![]() |
Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > satfvel | Structured version Visualization version GIF version |
Description: An element of the value of the satisfaction predicate as function over wff codes in the model π and the binary relation πΈ on π at the code π for a wff using β , βΌ , β is a valuation π:ΟβΆπ of the variables (v0 = (πββ ), v1 = (πβ1o), etc.) so that π is true under the assignment π. (Contributed by AV, 29-Oct-2023.) |
Ref | Expression |
---|---|
satfvel | β’ (((π β π β§ πΈ β π) β§ π β (FmlaβΟ) β§ π β (((π Sat πΈ)βΟ)βπ)) β π:ΟβΆπ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | satfun 34857 | . . 3 β’ ((π β π β§ πΈ β π) β ((π Sat πΈ)βΟ):(FmlaβΟ)βΆπ« (π βm Ο)) | |
2 | ffvelcdm 7073 | . . . . 5 β’ ((((π Sat πΈ)βΟ):(FmlaβΟ)βΆπ« (π βm Ο) β§ π β (FmlaβΟ)) β (((π Sat πΈ)βΟ)βπ) β π« (π βm Ο)) | |
3 | fvex 6894 | . . . . . . 7 β’ (((π Sat πΈ)βΟ)βπ) β V | |
4 | 3 | elpw 4598 | . . . . . 6 β’ ((((π Sat πΈ)βΟ)βπ) β π« (π βm Ο) β (((π Sat πΈ)βΟ)βπ) β (π βm Ο)) |
5 | ssel 3967 | . . . . . . 7 β’ ((((π Sat πΈ)βΟ)βπ) β (π βm Ο) β (π β (((π Sat πΈ)βΟ)βπ) β π β (π βm Ο))) | |
6 | elmapi 8838 | . . . . . . 7 β’ (π β (π βm Ο) β π:ΟβΆπ) | |
7 | 5, 6 | syl6 35 | . . . . . 6 β’ ((((π Sat πΈ)βΟ)βπ) β (π βm Ο) β (π β (((π Sat πΈ)βΟ)βπ) β π:ΟβΆπ)) |
8 | 4, 7 | sylbi 216 | . . . . 5 β’ ((((π Sat πΈ)βΟ)βπ) β π« (π βm Ο) β (π β (((π Sat πΈ)βΟ)βπ) β π:ΟβΆπ)) |
9 | 2, 8 | syl 17 | . . . 4 β’ ((((π Sat πΈ)βΟ):(FmlaβΟ)βΆπ« (π βm Ο) β§ π β (FmlaβΟ)) β (π β (((π Sat πΈ)βΟ)βπ) β π:ΟβΆπ)) |
10 | 9 | ex 412 | . . 3 β’ (((π Sat πΈ)βΟ):(FmlaβΟ)βΆπ« (π βm Ο) β (π β (FmlaβΟ) β (π β (((π Sat πΈ)βΟ)βπ) β π:ΟβΆπ))) |
11 | 1, 10 | syl 17 | . 2 β’ ((π β π β§ πΈ β π) β (π β (FmlaβΟ) β (π β (((π Sat πΈ)βΟ)βπ) β π:ΟβΆπ))) |
12 | 11 | 3imp 1108 | 1 β’ (((π β π β§ πΈ β π) β§ π β (FmlaβΟ) β§ π β (((π Sat πΈ)βΟ)βπ)) β π:ΟβΆπ) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 395 β§ w3a 1084 β wcel 2098 β wss 3940 π« cpw 4594 βΆwf 6529 βcfv 6533 (class class class)co 7401 Οcom 7848 βm cmap 8815 Sat csat 34782 Fmlacfmla 34783 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5275 ax-sep 5289 ax-nul 5296 ax-pow 5353 ax-pr 5417 ax-un 7718 ax-inf2 9631 ax-ac2 10453 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-nel 3039 df-ral 3054 df-rex 3063 df-rmo 3368 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-pss 3959 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-int 4941 df-iun 4989 df-br 5139 df-opab 5201 df-mpt 5222 df-tr 5256 df-id 5564 df-eprel 5570 df-po 5578 df-so 5579 df-fr 5621 df-se 5622 df-we 5623 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-pred 6290 df-ord 6357 df-on 6358 df-lim 6359 df-suc 6360 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 df-isom 6542 df-riota 7357 df-ov 7404 df-oprab 7405 df-mpo 7406 df-om 7849 df-1st 7968 df-2nd 7969 df-frecs 8261 df-wrecs 8292 df-recs 8366 df-rdg 8405 df-1o 8461 df-2o 8462 df-er 8698 df-map 8817 df-en 8935 df-dom 8936 df-sdom 8937 df-fin 8938 df-card 9929 df-ac 10106 df-goel 34786 df-gona 34787 df-goal 34788 df-sat 34789 df-fmla 34791 |
This theorem is referenced by: satef 34862 prv0 34876 |
Copyright terms: Public domain | W3C validator |