Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > infssuzcl | Structured version Visualization version GIF version |
Description: The infimum of a subset of an upper set of integers belongs to the subset. (Contributed by NM, 11-Oct-2005.) (Revised by AV, 5-Sep-2020.) |
Ref | Expression |
---|---|
infssuzcl | ⊢ ((𝑆 ⊆ (ℤ≥‘𝑀) ∧ 𝑆 ≠ ∅) → inf(𝑆, ℝ, < ) ∈ 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uzssz 12357 | . . . 4 ⊢ (ℤ≥‘𝑀) ⊆ ℤ | |
2 | zssre 12081 | . . . 4 ⊢ ℤ ⊆ ℝ | |
3 | 1, 2 | sstri 3896 | . . 3 ⊢ (ℤ≥‘𝑀) ⊆ ℝ |
4 | sstr 3895 | . . 3 ⊢ ((𝑆 ⊆ (ℤ≥‘𝑀) ∧ (ℤ≥‘𝑀) ⊆ ℝ) → 𝑆 ⊆ ℝ) | |
5 | 3, 4 | mpan2 691 | . 2 ⊢ (𝑆 ⊆ (ℤ≥‘𝑀) → 𝑆 ⊆ ℝ) |
6 | uzwo 12405 | . 2 ⊢ ((𝑆 ⊆ (ℤ≥‘𝑀) ∧ 𝑆 ≠ ∅) → ∃𝑗 ∈ 𝑆 ∀𝑘 ∈ 𝑆 𝑗 ≤ 𝑘) | |
7 | lbinfcl 11684 | . 2 ⊢ ((𝑆 ⊆ ℝ ∧ ∃𝑗 ∈ 𝑆 ∀𝑘 ∈ 𝑆 𝑗 ≤ 𝑘) → inf(𝑆, ℝ, < ) ∈ 𝑆) | |
8 | 5, 6, 7 | syl2an2r 685 | 1 ⊢ ((𝑆 ⊆ (ℤ≥‘𝑀) ∧ 𝑆 ≠ ∅) → inf(𝑆, ℝ, < ) ∈ 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 ∈ wcel 2114 ≠ wne 2935 ∀wral 3054 ∃wrex 3055 ⊆ wss 3853 ∅c0 4221 class class class wbr 5040 ‘cfv 6349 infcinf 8990 ℝcr 10626 < clt 10765 ≤ cle 10766 ℤcz 12074 ℤ≥cuz 12336 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2711 ax-sep 5177 ax-nul 5184 ax-pow 5242 ax-pr 5306 ax-un 7491 ax-cnex 10683 ax-resscn 10684 ax-1cn 10685 ax-icn 10686 ax-addcl 10687 ax-addrcl 10688 ax-mulcl 10689 ax-mulrcl 10690 ax-mulcom 10691 ax-addass 10692 ax-mulass 10693 ax-distr 10694 ax-i2m1 10695 ax-1ne0 10696 ax-1rid 10697 ax-rnegex 10698 ax-rrecex 10699 ax-cnre 10700 ax-pre-lttri 10701 ax-pre-lttrn 10702 ax-pre-ltadd 10703 ax-pre-mulgt0 10704 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2541 df-eu 2571 df-clab 2718 df-cleq 2731 df-clel 2812 df-nfc 2882 df-ne 2936 df-nel 3040 df-ral 3059 df-rex 3060 df-reu 3061 df-rmo 3062 df-rab 3063 df-v 3402 df-sbc 3686 df-csb 3801 df-dif 3856 df-un 3858 df-in 3860 df-ss 3870 df-pss 3872 df-nul 4222 df-if 4425 df-pw 4500 df-sn 4527 df-pr 4529 df-tp 4531 df-op 4533 df-uni 4807 df-iun 4893 df-br 5041 df-opab 5103 df-mpt 5121 df-tr 5147 df-id 5439 df-eprel 5444 df-po 5452 df-so 5453 df-fr 5493 df-we 5495 df-xp 5541 df-rel 5542 df-cnv 5543 df-co 5544 df-dm 5545 df-rn 5546 df-res 5547 df-ima 5548 df-pred 6139 df-ord 6185 df-on 6186 df-lim 6187 df-suc 6188 df-iota 6307 df-fun 6351 df-fn 6352 df-f 6353 df-f1 6354 df-fo 6355 df-f1o 6356 df-fv 6357 df-riota 7139 df-ov 7185 df-oprab 7186 df-mpo 7187 df-om 7612 df-wrecs 7988 df-recs 8049 df-rdg 8087 df-er 8332 df-en 8568 df-dom 8569 df-sdom 8570 df-sup 8991 df-inf 8992 df-pnf 10767 df-mnf 10768 df-xr 10769 df-ltxr 10770 df-le 10771 df-sub 10962 df-neg 10963 df-nn 11729 df-n0 11989 df-z 12075 df-uz 12337 |
This theorem is referenced by: zsupss 12431 uzwo3 12437 divalglem2 15852 bitsfzolem 15889 bezoutlem2 15996 lcmcllem 16049 lcmfval 16074 lcmfcllem 16078 odzcllem 16241 4sqlem13 16405 4sqlem14 16406 4sqlem17 16409 4sqlem18 16410 vdwnnlem3 16445 ramcl2lem 16457 ramtcl 16458 odfval 18790 odlem1 18793 odlem2 18797 gexlem1 18834 gexlem2 18837 zringlpirlem2 20316 zringlpirlem3 20317 ovolicc2lem4 24284 iundisj 24312 ig1peu 24936 ig1pdvds 24941 elqaalem1 25079 elqaalem3 25081 ftalem4 25825 ftalem5 25826 iundisjf 30514 iundisjfi 30704 dgraalem 40582 allbutfiinf 42538 ioodvbdlimc1lem1 43054 fourierdlem31 43261 elaa2lem 43356 etransclem48 43405 |
Copyright terms: Public domain | W3C validator |