![]() |
Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > satfvel | Structured version Visualization version GIF version |
Description: An element of the value of the satisfaction predicate as function over wff codes in the model 𝑀 and the binary relation 𝐸 on 𝑀 at the code 𝑈 for a wff using ∈ , ⊼ , ∀ is a valuation 𝑆:ω⟶𝑀 of the variables (v0 = (𝑆‘∅), v1 = (𝑆‘1o), etc.) so that 𝑈 is true under the assignment 𝑆. (Contributed by AV, 29-Oct-2023.) |
Ref | Expression |
---|---|
satfvel | ⊢ (((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) ∧ 𝑈 ∈ (Fmla‘ω) ∧ 𝑆 ∈ (((𝑀 Sat 𝐸)‘ω)‘𝑈)) → 𝑆:ω⟶𝑀) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | satfun 35396 | . . 3 ⊢ ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) → ((𝑀 Sat 𝐸)‘ω):(Fmla‘ω)⟶𝒫 (𝑀 ↑m ω)) | |
2 | ffvelcdm 7101 | . . . . 5 ⊢ ((((𝑀 Sat 𝐸)‘ω):(Fmla‘ω)⟶𝒫 (𝑀 ↑m ω) ∧ 𝑈 ∈ (Fmla‘ω)) → (((𝑀 Sat 𝐸)‘ω)‘𝑈) ∈ 𝒫 (𝑀 ↑m ω)) | |
3 | fvex 6920 | . . . . . . 7 ⊢ (((𝑀 Sat 𝐸)‘ω)‘𝑈) ∈ V | |
4 | 3 | elpw 4609 | . . . . . 6 ⊢ ((((𝑀 Sat 𝐸)‘ω)‘𝑈) ∈ 𝒫 (𝑀 ↑m ω) ↔ (((𝑀 Sat 𝐸)‘ω)‘𝑈) ⊆ (𝑀 ↑m ω)) |
5 | ssel 3989 | . . . . . . 7 ⊢ ((((𝑀 Sat 𝐸)‘ω)‘𝑈) ⊆ (𝑀 ↑m ω) → (𝑆 ∈ (((𝑀 Sat 𝐸)‘ω)‘𝑈) → 𝑆 ∈ (𝑀 ↑m ω))) | |
6 | elmapi 8888 | . . . . . . 7 ⊢ (𝑆 ∈ (𝑀 ↑m ω) → 𝑆:ω⟶𝑀) | |
7 | 5, 6 | syl6 35 | . . . . . 6 ⊢ ((((𝑀 Sat 𝐸)‘ω)‘𝑈) ⊆ (𝑀 ↑m ω) → (𝑆 ∈ (((𝑀 Sat 𝐸)‘ω)‘𝑈) → 𝑆:ω⟶𝑀)) |
8 | 4, 7 | sylbi 217 | . . . . 5 ⊢ ((((𝑀 Sat 𝐸)‘ω)‘𝑈) ∈ 𝒫 (𝑀 ↑m ω) → (𝑆 ∈ (((𝑀 Sat 𝐸)‘ω)‘𝑈) → 𝑆:ω⟶𝑀)) |
9 | 2, 8 | syl 17 | . . . 4 ⊢ ((((𝑀 Sat 𝐸)‘ω):(Fmla‘ω)⟶𝒫 (𝑀 ↑m ω) ∧ 𝑈 ∈ (Fmla‘ω)) → (𝑆 ∈ (((𝑀 Sat 𝐸)‘ω)‘𝑈) → 𝑆:ω⟶𝑀)) |
10 | 9 | ex 412 | . . 3 ⊢ (((𝑀 Sat 𝐸)‘ω):(Fmla‘ω)⟶𝒫 (𝑀 ↑m ω) → (𝑈 ∈ (Fmla‘ω) → (𝑆 ∈ (((𝑀 Sat 𝐸)‘ω)‘𝑈) → 𝑆:ω⟶𝑀))) |
11 | 1, 10 | syl 17 | . 2 ⊢ ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) → (𝑈 ∈ (Fmla‘ω) → (𝑆 ∈ (((𝑀 Sat 𝐸)‘ω)‘𝑈) → 𝑆:ω⟶𝑀))) |
12 | 11 | 3imp 1110 | 1 ⊢ (((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) ∧ 𝑈 ∈ (Fmla‘ω) ∧ 𝑆 ∈ (((𝑀 Sat 𝐸)‘ω)‘𝑈)) → 𝑆:ω⟶𝑀) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2106 ⊆ wss 3963 𝒫 cpw 4605 ⟶wf 6559 ‘cfv 6563 (class class class)co 7431 ωcom 7887 ↑m cmap 8865 Sat csat 35321 Fmlacfmla 35322 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-inf2 9679 ax-ac2 10501 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-int 4952 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-se 5642 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-isom 6572 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8013 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-1o 8505 df-2o 8506 df-er 8744 df-map 8867 df-en 8985 df-dom 8986 df-sdom 8987 df-fin 8988 df-card 9977 df-ac 10154 df-goel 35325 df-gona 35326 df-goal 35327 df-sat 35328 df-fmla 35330 |
This theorem is referenced by: satef 35401 prv0 35415 |
Copyright terms: Public domain | W3C validator |