ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  4sqlem16 GIF version

Theorem 4sqlem16 12729
Description: Lemma for 4sq 12733. (Contributed by Mario Carneiro, 16-Jul-2014.) (Revised by AV, 14-Sep-2020.)
Hypotheses
Ref Expression
4sqlem11.1 𝑆 = {𝑛 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ 𝑛 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))}
4sq.2 (𝜑𝑁 ∈ ℕ)
4sq.3 (𝜑𝑃 = ((2 · 𝑁) + 1))
4sq.4 (𝜑𝑃 ∈ ℙ)
4sq.5 (𝜑 → (0...(2 · 𝑁)) ⊆ 𝑆)
4sq.6 𝑇 = {𝑖 ∈ ℕ ∣ (𝑖 · 𝑃) ∈ 𝑆}
4sq.7 𝑀 = inf(𝑇, ℝ, < )
4sq.m (𝜑𝑀 ∈ (ℤ‘2))
4sq.a (𝜑𝐴 ∈ ℤ)
4sq.b (𝜑𝐵 ∈ ℤ)
4sq.c (𝜑𝐶 ∈ ℤ)
4sq.d (𝜑𝐷 ∈ ℤ)
4sq.e 𝐸 = (((𝐴 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2))
4sq.f 𝐹 = (((𝐵 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2))
4sq.g 𝐺 = (((𝐶 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2))
4sq.h 𝐻 = (((𝐷 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2))
4sq.r 𝑅 = ((((𝐸↑2) + (𝐹↑2)) + ((𝐺↑2) + (𝐻↑2))) / 𝑀)
4sq.p (𝜑 → (𝑀 · 𝑃) = (((𝐴↑2) + (𝐵↑2)) + ((𝐶↑2) + (𝐷↑2))))
Assertion
Ref Expression
4sqlem16 (𝜑 → (𝑅𝑀 ∧ ((𝑅 = 0 ∨ 𝑅 = 𝑀) → (𝑀↑2) ∥ (𝑀 · 𝑃))))
Distinct variable groups:   𝑛,𝑁   𝑃,𝑖,𝑛,𝑤,𝑥,𝑦,𝑧   𝑆,𝑖,𝑛   𝑇,𝑖   𝜑,𝑖,𝑛
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑤)   𝐴(𝑥,𝑦,𝑧,𝑤,𝑖,𝑛)   𝐵(𝑥,𝑦,𝑧,𝑤,𝑖,𝑛)   𝐶(𝑥,𝑦,𝑧,𝑤,𝑖,𝑛)   𝐷(𝑥,𝑦,𝑧,𝑤,𝑖,𝑛)   𝑅(𝑥,𝑦,𝑧,𝑤,𝑖,𝑛)   𝑆(𝑥,𝑦,𝑧,𝑤)   𝑇(𝑥,𝑦,𝑧,𝑤,𝑛)   𝐸(𝑥,𝑦,𝑧,𝑤,𝑖,𝑛)   𝐹(𝑥,𝑦,𝑧,𝑤,𝑖,𝑛)   𝐺(𝑥,𝑦,𝑧,𝑤,𝑖,𝑛)   𝐻(𝑥,𝑦,𝑧,𝑤,𝑖,𝑛)   𝑀(𝑥,𝑦,𝑧,𝑤,𝑖,𝑛)   𝑁(𝑥,𝑦,𝑧,𝑤,𝑖)

Proof of Theorem 4sqlem16
StepHypRef Expression
1 4sq.r . . 3 𝑅 = ((((𝐸↑2) + (𝐹↑2)) + ((𝐺↑2) + (𝐻↑2))) / 𝑀)
2 4sq.a . . . . . . . . . . . 12 (𝜑𝐴 ∈ ℤ)
3 4sq.m . . . . . . . . . . . . 13 (𝜑𝑀 ∈ (ℤ‘2))
4 eluz2nn 9687 . . . . . . . . . . . . 13 (𝑀 ∈ (ℤ‘2) → 𝑀 ∈ ℕ)
53, 4syl 14 . . . . . . . . . . . 12 (𝜑𝑀 ∈ ℕ)
6 4sq.e . . . . . . . . . . . 12 𝐸 = (((𝐴 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2))
72, 5, 64sqlem5 12705 . . . . . . . . . . 11 (𝜑 → (𝐸 ∈ ℤ ∧ ((𝐴𝐸) / 𝑀) ∈ ℤ))
87simpld 112 . . . . . . . . . 10 (𝜑𝐸 ∈ ℤ)
9 zsqcl 10755 . . . . . . . . . 10 (𝐸 ∈ ℤ → (𝐸↑2) ∈ ℤ)
108, 9syl 14 . . . . . . . . 9 (𝜑 → (𝐸↑2) ∈ ℤ)
1110zred 9495 . . . . . . . 8 (𝜑 → (𝐸↑2) ∈ ℝ)
12 4sq.b . . . . . . . . . . . 12 (𝜑𝐵 ∈ ℤ)
13 4sq.f . . . . . . . . . . . 12 𝐹 = (((𝐵 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2))
1412, 5, 134sqlem5 12705 . . . . . . . . . . 11 (𝜑 → (𝐹 ∈ ℤ ∧ ((𝐵𝐹) / 𝑀) ∈ ℤ))
1514simpld 112 . . . . . . . . . 10 (𝜑𝐹 ∈ ℤ)
16 zsqcl 10755 . . . . . . . . . 10 (𝐹 ∈ ℤ → (𝐹↑2) ∈ ℤ)
1715, 16syl 14 . . . . . . . . 9 (𝜑 → (𝐹↑2) ∈ ℤ)
1817zred 9495 . . . . . . . 8 (𝜑 → (𝐹↑2) ∈ ℝ)
1911, 18readdcld 8102 . . . . . . 7 (𝜑 → ((𝐸↑2) + (𝐹↑2)) ∈ ℝ)
20 4sq.c . . . . . . . . . . . 12 (𝜑𝐶 ∈ ℤ)
21 4sq.g . . . . . . . . . . . 12 𝐺 = (((𝐶 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2))
2220, 5, 214sqlem5 12705 . . . . . . . . . . 11 (𝜑 → (𝐺 ∈ ℤ ∧ ((𝐶𝐺) / 𝑀) ∈ ℤ))
2322simpld 112 . . . . . . . . . 10 (𝜑𝐺 ∈ ℤ)
24 zsqcl 10755 . . . . . . . . . 10 (𝐺 ∈ ℤ → (𝐺↑2) ∈ ℤ)
2523, 24syl 14 . . . . . . . . 9 (𝜑 → (𝐺↑2) ∈ ℤ)
2625zred 9495 . . . . . . . 8 (𝜑 → (𝐺↑2) ∈ ℝ)
27 4sq.d . . . . . . . . . . . 12 (𝜑𝐷 ∈ ℤ)
28 4sq.h . . . . . . . . . . . 12 𝐻 = (((𝐷 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2))
2927, 5, 284sqlem5 12705 . . . . . . . . . . 11 (𝜑 → (𝐻 ∈ ℤ ∧ ((𝐷𝐻) / 𝑀) ∈ ℤ))
3029simpld 112 . . . . . . . . . 10 (𝜑𝐻 ∈ ℤ)
31 zsqcl 10755 . . . . . . . . . 10 (𝐻 ∈ ℤ → (𝐻↑2) ∈ ℤ)
3230, 31syl 14 . . . . . . . . 9 (𝜑 → (𝐻↑2) ∈ ℤ)
3332zred 9495 . . . . . . . 8 (𝜑 → (𝐻↑2) ∈ ℝ)
3426, 33readdcld 8102 . . . . . . 7 (𝜑 → ((𝐺↑2) + (𝐻↑2)) ∈ ℝ)
355nnred 9049 . . . . . . . . 9 (𝜑𝑀 ∈ ℝ)
3635resqcld 10844 . . . . . . . 8 (𝜑 → (𝑀↑2) ∈ ℝ)
3736rehalfcld 9284 . . . . . . 7 (𝜑 → ((𝑀↑2) / 2) ∈ ℝ)
3837rehalfcld 9284 . . . . . . . . 9 (𝜑 → (((𝑀↑2) / 2) / 2) ∈ ℝ)
392, 5, 64sqlem7 12707 . . . . . . . . 9 (𝜑 → (𝐸↑2) ≤ (((𝑀↑2) / 2) / 2))
4012, 5, 134sqlem7 12707 . . . . . . . . 9 (𝜑 → (𝐹↑2) ≤ (((𝑀↑2) / 2) / 2))
4111, 18, 38, 38, 39, 40le2addd 8636 . . . . . . . 8 (𝜑 → ((𝐸↑2) + (𝐹↑2)) ≤ ((((𝑀↑2) / 2) / 2) + (((𝑀↑2) / 2) / 2)))
4237recnd 8101 . . . . . . . . 9 (𝜑 → ((𝑀↑2) / 2) ∈ ℂ)
43422halvesd 9283 . . . . . . . 8 (𝜑 → ((((𝑀↑2) / 2) / 2) + (((𝑀↑2) / 2) / 2)) = ((𝑀↑2) / 2))
4441, 43breqtrd 4070 . . . . . . 7 (𝜑 → ((𝐸↑2) + (𝐹↑2)) ≤ ((𝑀↑2) / 2))
4520, 5, 214sqlem7 12707 . . . . . . . . 9 (𝜑 → (𝐺↑2) ≤ (((𝑀↑2) / 2) / 2))
4627, 5, 284sqlem7 12707 . . . . . . . . 9 (𝜑 → (𝐻↑2) ≤ (((𝑀↑2) / 2) / 2))
4726, 33, 38, 38, 45, 46le2addd 8636 . . . . . . . 8 (𝜑 → ((𝐺↑2) + (𝐻↑2)) ≤ ((((𝑀↑2) / 2) / 2) + (((𝑀↑2) / 2) / 2)))
4847, 43breqtrd 4070 . . . . . . 7 (𝜑 → ((𝐺↑2) + (𝐻↑2)) ≤ ((𝑀↑2) / 2))
4919, 34, 37, 37, 44, 48le2addd 8636 . . . . . 6 (𝜑 → (((𝐸↑2) + (𝐹↑2)) + ((𝐺↑2) + (𝐻↑2))) ≤ (((𝑀↑2) / 2) + ((𝑀↑2) / 2)))
5036recnd 8101 . . . . . . 7 (𝜑 → (𝑀↑2) ∈ ℂ)
51502halvesd 9283 . . . . . 6 (𝜑 → (((𝑀↑2) / 2) + ((𝑀↑2) / 2)) = (𝑀↑2))
5249, 51breqtrd 4070 . . . . 5 (𝜑 → (((𝐸↑2) + (𝐹↑2)) + ((𝐺↑2) + (𝐻↑2))) ≤ (𝑀↑2))
5335recnd 8101 . . . . . 6 (𝜑𝑀 ∈ ℂ)
5453sqvald 10815 . . . . 5 (𝜑 → (𝑀↑2) = (𝑀 · 𝑀))
5552, 54breqtrd 4070 . . . 4 (𝜑 → (((𝐸↑2) + (𝐹↑2)) + ((𝐺↑2) + (𝐻↑2))) ≤ (𝑀 · 𝑀))
5619, 34readdcld 8102 . . . . 5 (𝜑 → (((𝐸↑2) + (𝐹↑2)) + ((𝐺↑2) + (𝐻↑2))) ∈ ℝ)
575nngt0d 9080 . . . . 5 (𝜑 → 0 < 𝑀)
58 ledivmul 8950 . . . . 5 (((((𝐸↑2) + (𝐹↑2)) + ((𝐺↑2) + (𝐻↑2))) ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ (𝑀 ∈ ℝ ∧ 0 < 𝑀)) → (((((𝐸↑2) + (𝐹↑2)) + ((𝐺↑2) + (𝐻↑2))) / 𝑀) ≤ 𝑀 ↔ (((𝐸↑2) + (𝐹↑2)) + ((𝐺↑2) + (𝐻↑2))) ≤ (𝑀 · 𝑀)))
5956, 35, 35, 57, 58syl112anc 1254 . . . 4 (𝜑 → (((((𝐸↑2) + (𝐹↑2)) + ((𝐺↑2) + (𝐻↑2))) / 𝑀) ≤ 𝑀 ↔ (((𝐸↑2) + (𝐹↑2)) + ((𝐺↑2) + (𝐻↑2))) ≤ (𝑀 · 𝑀)))
6055, 59mpbird 167 . . 3 (𝜑 → ((((𝐸↑2) + (𝐹↑2)) + ((𝐺↑2) + (𝐻↑2))) / 𝑀) ≤ 𝑀)
611, 60eqbrtrid 4079 . 2 (𝜑𝑅𝑀)
62 simpr 110 . . . . . . . . . . . . 13 ((𝜑𝑅 = 0) → 𝑅 = 0)
631, 62eqtr3id 2252 . . . . . . . . . . . 12 ((𝜑𝑅 = 0) → ((((𝐸↑2) + (𝐹↑2)) + ((𝐺↑2) + (𝐻↑2))) / 𝑀) = 0)
6456recnd 8101 . . . . . . . . . . . . . . 15 (𝜑 → (((𝐸↑2) + (𝐹↑2)) + ((𝐺↑2) + (𝐻↑2))) ∈ ℂ)
655nnap0d 9082 . . . . . . . . . . . . . . 15 (𝜑𝑀 # 0)
6664, 53, 65diveqap0ad 8873 . . . . . . . . . . . . . 14 (𝜑 → (((((𝐸↑2) + (𝐹↑2)) + ((𝐺↑2) + (𝐻↑2))) / 𝑀) = 0 ↔ (((𝐸↑2) + (𝐹↑2)) + ((𝐺↑2) + (𝐻↑2))) = 0))
67 zsqcl2 10762 . . . . . . . . . . . . . . . . . 18 (𝐸 ∈ ℤ → (𝐸↑2) ∈ ℕ0)
688, 67syl 14 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐸↑2) ∈ ℕ0)
69 zsqcl2 10762 . . . . . . . . . . . . . . . . . 18 (𝐹 ∈ ℤ → (𝐹↑2) ∈ ℕ0)
7015, 69syl 14 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐹↑2) ∈ ℕ0)
7168, 70nn0addcld 9352 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝐸↑2) + (𝐹↑2)) ∈ ℕ0)
7271nn0ge0d 9351 . . . . . . . . . . . . . . 15 (𝜑 → 0 ≤ ((𝐸↑2) + (𝐹↑2)))
73 zsqcl2 10762 . . . . . . . . . . . . . . . . . 18 (𝐺 ∈ ℤ → (𝐺↑2) ∈ ℕ0)
7423, 73syl 14 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐺↑2) ∈ ℕ0)
75 zsqcl2 10762 . . . . . . . . . . . . . . . . . 18 (𝐻 ∈ ℤ → (𝐻↑2) ∈ ℕ0)
7630, 75syl 14 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐻↑2) ∈ ℕ0)
7774, 76nn0addcld 9352 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝐺↑2) + (𝐻↑2)) ∈ ℕ0)
7877nn0ge0d 9351 . . . . . . . . . . . . . . 15 (𝜑 → 0 ≤ ((𝐺↑2) + (𝐻↑2)))
79 add20 8547 . . . . . . . . . . . . . . 15 (((((𝐸↑2) + (𝐹↑2)) ∈ ℝ ∧ 0 ≤ ((𝐸↑2) + (𝐹↑2))) ∧ (((𝐺↑2) + (𝐻↑2)) ∈ ℝ ∧ 0 ≤ ((𝐺↑2) + (𝐻↑2)))) → ((((𝐸↑2) + (𝐹↑2)) + ((𝐺↑2) + (𝐻↑2))) = 0 ↔ (((𝐸↑2) + (𝐹↑2)) = 0 ∧ ((𝐺↑2) + (𝐻↑2)) = 0)))
8019, 72, 34, 78, 79syl22anc 1251 . . . . . . . . . . . . . 14 (𝜑 → ((((𝐸↑2) + (𝐹↑2)) + ((𝐺↑2) + (𝐻↑2))) = 0 ↔ (((𝐸↑2) + (𝐹↑2)) = 0 ∧ ((𝐺↑2) + (𝐻↑2)) = 0)))
8166, 80bitrd 188 . . . . . . . . . . . . 13 (𝜑 → (((((𝐸↑2) + (𝐹↑2)) + ((𝐺↑2) + (𝐻↑2))) / 𝑀) = 0 ↔ (((𝐸↑2) + (𝐹↑2)) = 0 ∧ ((𝐺↑2) + (𝐻↑2)) = 0)))
8281biimpa 296 . . . . . . . . . . . 12 ((𝜑 ∧ ((((𝐸↑2) + (𝐹↑2)) + ((𝐺↑2) + (𝐻↑2))) / 𝑀) = 0) → (((𝐸↑2) + (𝐹↑2)) = 0 ∧ ((𝐺↑2) + (𝐻↑2)) = 0))
8363, 82syldan 282 . . . . . . . . . . 11 ((𝜑𝑅 = 0) → (((𝐸↑2) + (𝐹↑2)) = 0 ∧ ((𝐺↑2) + (𝐻↑2)) = 0))
8483simpld 112 . . . . . . . . . 10 ((𝜑𝑅 = 0) → ((𝐸↑2) + (𝐹↑2)) = 0)
8568nn0ge0d 9351 . . . . . . . . . . . 12 (𝜑 → 0 ≤ (𝐸↑2))
8670nn0ge0d 9351 . . . . . . . . . . . 12 (𝜑 → 0 ≤ (𝐹↑2))
87 add20 8547 . . . . . . . . . . . 12 ((((𝐸↑2) ∈ ℝ ∧ 0 ≤ (𝐸↑2)) ∧ ((𝐹↑2) ∈ ℝ ∧ 0 ≤ (𝐹↑2))) → (((𝐸↑2) + (𝐹↑2)) = 0 ↔ ((𝐸↑2) = 0 ∧ (𝐹↑2) = 0)))
8811, 85, 18, 86, 87syl22anc 1251 . . . . . . . . . . 11 (𝜑 → (((𝐸↑2) + (𝐹↑2)) = 0 ↔ ((𝐸↑2) = 0 ∧ (𝐹↑2) = 0)))
8988biimpa 296 . . . . . . . . . 10 ((𝜑 ∧ ((𝐸↑2) + (𝐹↑2)) = 0) → ((𝐸↑2) = 0 ∧ (𝐹↑2) = 0))
9084, 89syldan 282 . . . . . . . . 9 ((𝜑𝑅 = 0) → ((𝐸↑2) = 0 ∧ (𝐹↑2) = 0))
9190simpld 112 . . . . . . . 8 ((𝜑𝑅 = 0) → (𝐸↑2) = 0)
922, 5, 6, 914sqlem9 12709 . . . . . . 7 ((𝜑𝑅 = 0) → (𝑀↑2) ∥ (𝐴↑2))
9390simprd 114 . . . . . . . 8 ((𝜑𝑅 = 0) → (𝐹↑2) = 0)
9412, 5, 13, 934sqlem9 12709 . . . . . . 7 ((𝜑𝑅 = 0) → (𝑀↑2) ∥ (𝐵↑2))
955nnsqcld 10839 . . . . . . . . . 10 (𝜑 → (𝑀↑2) ∈ ℕ)
9695nnzd 9494 . . . . . . . . 9 (𝜑 → (𝑀↑2) ∈ ℤ)
97 zsqcl 10755 . . . . . . . . . 10 (𝐴 ∈ ℤ → (𝐴↑2) ∈ ℤ)
982, 97syl 14 . . . . . . . . 9 (𝜑 → (𝐴↑2) ∈ ℤ)
99 zsqcl 10755 . . . . . . . . . 10 (𝐵 ∈ ℤ → (𝐵↑2) ∈ ℤ)
10012, 99syl 14 . . . . . . . . 9 (𝜑 → (𝐵↑2) ∈ ℤ)
101 dvds2add 12136 . . . . . . . . 9 (((𝑀↑2) ∈ ℤ ∧ (𝐴↑2) ∈ ℤ ∧ (𝐵↑2) ∈ ℤ) → (((𝑀↑2) ∥ (𝐴↑2) ∧ (𝑀↑2) ∥ (𝐵↑2)) → (𝑀↑2) ∥ ((𝐴↑2) + (𝐵↑2))))
10296, 98, 100, 101syl3anc 1250 . . . . . . . 8 (𝜑 → (((𝑀↑2) ∥ (𝐴↑2) ∧ (𝑀↑2) ∥ (𝐵↑2)) → (𝑀↑2) ∥ ((𝐴↑2) + (𝐵↑2))))
103102adantr 276 . . . . . . 7 ((𝜑𝑅 = 0) → (((𝑀↑2) ∥ (𝐴↑2) ∧ (𝑀↑2) ∥ (𝐵↑2)) → (𝑀↑2) ∥ ((𝐴↑2) + (𝐵↑2))))
10492, 94, 103mp2and 433 . . . . . 6 ((𝜑𝑅 = 0) → (𝑀↑2) ∥ ((𝐴↑2) + (𝐵↑2)))
10583simprd 114 . . . . . . . . . 10 ((𝜑𝑅 = 0) → ((𝐺↑2) + (𝐻↑2)) = 0)
10674nn0ge0d 9351 . . . . . . . . . . . 12 (𝜑 → 0 ≤ (𝐺↑2))
10776nn0ge0d 9351 . . . . . . . . . . . 12 (𝜑 → 0 ≤ (𝐻↑2))
108 add20 8547 . . . . . . . . . . . 12 ((((𝐺↑2) ∈ ℝ ∧ 0 ≤ (𝐺↑2)) ∧ ((𝐻↑2) ∈ ℝ ∧ 0 ≤ (𝐻↑2))) → (((𝐺↑2) + (𝐻↑2)) = 0 ↔ ((𝐺↑2) = 0 ∧ (𝐻↑2) = 0)))
10926, 106, 33, 107, 108syl22anc 1251 . . . . . . . . . . 11 (𝜑 → (((𝐺↑2) + (𝐻↑2)) = 0 ↔ ((𝐺↑2) = 0 ∧ (𝐻↑2) = 0)))
110109biimpa 296 . . . . . . . . . 10 ((𝜑 ∧ ((𝐺↑2) + (𝐻↑2)) = 0) → ((𝐺↑2) = 0 ∧ (𝐻↑2) = 0))
111105, 110syldan 282 . . . . . . . . 9 ((𝜑𝑅 = 0) → ((𝐺↑2) = 0 ∧ (𝐻↑2) = 0))
112111simpld 112 . . . . . . . 8 ((𝜑𝑅 = 0) → (𝐺↑2) = 0)
11320, 5, 21, 1124sqlem9 12709 . . . . . . 7 ((𝜑𝑅 = 0) → (𝑀↑2) ∥ (𝐶↑2))
114111simprd 114 . . . . . . . 8 ((𝜑𝑅 = 0) → (𝐻↑2) = 0)
11527, 5, 28, 1144sqlem9 12709 . . . . . . 7 ((𝜑𝑅 = 0) → (𝑀↑2) ∥ (𝐷↑2))
116 zsqcl 10755 . . . . . . . . . 10 (𝐶 ∈ ℤ → (𝐶↑2) ∈ ℤ)
11720, 116syl 14 . . . . . . . . 9 (𝜑 → (𝐶↑2) ∈ ℤ)
118 zsqcl 10755 . . . . . . . . . 10 (𝐷 ∈ ℤ → (𝐷↑2) ∈ ℤ)
11927, 118syl 14 . . . . . . . . 9 (𝜑 → (𝐷↑2) ∈ ℤ)
120 dvds2add 12136 . . . . . . . . 9 (((𝑀↑2) ∈ ℤ ∧ (𝐶↑2) ∈ ℤ ∧ (𝐷↑2) ∈ ℤ) → (((𝑀↑2) ∥ (𝐶↑2) ∧ (𝑀↑2) ∥ (𝐷↑2)) → (𝑀↑2) ∥ ((𝐶↑2) + (𝐷↑2))))
12196, 117, 119, 120syl3anc 1250 . . . . . . . 8 (𝜑 → (((𝑀↑2) ∥ (𝐶↑2) ∧ (𝑀↑2) ∥ (𝐷↑2)) → (𝑀↑2) ∥ ((𝐶↑2) + (𝐷↑2))))
122121adantr 276 . . . . . . 7 ((𝜑𝑅 = 0) → (((𝑀↑2) ∥ (𝐶↑2) ∧ (𝑀↑2) ∥ (𝐷↑2)) → (𝑀↑2) ∥ ((𝐶↑2) + (𝐷↑2))))
123113, 115, 122mp2and 433 . . . . . 6 ((𝜑𝑅 = 0) → (𝑀↑2) ∥ ((𝐶↑2) + (𝐷↑2)))
12498, 100zaddcld 9499 . . . . . . . 8 (𝜑 → ((𝐴↑2) + (𝐵↑2)) ∈ ℤ)
125117, 119zaddcld 9499 . . . . . . . 8 (𝜑 → ((𝐶↑2) + (𝐷↑2)) ∈ ℤ)
126 dvds2add 12136 . . . . . . . 8 (((𝑀↑2) ∈ ℤ ∧ ((𝐴↑2) + (𝐵↑2)) ∈ ℤ ∧ ((𝐶↑2) + (𝐷↑2)) ∈ ℤ) → (((𝑀↑2) ∥ ((𝐴↑2) + (𝐵↑2)) ∧ (𝑀↑2) ∥ ((𝐶↑2) + (𝐷↑2))) → (𝑀↑2) ∥ (((𝐴↑2) + (𝐵↑2)) + ((𝐶↑2) + (𝐷↑2)))))
12796, 124, 125, 126syl3anc 1250 . . . . . . 7 (𝜑 → (((𝑀↑2) ∥ ((𝐴↑2) + (𝐵↑2)) ∧ (𝑀↑2) ∥ ((𝐶↑2) + (𝐷↑2))) → (𝑀↑2) ∥ (((𝐴↑2) + (𝐵↑2)) + ((𝐶↑2) + (𝐷↑2)))))
128127adantr 276 . . . . . 6 ((𝜑𝑅 = 0) → (((𝑀↑2) ∥ ((𝐴↑2) + (𝐵↑2)) ∧ (𝑀↑2) ∥ ((𝐶↑2) + (𝐷↑2))) → (𝑀↑2) ∥ (((𝐴↑2) + (𝐵↑2)) + ((𝐶↑2) + (𝐷↑2)))))
129104, 123, 128mp2and 433 . . . . 5 ((𝜑𝑅 = 0) → (𝑀↑2) ∥ (((𝐴↑2) + (𝐵↑2)) + ((𝐶↑2) + (𝐷↑2))))
13096adantr 276 . . . . . . . 8 ((𝜑𝑅 = 𝑀) → (𝑀↑2) ∈ ℤ)
131124adantr 276 . . . . . . . . 9 ((𝜑𝑅 = 𝑀) → ((𝐴↑2) + (𝐵↑2)) ∈ ℤ)
13243adantr 276 . . . . . . . . . 10 ((𝜑𝑅 = 𝑀) → ((((𝑀↑2) / 2) / 2) + (((𝑀↑2) / 2) / 2)) = ((𝑀↑2) / 2))
133 4sqlem11.1 . . . . . . . . . . . . . . . 16 𝑆 = {𝑛 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ 𝑛 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))}
134 4sq.2 . . . . . . . . . . . . . . . 16 (𝜑𝑁 ∈ ℕ)
135 4sq.3 . . . . . . . . . . . . . . . 16 (𝜑𝑃 = ((2 · 𝑁) + 1))
136 4sq.4 . . . . . . . . . . . . . . . 16 (𝜑𝑃 ∈ ℙ)
137 4sq.5 . . . . . . . . . . . . . . . 16 (𝜑 → (0...(2 · 𝑁)) ⊆ 𝑆)
138 4sq.6 . . . . . . . . . . . . . . . 16 𝑇 = {𝑖 ∈ ℕ ∣ (𝑖 · 𝑃) ∈ 𝑆}
139 4sq.7 . . . . . . . . . . . . . . . 16 𝑀 = inf(𝑇, ℝ, < )
140 4sq.p . . . . . . . . . . . . . . . 16 (𝜑 → (𝑀 · 𝑃) = (((𝐴↑2) + (𝐵↑2)) + ((𝐶↑2) + (𝐷↑2))))
141133, 134, 135, 136, 137, 138, 139, 3, 2, 12, 20, 27, 6, 13, 21, 28, 1, 1404sqlem15 12728 . . . . . . . . . . . . . . 15 ((𝜑𝑅 = 𝑀) → ((((((𝑀↑2) / 2) / 2) − (𝐸↑2)) = 0 ∧ ((((𝑀↑2) / 2) / 2) − (𝐹↑2)) = 0) ∧ (((((𝑀↑2) / 2) / 2) − (𝐺↑2)) = 0 ∧ ((((𝑀↑2) / 2) / 2) − (𝐻↑2)) = 0)))
142141simpld 112 . . . . . . . . . . . . . 14 ((𝜑𝑅 = 𝑀) → (((((𝑀↑2) / 2) / 2) − (𝐸↑2)) = 0 ∧ ((((𝑀↑2) / 2) / 2) − (𝐹↑2)) = 0))
143142simpld 112 . . . . . . . . . . . . 13 ((𝜑𝑅 = 𝑀) → ((((𝑀↑2) / 2) / 2) − (𝐸↑2)) = 0)
14438recnd 8101 . . . . . . . . . . . . . . 15 (𝜑 → (((𝑀↑2) / 2) / 2) ∈ ℂ)
14510zcnd 9496 . . . . . . . . . . . . . . 15 (𝜑 → (𝐸↑2) ∈ ℂ)
146144, 145subeq0ad 8393 . . . . . . . . . . . . . 14 (𝜑 → (((((𝑀↑2) / 2) / 2) − (𝐸↑2)) = 0 ↔ (((𝑀↑2) / 2) / 2) = (𝐸↑2)))
147146adantr 276 . . . . . . . . . . . . 13 ((𝜑𝑅 = 𝑀) → (((((𝑀↑2) / 2) / 2) − (𝐸↑2)) = 0 ↔ (((𝑀↑2) / 2) / 2) = (𝐸↑2)))
148143, 147mpbid 147 . . . . . . . . . . . 12 ((𝜑𝑅 = 𝑀) → (((𝑀↑2) / 2) / 2) = (𝐸↑2))
14910adantr 276 . . . . . . . . . . . 12 ((𝜑𝑅 = 𝑀) → (𝐸↑2) ∈ ℤ)
150148, 149eqeltrd 2282 . . . . . . . . . . 11 ((𝜑𝑅 = 𝑀) → (((𝑀↑2) / 2) / 2) ∈ ℤ)
151150, 150zaddcld 9499 . . . . . . . . . 10 ((𝜑𝑅 = 𝑀) → ((((𝑀↑2) / 2) / 2) + (((𝑀↑2) / 2) / 2)) ∈ ℤ)
152132, 151eqeltrrd 2283 . . . . . . . . 9 ((𝜑𝑅 = 𝑀) → ((𝑀↑2) / 2) ∈ ℤ)
153131, 152zsubcld 9500 . . . . . . . 8 ((𝜑𝑅 = 𝑀) → (((𝐴↑2) + (𝐵↑2)) − ((𝑀↑2) / 2)) ∈ ℤ)
154125adantr 276 . . . . . . . . 9 ((𝜑𝑅 = 𝑀) → ((𝐶↑2) + (𝐷↑2)) ∈ ℤ)
155154, 152zsubcld 9500 . . . . . . . 8 ((𝜑𝑅 = 𝑀) → (((𝐶↑2) + (𝐷↑2)) − ((𝑀↑2) / 2)) ∈ ℤ)
15698adantr 276 . . . . . . . . . . 11 ((𝜑𝑅 = 𝑀) → (𝐴↑2) ∈ ℤ)
157156, 150zsubcld 9500 . . . . . . . . . 10 ((𝜑𝑅 = 𝑀) → ((𝐴↑2) − (((𝑀↑2) / 2) / 2)) ∈ ℤ)
158100adantr 276 . . . . . . . . . . 11 ((𝜑𝑅 = 𝑀) → (𝐵↑2) ∈ ℤ)
159158, 150zsubcld 9500 . . . . . . . . . 10 ((𝜑𝑅 = 𝑀) → ((𝐵↑2) − (((𝑀↑2) / 2) / 2)) ∈ ℤ)
1602, 5, 6, 1434sqlem10 12710 . . . . . . . . . 10 ((𝜑𝑅 = 𝑀) → (𝑀↑2) ∥ ((𝐴↑2) − (((𝑀↑2) / 2) / 2)))
161142simprd 114 . . . . . . . . . . 11 ((𝜑𝑅 = 𝑀) → ((((𝑀↑2) / 2) / 2) − (𝐹↑2)) = 0)
16212, 5, 13, 1614sqlem10 12710 . . . . . . . . . 10 ((𝜑𝑅 = 𝑀) → (𝑀↑2) ∥ ((𝐵↑2) − (((𝑀↑2) / 2) / 2)))
163130, 157, 159, 160, 162dvds2addd 12140 . . . . . . . . 9 ((𝜑𝑅 = 𝑀) → (𝑀↑2) ∥ (((𝐴↑2) − (((𝑀↑2) / 2) / 2)) + ((𝐵↑2) − (((𝑀↑2) / 2) / 2))))
16498zcnd 9496 . . . . . . . . . . . 12 (𝜑 → (𝐴↑2) ∈ ℂ)
165100zcnd 9496 . . . . . . . . . . . 12 (𝜑 → (𝐵↑2) ∈ ℂ)
166164, 165, 144, 144addsub4d 8430 . . . . . . . . . . 11 (𝜑 → (((𝐴↑2) + (𝐵↑2)) − ((((𝑀↑2) / 2) / 2) + (((𝑀↑2) / 2) / 2))) = (((𝐴↑2) − (((𝑀↑2) / 2) / 2)) + ((𝐵↑2) − (((𝑀↑2) / 2) / 2))))
16743oveq2d 5960 . . . . . . . . . . 11 (𝜑 → (((𝐴↑2) + (𝐵↑2)) − ((((𝑀↑2) / 2) / 2) + (((𝑀↑2) / 2) / 2))) = (((𝐴↑2) + (𝐵↑2)) − ((𝑀↑2) / 2)))
168166, 167eqtr3d 2240 . . . . . . . . . 10 (𝜑 → (((𝐴↑2) − (((𝑀↑2) / 2) / 2)) + ((𝐵↑2) − (((𝑀↑2) / 2) / 2))) = (((𝐴↑2) + (𝐵↑2)) − ((𝑀↑2) / 2)))
169168adantr 276 . . . . . . . . 9 ((𝜑𝑅 = 𝑀) → (((𝐴↑2) − (((𝑀↑2) / 2) / 2)) + ((𝐵↑2) − (((𝑀↑2) / 2) / 2))) = (((𝐴↑2) + (𝐵↑2)) − ((𝑀↑2) / 2)))
170163, 169breqtrd 4070 . . . . . . . 8 ((𝜑𝑅 = 𝑀) → (𝑀↑2) ∥ (((𝐴↑2) + (𝐵↑2)) − ((𝑀↑2) / 2)))
171117adantr 276 . . . . . . . . . . 11 ((𝜑𝑅 = 𝑀) → (𝐶↑2) ∈ ℤ)
172171, 150zsubcld 9500 . . . . . . . . . 10 ((𝜑𝑅 = 𝑀) → ((𝐶↑2) − (((𝑀↑2) / 2) / 2)) ∈ ℤ)
173119adantr 276 . . . . . . . . . . 11 ((𝜑𝑅 = 𝑀) → (𝐷↑2) ∈ ℤ)
174173, 150zsubcld 9500 . . . . . . . . . 10 ((𝜑𝑅 = 𝑀) → ((𝐷↑2) − (((𝑀↑2) / 2) / 2)) ∈ ℤ)
175141simprd 114 . . . . . . . . . . . 12 ((𝜑𝑅 = 𝑀) → (((((𝑀↑2) / 2) / 2) − (𝐺↑2)) = 0 ∧ ((((𝑀↑2) / 2) / 2) − (𝐻↑2)) = 0))
176175simpld 112 . . . . . . . . . . 11 ((𝜑𝑅 = 𝑀) → ((((𝑀↑2) / 2) / 2) − (𝐺↑2)) = 0)
17720, 5, 21, 1764sqlem10 12710 . . . . . . . . . 10 ((𝜑𝑅 = 𝑀) → (𝑀↑2) ∥ ((𝐶↑2) − (((𝑀↑2) / 2) / 2)))
178175simprd 114 . . . . . . . . . . 11 ((𝜑𝑅 = 𝑀) → ((((𝑀↑2) / 2) / 2) − (𝐻↑2)) = 0)
17927, 5, 28, 1784sqlem10 12710 . . . . . . . . . 10 ((𝜑𝑅 = 𝑀) → (𝑀↑2) ∥ ((𝐷↑2) − (((𝑀↑2) / 2) / 2)))
180130, 172, 174, 177, 179dvds2addd 12140 . . . . . . . . 9 ((𝜑𝑅 = 𝑀) → (𝑀↑2) ∥ (((𝐶↑2) − (((𝑀↑2) / 2) / 2)) + ((𝐷↑2) − (((𝑀↑2) / 2) / 2))))
181117zcnd 9496 . . . . . . . . . . . 12 (𝜑 → (𝐶↑2) ∈ ℂ)
182119zcnd 9496 . . . . . . . . . . . 12 (𝜑 → (𝐷↑2) ∈ ℂ)
183181, 182, 144, 144addsub4d 8430 . . . . . . . . . . 11 (𝜑 → (((𝐶↑2) + (𝐷↑2)) − ((((𝑀↑2) / 2) / 2) + (((𝑀↑2) / 2) / 2))) = (((𝐶↑2) − (((𝑀↑2) / 2) / 2)) + ((𝐷↑2) − (((𝑀↑2) / 2) / 2))))
18443oveq2d 5960 . . . . . . . . . . 11 (𝜑 → (((𝐶↑2) + (𝐷↑2)) − ((((𝑀↑2) / 2) / 2) + (((𝑀↑2) / 2) / 2))) = (((𝐶↑2) + (𝐷↑2)) − ((𝑀↑2) / 2)))
185183, 184eqtr3d 2240 . . . . . . . . . 10 (𝜑 → (((𝐶↑2) − (((𝑀↑2) / 2) / 2)) + ((𝐷↑2) − (((𝑀↑2) / 2) / 2))) = (((𝐶↑2) + (𝐷↑2)) − ((𝑀↑2) / 2)))
186185adantr 276 . . . . . . . . 9 ((𝜑𝑅 = 𝑀) → (((𝐶↑2) − (((𝑀↑2) / 2) / 2)) + ((𝐷↑2) − (((𝑀↑2) / 2) / 2))) = (((𝐶↑2) + (𝐷↑2)) − ((𝑀↑2) / 2)))
187180, 186breqtrd 4070 . . . . . . . 8 ((𝜑𝑅 = 𝑀) → (𝑀↑2) ∥ (((𝐶↑2) + (𝐷↑2)) − ((𝑀↑2) / 2)))
188130, 153, 155, 170, 187dvds2addd 12140 . . . . . . 7 ((𝜑𝑅 = 𝑀) → (𝑀↑2) ∥ ((((𝐴↑2) + (𝐵↑2)) − ((𝑀↑2) / 2)) + (((𝐶↑2) + (𝐷↑2)) − ((𝑀↑2) / 2))))
189124zcnd 9496 . . . . . . . . . 10 (𝜑 → ((𝐴↑2) + (𝐵↑2)) ∈ ℂ)
190125zcnd 9496 . . . . . . . . . 10 (𝜑 → ((𝐶↑2) + (𝐷↑2)) ∈ ℂ)
191189, 190, 42, 42addsub4d 8430 . . . . . . . . 9 (𝜑 → ((((𝐴↑2) + (𝐵↑2)) + ((𝐶↑2) + (𝐷↑2))) − (((𝑀↑2) / 2) + ((𝑀↑2) / 2))) = ((((𝐴↑2) + (𝐵↑2)) − ((𝑀↑2) / 2)) + (((𝐶↑2) + (𝐷↑2)) − ((𝑀↑2) / 2))))
19251oveq2d 5960 . . . . . . . . 9 (𝜑 → ((((𝐴↑2) + (𝐵↑2)) + ((𝐶↑2) + (𝐷↑2))) − (((𝑀↑2) / 2) + ((𝑀↑2) / 2))) = ((((𝐴↑2) + (𝐵↑2)) + ((𝐶↑2) + (𝐷↑2))) − (𝑀↑2)))
193191, 192eqtr3d 2240 . . . . . . . 8 (𝜑 → ((((𝐴↑2) + (𝐵↑2)) − ((𝑀↑2) / 2)) + (((𝐶↑2) + (𝐷↑2)) − ((𝑀↑2) / 2))) = ((((𝐴↑2) + (𝐵↑2)) + ((𝐶↑2) + (𝐷↑2))) − (𝑀↑2)))
194193adantr 276 . . . . . . 7 ((𝜑𝑅 = 𝑀) → ((((𝐴↑2) + (𝐵↑2)) − ((𝑀↑2) / 2)) + (((𝐶↑2) + (𝐷↑2)) − ((𝑀↑2) / 2))) = ((((𝐴↑2) + (𝐵↑2)) + ((𝐶↑2) + (𝐷↑2))) − (𝑀↑2)))
195188, 194breqtrd 4070 . . . . . 6 ((𝜑𝑅 = 𝑀) → (𝑀↑2) ∥ ((((𝐴↑2) + (𝐵↑2)) + ((𝐶↑2) + (𝐷↑2))) − (𝑀↑2)))
196124, 125zaddcld 9499 . . . . . . . 8 (𝜑 → (((𝐴↑2) + (𝐵↑2)) + ((𝐶↑2) + (𝐷↑2))) ∈ ℤ)
197196adantr 276 . . . . . . 7 ((𝜑𝑅 = 𝑀) → (((𝐴↑2) + (𝐵↑2)) + ((𝐶↑2) + (𝐷↑2))) ∈ ℤ)
198 dvdssubr 12150 . . . . . . 7 (((𝑀↑2) ∈ ℤ ∧ (((𝐴↑2) + (𝐵↑2)) + ((𝐶↑2) + (𝐷↑2))) ∈ ℤ) → ((𝑀↑2) ∥ (((𝐴↑2) + (𝐵↑2)) + ((𝐶↑2) + (𝐷↑2))) ↔ (𝑀↑2) ∥ ((((𝐴↑2) + (𝐵↑2)) + ((𝐶↑2) + (𝐷↑2))) − (𝑀↑2))))
199130, 197, 198syl2anc 411 . . . . . 6 ((𝜑𝑅 = 𝑀) → ((𝑀↑2) ∥ (((𝐴↑2) + (𝐵↑2)) + ((𝐶↑2) + (𝐷↑2))) ↔ (𝑀↑2) ∥ ((((𝐴↑2) + (𝐵↑2)) + ((𝐶↑2) + (𝐷↑2))) − (𝑀↑2))))
200195, 199mpbird 167 . . . . 5 ((𝜑𝑅 = 𝑀) → (𝑀↑2) ∥ (((𝐴↑2) + (𝐵↑2)) + ((𝐶↑2) + (𝐷↑2))))
201129, 200jaodan 799 . . . 4 ((𝜑 ∧ (𝑅 = 0 ∨ 𝑅 = 𝑀)) → (𝑀↑2) ∥ (((𝐴↑2) + (𝐵↑2)) + ((𝐶↑2) + (𝐷↑2))))
202140adantr 276 . . . 4 ((𝜑 ∧ (𝑅 = 0 ∨ 𝑅 = 𝑀)) → (𝑀 · 𝑃) = (((𝐴↑2) + (𝐵↑2)) + ((𝐶↑2) + (𝐷↑2))))
203201, 202breqtrrd 4072 . . 3 ((𝜑 ∧ (𝑅 = 0 ∨ 𝑅 = 𝑀)) → (𝑀↑2) ∥ (𝑀 · 𝑃))
204203ex 115 . 2 (𝜑 → ((𝑅 = 0 ∨ 𝑅 = 𝑀) → (𝑀↑2) ∥ (𝑀 · 𝑃)))
20561, 204jca 306 1 (𝜑 → (𝑅𝑀 ∧ ((𝑅 = 0 ∨ 𝑅 = 𝑀) → (𝑀↑2) ∥ (𝑀 · 𝑃))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wo 710   = wceq 1373  wcel 2176  {cab 2191  wrex 2485  {crab 2488  wss 3166   class class class wbr 4044  cfv 5271  (class class class)co 5944  infcinf 7085  cr 7924  0cc0 7925  1c1 7926   + caddc 7928   · cmul 7930   < clt 8107  cle 8108  cmin 8243   / cdiv 8745  cn 9036  2c2 9087  0cn0 9295  cz 9372  cuz 9648  ...cfz 10130   mod cmo 10467  cexp 10683  cdvds 12098  cprime 12429
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4159  ax-sep 4162  ax-nul 4170  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-iinf 4636  ax-cnex 8016  ax-resscn 8017  ax-1cn 8018  ax-1re 8019  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-mulrcl 8024  ax-addcom 8025  ax-mulcom 8026  ax-addass 8027  ax-mulass 8028  ax-distr 8029  ax-i2m1 8030  ax-0lt1 8031  ax-1rid 8032  ax-0id 8033  ax-rnegex 8034  ax-precex 8035  ax-cnre 8036  ax-pre-ltirr 8037  ax-pre-ltwlin 8038  ax-pre-lttrn 8039  ax-pre-apti 8040  ax-pre-ltadd 8041  ax-pre-mulgt0 8042  ax-pre-mulext 8043  ax-arch 8044  ax-caucvg 8045
This theorem depends on definitions:  df-bi 117  df-stab 833  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rmo 2492  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-if 3572  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-tr 4143  df-id 4340  df-po 4343  df-iso 4344  df-iord 4413  df-on 4415  df-ilim 4416  df-suc 4418  df-iom 4639  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-1st 6226  df-2nd 6227  df-recs 6391  df-frec 6477  df-sup 7086  df-pnf 8109  df-mnf 8110  df-xr 8111  df-ltxr 8112  df-le 8113  df-sub 8245  df-neg 8246  df-reap 8648  df-ap 8655  df-div 8746  df-inn 9037  df-2 9095  df-3 9096  df-4 9097  df-n0 9296  df-z 9373  df-uz 9649  df-q 9741  df-rp 9776  df-fz 10131  df-fzo 10265  df-fl 10413  df-mod 10468  df-seqfrec 10593  df-exp 10684  df-cj 11153  df-re 11154  df-im 11155  df-rsqrt 11309  df-abs 11310  df-dvds 12099  df-gcd 12275
This theorem is referenced by:  4sqlem17  12730
  Copyright terms: Public domain W3C validator