| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > flqcld | GIF version | ||
| Description: The floor (greatest integer) function is an integer (closure law). (Contributed by Jim Kingdon, 8-Oct-2021.) |
| Ref | Expression |
|---|---|
| flqcld.1 | ⊢ (𝜑 → 𝐴 ∈ ℚ) |
| Ref | Expression |
|---|---|
| flqcld | ⊢ (𝜑 → (⌊‘𝐴) ∈ ℤ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | flqcld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℚ) | |
| 2 | flqcl 10493 | . 2 ⊢ (𝐴 ∈ ℚ → (⌊‘𝐴) ∈ ℤ) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → (⌊‘𝐴) ∈ ℤ) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2200 ‘cfv 5318 ℤcz 9446 ℚcq 9814 ⌊cfl 10488 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-cnex 8090 ax-resscn 8091 ax-1cn 8092 ax-1re 8093 ax-icn 8094 ax-addcl 8095 ax-addrcl 8096 ax-mulcl 8097 ax-mulrcl 8098 ax-addcom 8099 ax-mulcom 8100 ax-addass 8101 ax-mulass 8102 ax-distr 8103 ax-i2m1 8104 ax-0lt1 8105 ax-1rid 8106 ax-0id 8107 ax-rnegex 8108 ax-precex 8109 ax-cnre 8110 ax-pre-ltirr 8111 ax-pre-ltwlin 8112 ax-pre-lttrn 8113 ax-pre-apti 8114 ax-pre-ltadd 8115 ax-pre-mulgt0 8116 ax-pre-mulext 8117 ax-arch 8118 |
| This theorem depends on definitions: df-bi 117 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-po 4387 df-iso 4388 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-fv 5326 df-riota 5954 df-ov 6004 df-oprab 6005 df-mpo 6006 df-1st 6286 df-2nd 6287 df-pnf 8183 df-mnf 8184 df-xr 8185 df-ltxr 8186 df-le 8187 df-sub 8319 df-neg 8320 df-reap 8722 df-ap 8729 df-div 8820 df-inn 9111 df-n0 9370 df-z 9447 df-q 9815 df-rp 9850 df-fl 10490 |
| This theorem is referenced by: flqge 10502 flqlt 10503 flid 10504 flqltnz 10507 flqwordi 10508 flqword2 10509 flqaddz 10517 flhalf 10522 flltdivnn0lt 10524 fldiv4p1lem1div2 10525 fldiv4lem1div2uz2 10526 ceiqcl 10529 ceiqge 10531 ceiqm1l 10533 intfracq 10542 flqdiv 10543 modqval 10546 modqvalr 10547 modqcl 10548 flqpmodeq 10549 modq0 10551 modqge0 10554 modqlt 10555 modqdiffl 10557 modqdifz 10558 modqmulnn 10564 modqvalp1 10565 zmodcl 10566 modqcyc 10581 modqadd1 10583 modqmuladd 10588 modqmul1 10599 modqdi 10614 modqsubdir 10615 iexpcyc 10866 facavg 10968 dvdsmod 12373 divalglemnn 12429 divalgmod 12438 flodddiv4t2lthalf 12450 bitsdc 12458 bitsp1 12462 bitsmod 12467 bitscmp 12469 modgcd 12512 hashdvds 12743 prmdiv 12757 odzdvds 12768 fldivp1 12871 pcfac 12873 pcbc 12874 mulgmodid 13698 gausslemma2dlem3 15742 gausslemma2dlem4 15743 gausslemma2dlem5a 15744 gausslemma2dlem5 15745 gausslemma2dlem6 15746 lgseisenlem4 15752 lgseisen 15753 lgsquadlem1 15756 lgsquadlem2 15757 2lgslem1 15770 2lgslem2 15771 |
| Copyright terms: Public domain | W3C validator |