![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sltsubsub2bd | Structured version Visualization version GIF version |
Description: Equivalence for the surreal less-than relationship between differences. (Contributed by Scott Fenton, 21-Feb-2025.) |
Ref | Expression |
---|---|
sltsubsubbd.1 | ⊢ (𝜑 → 𝐴 ∈ No ) |
sltsubsubbd.2 | ⊢ (𝜑 → 𝐵 ∈ No ) |
sltsubsubbd.3 | ⊢ (𝜑 → 𝐶 ∈ No ) |
sltsubsubbd.4 | ⊢ (𝜑 → 𝐷 ∈ No ) |
Ref | Expression |
---|---|
sltsubsub2bd | ⊢ (𝜑 → ((𝐴 -s 𝐵) <s (𝐶 -s 𝐷) ↔ (𝐷 -s 𝐶) <s (𝐵 -s 𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sltsubsubbd.4 | . . . 4 ⊢ (𝜑 → 𝐷 ∈ No ) | |
2 | sltsubsubbd.3 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ No ) | |
3 | 1, 2 | subscld 27771 | . . 3 ⊢ (𝜑 → (𝐷 -s 𝐶) ∈ No ) |
4 | sltsubsubbd.2 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ No ) | |
5 | sltsubsubbd.1 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ No ) | |
6 | 4, 5 | subscld 27771 | . . 3 ⊢ (𝜑 → (𝐵 -s 𝐴) ∈ No ) |
7 | 3, 6 | sltnegd 27757 | . 2 ⊢ (𝜑 → ((𝐷 -s 𝐶) <s (𝐵 -s 𝐴) ↔ ( -us ‘(𝐵 -s 𝐴)) <s ( -us ‘(𝐷 -s 𝐶)))) |
8 | 4, 5 | negsubsdi2d 27783 | . . 3 ⊢ (𝜑 → ( -us ‘(𝐵 -s 𝐴)) = (𝐴 -s 𝐵)) |
9 | 1, 2 | negsubsdi2d 27783 | . . 3 ⊢ (𝜑 → ( -us ‘(𝐷 -s 𝐶)) = (𝐶 -s 𝐷)) |
10 | 8, 9 | breq12d 5162 | . 2 ⊢ (𝜑 → (( -us ‘(𝐵 -s 𝐴)) <s ( -us ‘(𝐷 -s 𝐶)) ↔ (𝐴 -s 𝐵) <s (𝐶 -s 𝐷))) |
11 | 7, 10 | bitr2d 279 | 1 ⊢ (𝜑 → ((𝐴 -s 𝐵) <s (𝐶 -s 𝐷) ↔ (𝐷 -s 𝐶) <s (𝐵 -s 𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∈ wcel 2105 class class class wbr 5149 ‘cfv 6544 (class class class)co 7412 No csur 27376 <s cslt 27377 -us cnegs 27730 -s csubs 27731 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7728 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-tp 4634 df-op 4636 df-ot 4638 df-uni 4910 df-int 4952 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-se 5633 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-1st 7978 df-2nd 7979 df-frecs 8269 df-wrecs 8300 df-recs 8374 df-1o 8469 df-2o 8470 df-nadd 8668 df-no 27379 df-slt 27380 df-bday 27381 df-sle 27481 df-sslt 27516 df-scut 27518 df-0s 27559 df-made 27576 df-old 27577 df-left 27579 df-right 27580 df-norec 27657 df-norec2 27668 df-adds 27679 df-negs 27732 df-subs 27733 |
This theorem is referenced by: sltsubsub3bd 27788 slesubsub2bd 27790 mulsproplem5 27812 mulsproplem7 27814 mulsproplem8 27815 mulsproplem12 27819 ssltmul1 27838 ssltmul2 27839 |
Copyright terms: Public domain | W3C validator |