MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opsrvsca Structured version   Visualization version   GIF version

Theorem opsrvsca 21954
Description: The scalar product operation of the ordered power series structure. (Contributed by Mario Carneiro, 8-Feb-2015.) (Revised by Mario Carneiro, 30-Aug-2015.) (Revised by AV, 1-Nov-2024.)
Hypotheses
Ref Expression
opsrbas.s 𝑆 = (𝐼 mPwSer 𝑅)
opsrbas.o 𝑂 = ((𝐼 ordPwSer 𝑅)β€˜π‘‡)
opsrbas.t (πœ‘ β†’ 𝑇 βŠ† (𝐼 Γ— 𝐼))
Assertion
Ref Expression
opsrvsca (πœ‘ β†’ ( ·𝑠 β€˜π‘†) = ( ·𝑠 β€˜π‘‚))

Proof of Theorem opsrvsca
StepHypRef Expression
1 opsrbas.s . 2 𝑆 = (𝐼 mPwSer 𝑅)
2 opsrbas.o . 2 𝑂 = ((𝐼 ordPwSer 𝑅)β€˜π‘‡)
3 opsrbas.t . 2 (πœ‘ β†’ 𝑇 βŠ† (𝐼 Γ— 𝐼))
4 vscaid 17274 . 2 ·𝑠 = Slot ( ·𝑠 β€˜ndx)
5 plendxnvscandx 17328 . . 3 (leβ€˜ndx) β‰  ( ·𝑠 β€˜ndx)
65necomi 2989 . 2 ( ·𝑠 β€˜ndx) β‰  (leβ€˜ndx)
71, 2, 3, 4, 6opsrbaslem 21946 1 (πœ‘ β†’ ( ·𝑠 β€˜π‘†) = ( ·𝑠 β€˜π‘‚))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   = wceq 1533   βŠ† wss 3943   Γ— cxp 5667  β€˜cfv 6537  (class class class)co 7405  ndxcnx 17135   ·𝑠 cvsca 17210  lecple 17213   mPwSer cmps 21798   ordPwSer copws 21802
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7722  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-nel 3041  df-ral 3056  df-rex 3065  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-pss 3962  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6294  df-ord 6361  df-on 6362  df-lim 6363  df-suc 6364  df-iota 6489  df-fun 6539  df-fn 6540  df-f 6541  df-f1 6542  df-fo 6543  df-f1o 6544  df-fv 6545  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7853  df-2nd 7975  df-frecs 8267  df-wrecs 8298  df-recs 8372  df-rdg 8411  df-er 8705  df-en 8942  df-dom 8943  df-sdom 8944  df-pnf 11254  df-mnf 11255  df-xr 11256  df-ltxr 11257  df-le 11258  df-sub 11450  df-neg 11451  df-nn 12217  df-2 12279  df-3 12280  df-4 12281  df-5 12282  df-6 12283  df-7 12284  df-8 12285  df-9 12286  df-dec 12682  df-sets 17106  df-slot 17124  df-ndx 17136  df-base 17154  df-vsca 17223  df-ple 17226  df-psr 21803  df-opsr 21807
This theorem is referenced by:  opsrassa  21963  ply1lss  22070  psr1vsca  22095  opsrlmod  22119
  Copyright terms: Public domain W3C validator