Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > satfvel | Structured version Visualization version GIF version |
Description: An element of the value of the satisfaction predicate as function over wff codes in the model 𝑀 and the binary relation 𝐸 on 𝑀 at the code 𝑈 for a wff using ∈ , ⊼ , ∀ is a valuation 𝑆:ω⟶𝑀 of the variables (v0 = (𝑆‘∅), v1 = (𝑆‘1o), etc.) so that 𝑈 is true under the assignment 𝑆. (Contributed by AV, 29-Oct-2023.) |
Ref | Expression |
---|---|
satfvel | ⊢ (((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) ∧ 𝑈 ∈ (Fmla‘ω) ∧ 𝑆 ∈ (((𝑀 Sat 𝐸)‘ω)‘𝑈)) → 𝑆:ω⟶𝑀) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | satfun 33273 | . . 3 ⊢ ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) → ((𝑀 Sat 𝐸)‘ω):(Fmla‘ω)⟶𝒫 (𝑀 ↑m ω)) | |
2 | ffvelrn 6941 | . . . . 5 ⊢ ((((𝑀 Sat 𝐸)‘ω):(Fmla‘ω)⟶𝒫 (𝑀 ↑m ω) ∧ 𝑈 ∈ (Fmla‘ω)) → (((𝑀 Sat 𝐸)‘ω)‘𝑈) ∈ 𝒫 (𝑀 ↑m ω)) | |
3 | fvex 6769 | . . . . . . 7 ⊢ (((𝑀 Sat 𝐸)‘ω)‘𝑈) ∈ V | |
4 | 3 | elpw 4534 | . . . . . 6 ⊢ ((((𝑀 Sat 𝐸)‘ω)‘𝑈) ∈ 𝒫 (𝑀 ↑m ω) ↔ (((𝑀 Sat 𝐸)‘ω)‘𝑈) ⊆ (𝑀 ↑m ω)) |
5 | ssel 3910 | . . . . . . 7 ⊢ ((((𝑀 Sat 𝐸)‘ω)‘𝑈) ⊆ (𝑀 ↑m ω) → (𝑆 ∈ (((𝑀 Sat 𝐸)‘ω)‘𝑈) → 𝑆 ∈ (𝑀 ↑m ω))) | |
6 | elmapi 8595 | . . . . . . 7 ⊢ (𝑆 ∈ (𝑀 ↑m ω) → 𝑆:ω⟶𝑀) | |
7 | 5, 6 | syl6 35 | . . . . . 6 ⊢ ((((𝑀 Sat 𝐸)‘ω)‘𝑈) ⊆ (𝑀 ↑m ω) → (𝑆 ∈ (((𝑀 Sat 𝐸)‘ω)‘𝑈) → 𝑆:ω⟶𝑀)) |
8 | 4, 7 | sylbi 216 | . . . . 5 ⊢ ((((𝑀 Sat 𝐸)‘ω)‘𝑈) ∈ 𝒫 (𝑀 ↑m ω) → (𝑆 ∈ (((𝑀 Sat 𝐸)‘ω)‘𝑈) → 𝑆:ω⟶𝑀)) |
9 | 2, 8 | syl 17 | . . . 4 ⊢ ((((𝑀 Sat 𝐸)‘ω):(Fmla‘ω)⟶𝒫 (𝑀 ↑m ω) ∧ 𝑈 ∈ (Fmla‘ω)) → (𝑆 ∈ (((𝑀 Sat 𝐸)‘ω)‘𝑈) → 𝑆:ω⟶𝑀)) |
10 | 9 | ex 412 | . . 3 ⊢ (((𝑀 Sat 𝐸)‘ω):(Fmla‘ω)⟶𝒫 (𝑀 ↑m ω) → (𝑈 ∈ (Fmla‘ω) → (𝑆 ∈ (((𝑀 Sat 𝐸)‘ω)‘𝑈) → 𝑆:ω⟶𝑀))) |
11 | 1, 10 | syl 17 | . 2 ⊢ ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) → (𝑈 ∈ (Fmla‘ω) → (𝑆 ∈ (((𝑀 Sat 𝐸)‘ω)‘𝑈) → 𝑆:ω⟶𝑀))) |
12 | 11 | 3imp 1109 | 1 ⊢ (((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) ∧ 𝑈 ∈ (Fmla‘ω) ∧ 𝑆 ∈ (((𝑀 Sat 𝐸)‘ω)‘𝑈)) → 𝑆:ω⟶𝑀) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 ∈ wcel 2108 ⊆ wss 3883 𝒫 cpw 4530 ⟶wf 6414 ‘cfv 6418 (class class class)co 7255 ωcom 7687 ↑m cmap 8573 Sat csat 33198 Fmlacfmla 33199 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-inf2 9329 ax-ac2 10150 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-se 5536 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-isom 6427 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-2o 8268 df-er 8456 df-map 8575 df-en 8692 df-dom 8693 df-sdom 8694 df-card 9628 df-ac 9803 df-goel 33202 df-gona 33203 df-goal 33204 df-sat 33205 df-fmla 33207 |
This theorem is referenced by: satef 33278 prv0 33292 |
Copyright terms: Public domain | W3C validator |