| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > exps1 | Structured version Visualization version GIF version | ||
| Description: Surreal exponentiation to one. (Contributed by Scott Fenton, 24-Jul-2025.) |
| Ref | Expression |
|---|---|
| exps1 | ⊢ (𝐴 ∈ No → (𝐴↑s 1s ) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1nns 28248 | . . 3 ⊢ 1s ∈ ℕs | |
| 2 | expsnnval 28319 | . . 3 ⊢ ((𝐴 ∈ No ∧ 1s ∈ ℕs) → (𝐴↑s 1s ) = (seqs 1s ( ·s , (ℕs × {𝐴}))‘ 1s )) | |
| 3 | 1, 2 | mpan2 691 | . 2 ⊢ (𝐴 ∈ No → (𝐴↑s 1s ) = (seqs 1s ( ·s , (ℕs × {𝐴}))‘ 1s )) |
| 4 | 1sno 27746 | . . . 4 ⊢ 1s ∈ No | |
| 5 | 4 | a1i 11 | . . 3 ⊢ (𝐴 ∈ No → 1s ∈ No ) |
| 6 | 5 | seqs1 28211 | . 2 ⊢ (𝐴 ∈ No → (seqs 1s ( ·s , (ℕs × {𝐴}))‘ 1s ) = ((ℕs × {𝐴})‘ 1s )) |
| 7 | fvconst2g 7179 | . . 3 ⊢ ((𝐴 ∈ No ∧ 1s ∈ ℕs) → ((ℕs × {𝐴})‘ 1s ) = 𝐴) | |
| 8 | 1, 7 | mpan2 691 | . 2 ⊢ (𝐴 ∈ No → ((ℕs × {𝐴})‘ 1s ) = 𝐴) |
| 9 | 3, 6, 8 | 3eqtrd 2769 | 1 ⊢ (𝐴 ∈ No → (𝐴↑s 1s ) = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 {csn 4592 × cxp 5639 ‘cfv 6514 (class class class)co 7390 No csur 27558 1s c1s 27742 ·s cmuls 28016 seqscseqs 28184 ℕscnns 28214 ↑scexps 28305 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-tp 4597 df-op 4599 df-ot 4601 df-uni 4875 df-int 4914 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-se 5595 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-2o 8438 df-oadd 8441 df-nadd 8633 df-no 27561 df-slt 27562 df-bday 27563 df-sle 27664 df-sslt 27700 df-scut 27702 df-0s 27743 df-1s 27744 df-made 27762 df-old 27763 df-left 27765 df-right 27766 df-norec 27852 df-norec2 27863 df-adds 27874 df-negs 27934 df-subs 27935 df-seqs 28185 df-n0s 28215 df-nns 28216 df-zs 28274 df-exps 28306 |
| This theorem is referenced by: expsp1 28322 pw2cut 28342 |
| Copyright terms: Public domain | W3C validator |