| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > infssuzcl | Structured version Visualization version GIF version | ||
| Description: The infimum of a subset of an upper set of integers belongs to the subset. (Contributed by NM, 11-Oct-2005.) (Revised by AV, 5-Sep-2020.) |
| Ref | Expression |
|---|---|
| infssuzcl | ⊢ ((𝑆 ⊆ (ℤ≥‘𝑀) ∧ 𝑆 ≠ ∅) → inf(𝑆, ℝ, < ) ∈ 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uzssz 12814 | . . . 4 ⊢ (ℤ≥‘𝑀) ⊆ ℤ | |
| 2 | zssre 12536 | . . . 4 ⊢ ℤ ⊆ ℝ | |
| 3 | 1, 2 | sstri 3956 | . . 3 ⊢ (ℤ≥‘𝑀) ⊆ ℝ |
| 4 | sstr 3955 | . . 3 ⊢ ((𝑆 ⊆ (ℤ≥‘𝑀) ∧ (ℤ≥‘𝑀) ⊆ ℝ) → 𝑆 ⊆ ℝ) | |
| 5 | 3, 4 | mpan2 691 | . 2 ⊢ (𝑆 ⊆ (ℤ≥‘𝑀) → 𝑆 ⊆ ℝ) |
| 6 | uzwo 12870 | . 2 ⊢ ((𝑆 ⊆ (ℤ≥‘𝑀) ∧ 𝑆 ≠ ∅) → ∃𝑗 ∈ 𝑆 ∀𝑘 ∈ 𝑆 𝑗 ≤ 𝑘) | |
| 7 | lbinfcl 12137 | . 2 ⊢ ((𝑆 ⊆ ℝ ∧ ∃𝑗 ∈ 𝑆 ∀𝑘 ∈ 𝑆 𝑗 ≤ 𝑘) → inf(𝑆, ℝ, < ) ∈ 𝑆) | |
| 8 | 5, 6, 7 | syl2an2r 685 | 1 ⊢ ((𝑆 ⊆ (ℤ≥‘𝑀) ∧ 𝑆 ≠ ∅) → inf(𝑆, ℝ, < ) ∈ 𝑆) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 ≠ wne 2925 ∀wral 3044 ∃wrex 3053 ⊆ wss 3914 ∅c0 4296 class class class wbr 5107 ‘cfv 6511 infcinf 9392 ℝcr 11067 < clt 11208 ≤ cle 11209 ℤcz 12529 ℤ≥cuz 12793 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-sup 9393 df-inf 9394 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-n0 12443 df-z 12530 df-uz 12794 |
| This theorem is referenced by: zsupss 12896 uzwo3 12902 divalglem2 16365 bitsfzolem 16404 bezoutlem2 16510 lcmcllem 16566 lcmfval 16591 lcmfcllem 16595 odzcllem 16763 4sqlem13 16928 4sqlem14 16929 4sqlem17 16932 4sqlem18 16933 vdwnnlem3 16968 ramcl2lem 16980 ramtcl 16981 odfval 19462 odlem1 19465 odlem2 19469 gexlem1 19509 gexlem2 19512 zringlpirlem2 21373 zringlpirlem3 21374 ovolicc2lem4 25421 iundisj 25449 ig1peu 26080 ig1pdvds 26085 elqaalem1 26227 elqaalem3 26229 ftalem4 26986 ftalem5 26987 iundisjf 32518 iundisjfi 32719 exsslsb 33592 dgraalem 43134 allbutfiinf 45416 ioodvbdlimc1lem1 45929 fourierdlem31 46136 elaa2lem 46231 etransclem48 46280 |
| Copyright terms: Public domain | W3C validator |