { 0s }
98imaeq2i 6013 . . . 4 ( -us “ ( L ‘ 1s )) = ( -us “ { 0s })
10 negsfn 27952 . . . . . . 7 -us Fn No
11 0sno 27758 . . . . . . 7 0s No
12 fnimapr 6910 . . . . . . 7 (( -us Fn No ∧ 0s No ∧ 0s No ) → ( -us “ { 0s , 0s }) = {( -us ‘ 0s ), ( -us ‘ 0s )})
1310, 11, 11, 12mp3an 1463 . . . . . 6 ( -us “ { 0s , 0s }) = {( -us ‘ 0s ), ( -us ‘ 0s )}
14 negs0s 27955 . . . . . . 7 ( -us ‘ 0s ) = 0s
1514, 14preq12i 4692 . . . . . 6 {( -us ‘ 0s ), ( -us ‘ 0s )} = { 0s , 0s }
1613, 15eqtri 2752 . . . . 5 ( -us “ { 0s , 0s }) = { 0s , 0s }
17 dfsn2 4592 . . . . . 6 { 0s } = { 0s , 0s }
1817imaeq2i 6013 . . . . 5 ( -us “ { 0s }) = ( -us “ { 0s , 0s })
1916, 18, 173eqtr4i 2762 . . . 4 ( -us “ { 0s }) = { 0s }
209, 19eqtri 2752 . . 3 ( -us “ ( L ‘ 1s )) = { 0s }
217, 20oveq12i 7365 . 2 (( -us “ ( R ‘ 1s )) |s ( -us “ ( L ‘ 1s ))) = (∅ |s { 0s })
223, 21eqtri 2752 1 ( -us ‘ 1s ) = (∅ |s { 0s })
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2109  c0 4286  {csn 4579  {cpr 4581  cima 5626   Fn wfn 6481  cfv 6486  (class class class)co 7353   No csur 27567   |s cscut 27711   0s c0s 27754   1s c1s 27755   L cleft 27773   R cright 27774   -us cnegs 27948
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-1o 8395  df-2o 8396  df-no 27570  df-slt 27571  df-bday 27572  df-sle 27673  df-sslt 27710  df-scut 27712  df-0s 27756  df-1s 27757  df-made 27775  df-old 27776  df-left 27778  df-right 27779  df-norec 27868  df-negs 27950
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator