![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > flqcld | GIF version |
Description: The floor (greatest integer) function is an integer (closure law). (Contributed by Jim Kingdon, 8-Oct-2021.) |
Ref | Expression |
---|---|
flqcld.1 | ⊢ (𝜑 → 𝐴 ∈ ℚ) |
Ref | Expression |
---|---|
flqcld | ⊢ (𝜑 → (⌊‘𝐴) ∈ ℤ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | flqcld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℚ) | |
2 | flqcl 9734 | . 2 ⊢ (𝐴 ∈ ℚ → (⌊‘𝐴) ∈ ℤ) | |
3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → (⌊‘𝐴) ∈ ℤ) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 1439 ‘cfv 5028 ℤcz 8804 ℚcq 9158 ⌊cfl 9729 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 580 ax-in2 581 ax-io 666 ax-5 1382 ax-7 1383 ax-gen 1384 ax-ie1 1428 ax-ie2 1429 ax-8 1441 ax-10 1442 ax-11 1443 ax-i12 1444 ax-bndl 1445 ax-4 1446 ax-13 1450 ax-14 1451 ax-17 1465 ax-i9 1469 ax-ial 1473 ax-i5r 1474 ax-ext 2071 ax-sep 3963 ax-pow 4015 ax-pr 4045 ax-un 4269 ax-setind 4366 ax-cnex 7490 ax-resscn 7491 ax-1cn 7492 ax-1re 7493 ax-icn 7494 ax-addcl 7495 ax-addrcl 7496 ax-mulcl 7497 ax-mulrcl 7498 ax-addcom 7499 ax-mulcom 7500 ax-addass 7501 ax-mulass 7502 ax-distr 7503 ax-i2m1 7504 ax-0lt1 7505 ax-1rid 7506 ax-0id 7507 ax-rnegex 7508 ax-precex 7509 ax-cnre 7510 ax-pre-ltirr 7511 ax-pre-ltwlin 7512 ax-pre-lttrn 7513 ax-pre-apti 7514 ax-pre-ltadd 7515 ax-pre-mulgt0 7516 ax-pre-mulext 7517 ax-arch 7518 |
This theorem depends on definitions: df-bi 116 df-3or 926 df-3an 927 df-tru 1293 df-fal 1296 df-nf 1396 df-sb 1694 df-eu 1952 df-mo 1953 df-clab 2076 df-cleq 2082 df-clel 2085 df-nfc 2218 df-ne 2257 df-nel 2352 df-ral 2365 df-rex 2366 df-reu 2367 df-rmo 2368 df-rab 2369 df-v 2622 df-sbc 2842 df-csb 2935 df-dif 3002 df-un 3004 df-in 3006 df-ss 3013 df-pw 3435 df-sn 3456 df-pr 3457 df-op 3459 df-uni 3660 df-int 3695 df-iun 3738 df-br 3852 df-opab 3906 df-mpt 3907 df-id 4129 df-po 4132 df-iso 4133 df-xp 4457 df-rel 4458 df-cnv 4459 df-co 4460 df-dm 4461 df-rn 4462 df-res 4463 df-ima 4464 df-iota 4993 df-fun 5030 df-fn 5031 df-f 5032 df-fv 5036 df-riota 5622 df-ov 5669 df-oprab 5670 df-mpt2 5671 df-1st 5925 df-2nd 5926 df-pnf 7578 df-mnf 7579 df-xr 7580 df-ltxr 7581 df-le 7582 df-sub 7709 df-neg 7710 df-reap 8106 df-ap 8113 df-div 8194 df-inn 8477 df-n0 8728 df-z 8805 df-q 9159 df-rp 9189 df-fl 9731 |
This theorem is referenced by: flqge 9743 flqlt 9744 flid 9745 flqltnz 9748 flqwordi 9749 flqword2 9750 flqaddz 9758 flhalf 9763 flltdivnn0lt 9765 fldiv4p1lem1div2 9766 ceiqcl 9768 ceiqge 9770 ceiqm1l 9772 intfracq 9781 flqdiv 9782 modqval 9785 modqvalr 9786 modqcl 9787 flqpmodeq 9788 modq0 9790 modqge0 9793 modqlt 9794 modqdiffl 9796 modqdifz 9797 modqmulnn 9803 modqvalp1 9804 zmodcl 9805 modqcyc 9820 modqadd1 9822 modqmuladd 9827 modqmul1 9838 modqdi 9853 modqsubdir 9854 iexpcyc 10113 facavg 10208 dvdsmod 11195 divalglemnn 11250 divalgmod 11259 flodddiv4t2lthalf 11269 modgcd 11314 hashdvds 11529 |
Copyright terms: Public domain | W3C validator |