| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > negs1s | Structured version Visualization version GIF version | ||
| Description: An expression for negative surreal one. (Contributed by Scott Fenton, 24-Jul-2025.) |
| Ref | Expression |
|---|---|
| negs1s | ⊢ ( -us ‘ 1s ) = (∅ |s { 0s }) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1sno 27746 | . . 3 ⊢ 1s ∈ No | |
| 2 | negsval 27938 | . . 3 ⊢ ( 1s ∈ No → ( -us ‘ 1s ) = (( -us “ ( R ‘ 1s )) |s ( -us “ ( L ‘ 1s )))) | |
| 3 | 1, 2 | ax-mp 5 | . 2 ⊢ ( -us ‘ 1s ) = (( -us “ ( R ‘ 1s )) |s ( -us “ ( L ‘ 1s ))) |
| 4 | right1s 27814 | . . . . 5 ⊢ ( R ‘ 1s ) = ∅ | |
| 5 | 4 | imaeq2i 6032 | . . . 4 ⊢ ( -us “ ( R ‘ 1s )) = ( -us “ ∅) |
| 6 | ima0 6051 | . . . 4 ⊢ ( -us “ ∅) = ∅ | |
| 7 | 5, 6 | eqtri 2753 | . . 3 ⊢ ( -us “ ( R ‘ 1s )) = ∅ |
| 8 | left1s 27813 | . . . . 5 ⊢ ( L ‘ 1s ) = { 0s } | |
| 9 | 8 | imaeq2i 6032 | . . . 4 ⊢ ( -us “ ( L ‘ 1s )) = ( -us “ { 0s }) |
| 10 | negsfn 27936 | . . . . . . 7 ⊢ -us Fn No | |
| 11 | 0sno 27745 | . . . . . . 7 ⊢ 0s ∈ No | |
| 12 | fnimapr 6947 | . . . . . . 7 ⊢ (( -us Fn No ∧ 0s ∈ No ∧ 0s ∈ No ) → ( -us “ { 0s , 0s }) = {( -us ‘ 0s ), ( -us ‘ 0s )}) | |
| 13 | 10, 11, 11, 12 | mp3an 1463 | . . . . . 6 ⊢ ( -us “ { 0s , 0s }) = {( -us ‘ 0s ), ( -us ‘ 0s )} |
| 14 | negs0s 27939 | . . . . . . 7 ⊢ ( -us ‘ 0s ) = 0s | |
| 15 | 14, 14 | preq12i 4705 | . . . . . 6 ⊢ {( -us ‘ 0s ), ( -us ‘ 0s )} = { 0s , 0s } |
| 16 | 13, 15 | eqtri 2753 | . . . . 5 ⊢ ( -us “ { 0s , 0s }) = { 0s , 0s } |
| 17 | dfsn2 4605 | . . . . . 6 ⊢ { 0s } = { 0s , 0s } | |
| 18 | 17 | imaeq2i 6032 | . . . . 5 ⊢ ( -us “ { 0s }) = ( -us “ { 0s , 0s }) |
| 19 | 16, 18, 17 | 3eqtr4i 2763 | . . . 4 ⊢ ( -us “ { 0s }) = { 0s } |
| 20 | 9, 19 | eqtri 2753 | . . 3 ⊢ ( -us “ ( L ‘ 1s )) = { 0s } |
| 21 | 7, 20 | oveq12i 7402 | . 2 ⊢ (( -us “ ( R ‘ 1s )) |s ( -us “ ( L ‘ 1s ))) = (∅ |s { 0s }) |
| 22 | 3, 21 | eqtri 2753 | 1 ⊢ ( -us ‘ 1s ) = (∅ |s { 0s }) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 ∅c0 4299 {csn 4592 {cpr 4594 “ cima 5644 Fn wfn 6509 ‘cfv 6514 (class class class)co 7390 No csur 27558 |s cscut 27701 0s c0s 27741 1s c1s 27742 L cleft 27760 R cright 27761 -us cnegs 27932 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-tp 4597 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-se 5595 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-1o 8437 df-2o 8438 df-no 27561 df-slt 27562 df-bday 27563 df-sle 27664 df-sslt 27700 df-scut 27702 df-0s 27743 df-1s 27744 df-made 27762 df-old 27763 df-left 27765 df-right 27766 df-norec 27852 df-negs 27934 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |