| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > flqcld | GIF version | ||
| Description: The floor (greatest integer) function is an integer (closure law). (Contributed by Jim Kingdon, 8-Oct-2021.) |
| Ref | Expression |
|---|---|
| flqcld.1 | ⊢ (𝜑 → 𝐴 ∈ ℚ) |
| Ref | Expression |
|---|---|
| flqcld | ⊢ (𝜑 → (⌊‘𝐴) ∈ ℤ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | flqcld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℚ) | |
| 2 | flqcl 10418 | . 2 ⊢ (𝐴 ∈ ℚ → (⌊‘𝐴) ∈ ℤ) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → (⌊‘𝐴) ∈ ℤ) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2176 ‘cfv 5272 ℤcz 9374 ℚcq 9742 ⌊cfl 10413 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4163 ax-pow 4219 ax-pr 4254 ax-un 4481 ax-setind 4586 ax-cnex 8018 ax-resscn 8019 ax-1cn 8020 ax-1re 8021 ax-icn 8022 ax-addcl 8023 ax-addrcl 8024 ax-mulcl 8025 ax-mulrcl 8026 ax-addcom 8027 ax-mulcom 8028 ax-addass 8029 ax-mulass 8030 ax-distr 8031 ax-i2m1 8032 ax-0lt1 8033 ax-1rid 8034 ax-0id 8035 ax-rnegex 8036 ax-precex 8037 ax-cnre 8038 ax-pre-ltirr 8039 ax-pre-ltwlin 8040 ax-pre-lttrn 8041 ax-pre-apti 8042 ax-pre-ltadd 8043 ax-pre-mulgt0 8044 ax-pre-mulext 8045 ax-arch 8046 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-nel 2472 df-ral 2489 df-rex 2490 df-reu 2491 df-rmo 2492 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-iun 3929 df-br 4046 df-opab 4107 df-mpt 4108 df-id 4341 df-po 4344 df-iso 4345 df-xp 4682 df-rel 4683 df-cnv 4684 df-co 4685 df-dm 4686 df-rn 4687 df-res 4688 df-ima 4689 df-iota 5233 df-fun 5274 df-fn 5275 df-f 5276 df-fv 5280 df-riota 5901 df-ov 5949 df-oprab 5950 df-mpo 5951 df-1st 6228 df-2nd 6229 df-pnf 8111 df-mnf 8112 df-xr 8113 df-ltxr 8114 df-le 8115 df-sub 8247 df-neg 8248 df-reap 8650 df-ap 8657 df-div 8748 df-inn 9039 df-n0 9298 df-z 9375 df-q 9743 df-rp 9778 df-fl 10415 |
| This theorem is referenced by: flqge 10427 flqlt 10428 flid 10429 flqltnz 10432 flqwordi 10433 flqword2 10434 flqaddz 10442 flhalf 10447 flltdivnn0lt 10449 fldiv4p1lem1div2 10450 fldiv4lem1div2uz2 10451 ceiqcl 10454 ceiqge 10456 ceiqm1l 10458 intfracq 10467 flqdiv 10468 modqval 10471 modqvalr 10472 modqcl 10473 flqpmodeq 10474 modq0 10476 modqge0 10479 modqlt 10480 modqdiffl 10482 modqdifz 10483 modqmulnn 10489 modqvalp1 10490 zmodcl 10491 modqcyc 10506 modqadd1 10508 modqmuladd 10513 modqmul1 10524 modqdi 10539 modqsubdir 10540 iexpcyc 10791 facavg 10893 dvdsmod 12206 divalglemnn 12262 divalgmod 12271 flodddiv4t2lthalf 12283 bitsdc 12291 bitsp1 12295 bitsmod 12300 bitscmp 12302 modgcd 12345 hashdvds 12576 prmdiv 12590 odzdvds 12601 fldivp1 12704 pcfac 12706 pcbc 12707 mulgmodid 13530 gausslemma2dlem3 15573 gausslemma2dlem4 15574 gausslemma2dlem5a 15575 gausslemma2dlem5 15576 gausslemma2dlem6 15577 lgseisenlem4 15583 lgseisen 15584 lgsquadlem1 15587 lgsquadlem2 15588 2lgslem1 15601 2lgslem2 15602 |
| Copyright terms: Public domain | W3C validator |