![]() |
Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > satfvel | Structured version Visualization version GIF version |
Description: An element of the value of the satisfaction predicate as function over wff codes in the model 𝑀 and the binary relation 𝐸 on 𝑀 at the code 𝑈 for a wff using ∈ , ⊼ , ∀ is a valuation 𝑆:ω⟶𝑀 of the variables (v0 = (𝑆‘∅), v1 = (𝑆‘1o), etc.) so that 𝑈 is true under the assignment 𝑆. (Contributed by AV, 29-Oct-2023.) |
Ref | Expression |
---|---|
satfvel | ⊢ (((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) ∧ 𝑈 ∈ (Fmla‘ω) ∧ 𝑆 ∈ (((𝑀 Sat 𝐸)‘ω)‘𝑈)) → 𝑆:ω⟶𝑀) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | satfun 33512 | . . 3 ⊢ ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) → ((𝑀 Sat 𝐸)‘ω):(Fmla‘ω)⟶𝒫 (𝑀 ↑m ω)) | |
2 | ffvelcdm 6999 | . . . . 5 ⊢ ((((𝑀 Sat 𝐸)‘ω):(Fmla‘ω)⟶𝒫 (𝑀 ↑m ω) ∧ 𝑈 ∈ (Fmla‘ω)) → (((𝑀 Sat 𝐸)‘ω)‘𝑈) ∈ 𝒫 (𝑀 ↑m ω)) | |
3 | fvex 6825 | . . . . . . 7 ⊢ (((𝑀 Sat 𝐸)‘ω)‘𝑈) ∈ V | |
4 | 3 | elpw 4549 | . . . . . 6 ⊢ ((((𝑀 Sat 𝐸)‘ω)‘𝑈) ∈ 𝒫 (𝑀 ↑m ω) ↔ (((𝑀 Sat 𝐸)‘ω)‘𝑈) ⊆ (𝑀 ↑m ω)) |
5 | ssel 3924 | . . . . . . 7 ⊢ ((((𝑀 Sat 𝐸)‘ω)‘𝑈) ⊆ (𝑀 ↑m ω) → (𝑆 ∈ (((𝑀 Sat 𝐸)‘ω)‘𝑈) → 𝑆 ∈ (𝑀 ↑m ω))) | |
6 | elmapi 8687 | . . . . . . 7 ⊢ (𝑆 ∈ (𝑀 ↑m ω) → 𝑆:ω⟶𝑀) | |
7 | 5, 6 | syl6 35 | . . . . . 6 ⊢ ((((𝑀 Sat 𝐸)‘ω)‘𝑈) ⊆ (𝑀 ↑m ω) → (𝑆 ∈ (((𝑀 Sat 𝐸)‘ω)‘𝑈) → 𝑆:ω⟶𝑀)) |
8 | 4, 7 | sylbi 216 | . . . . 5 ⊢ ((((𝑀 Sat 𝐸)‘ω)‘𝑈) ∈ 𝒫 (𝑀 ↑m ω) → (𝑆 ∈ (((𝑀 Sat 𝐸)‘ω)‘𝑈) → 𝑆:ω⟶𝑀)) |
9 | 2, 8 | syl 17 | . . . 4 ⊢ ((((𝑀 Sat 𝐸)‘ω):(Fmla‘ω)⟶𝒫 (𝑀 ↑m ω) ∧ 𝑈 ∈ (Fmla‘ω)) → (𝑆 ∈ (((𝑀 Sat 𝐸)‘ω)‘𝑈) → 𝑆:ω⟶𝑀)) |
10 | 9 | ex 413 | . . 3 ⊢ (((𝑀 Sat 𝐸)‘ω):(Fmla‘ω)⟶𝒫 (𝑀 ↑m ω) → (𝑈 ∈ (Fmla‘ω) → (𝑆 ∈ (((𝑀 Sat 𝐸)‘ω)‘𝑈) → 𝑆:ω⟶𝑀))) |
11 | 1, 10 | syl 17 | . 2 ⊢ ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) → (𝑈 ∈ (Fmla‘ω) → (𝑆 ∈ (((𝑀 Sat 𝐸)‘ω)‘𝑈) → 𝑆:ω⟶𝑀))) |
12 | 11 | 3imp 1110 | 1 ⊢ (((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) ∧ 𝑈 ∈ (Fmla‘ω) ∧ 𝑆 ∈ (((𝑀 Sat 𝐸)‘ω)‘𝑈)) → 𝑆:ω⟶𝑀) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 ∈ wcel 2105 ⊆ wss 3897 𝒫 cpw 4545 ⟶wf 6462 ‘cfv 6466 (class class class)co 7317 ωcom 7759 ↑m cmap 8665 Sat csat 33437 Fmlacfmla 33438 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2708 ax-rep 5224 ax-sep 5238 ax-nul 5245 ax-pow 5303 ax-pr 5367 ax-un 7630 ax-inf2 9477 ax-ac2 10299 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3350 df-reu 3351 df-rab 3405 df-v 3443 df-sbc 3727 df-csb 3843 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3916 df-nul 4268 df-if 4472 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4851 df-int 4893 df-iun 4939 df-br 5088 df-opab 5150 df-mpt 5171 df-tr 5205 df-id 5507 df-eprel 5513 df-po 5521 df-so 5522 df-fr 5563 df-se 5564 df-we 5565 df-xp 5614 df-rel 5615 df-cnv 5616 df-co 5617 df-dm 5618 df-rn 5619 df-res 5620 df-ima 5621 df-pred 6225 df-ord 6292 df-on 6293 df-lim 6294 df-suc 6295 df-iota 6418 df-fun 6468 df-fn 6469 df-f 6470 df-f1 6471 df-fo 6472 df-f1o 6473 df-fv 6474 df-isom 6475 df-riota 7274 df-ov 7320 df-oprab 7321 df-mpo 7322 df-om 7760 df-1st 7878 df-2nd 7879 df-frecs 8146 df-wrecs 8177 df-recs 8251 df-rdg 8290 df-1o 8346 df-2o 8347 df-er 8548 df-map 8667 df-en 8784 df-dom 8785 df-sdom 8786 df-fin 8787 df-card 9775 df-ac 9952 df-goel 33441 df-gona 33442 df-goal 33443 df-sat 33444 df-fmla 33446 |
This theorem is referenced by: satef 33517 prv0 33531 |
Copyright terms: Public domain | W3C validator |