![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > flqcld | GIF version |
Description: The floor (greatest integer) function is an integer (closure law). (Contributed by Jim Kingdon, 8-Oct-2021.) |
Ref | Expression |
---|---|
flqcld.1 | ⊢ (𝜑 → 𝐴 ∈ ℚ) |
Ref | Expression |
---|---|
flqcld | ⊢ (𝜑 → (⌊‘𝐴) ∈ ℤ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | flqcld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℚ) | |
2 | flqcl 10342 | . 2 ⊢ (𝐴 ∈ ℚ → (⌊‘𝐴) ∈ ℤ) | |
3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → (⌊‘𝐴) ∈ ℤ) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2164 ‘cfv 5254 ℤcz 9317 ℚcq 9684 ⌊cfl 10337 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-setind 4569 ax-cnex 7963 ax-resscn 7964 ax-1cn 7965 ax-1re 7966 ax-icn 7967 ax-addcl 7968 ax-addrcl 7969 ax-mulcl 7970 ax-mulrcl 7971 ax-addcom 7972 ax-mulcom 7973 ax-addass 7974 ax-mulass 7975 ax-distr 7976 ax-i2m1 7977 ax-0lt1 7978 ax-1rid 7979 ax-0id 7980 ax-rnegex 7981 ax-precex 7982 ax-cnre 7983 ax-pre-ltirr 7984 ax-pre-ltwlin 7985 ax-pre-lttrn 7986 ax-pre-apti 7987 ax-pre-ltadd 7988 ax-pre-mulgt0 7989 ax-pre-mulext 7990 ax-arch 7991 |
This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rmo 2480 df-rab 2481 df-v 2762 df-sbc 2986 df-csb 3081 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-int 3871 df-iun 3914 df-br 4030 df-opab 4091 df-mpt 4092 df-id 4324 df-po 4327 df-iso 4328 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-rn 4670 df-res 4671 df-ima 4672 df-iota 5215 df-fun 5256 df-fn 5257 df-f 5258 df-fv 5262 df-riota 5873 df-ov 5921 df-oprab 5922 df-mpo 5923 df-1st 6193 df-2nd 6194 df-pnf 8056 df-mnf 8057 df-xr 8058 df-ltxr 8059 df-le 8060 df-sub 8192 df-neg 8193 df-reap 8594 df-ap 8601 df-div 8692 df-inn 8983 df-n0 9241 df-z 9318 df-q 9685 df-rp 9720 df-fl 10339 |
This theorem is referenced by: flqge 10351 flqlt 10352 flid 10353 flqltnz 10356 flqwordi 10357 flqword2 10358 flqaddz 10366 flhalf 10371 flltdivnn0lt 10373 fldiv4p1lem1div2 10374 fldiv4lem1div2uz2 10375 ceiqcl 10378 ceiqge 10380 ceiqm1l 10382 intfracq 10391 flqdiv 10392 modqval 10395 modqvalr 10396 modqcl 10397 flqpmodeq 10398 modq0 10400 modqge0 10403 modqlt 10404 modqdiffl 10406 modqdifz 10407 modqmulnn 10413 modqvalp1 10414 zmodcl 10415 modqcyc 10430 modqadd1 10432 modqmuladd 10437 modqmul1 10448 modqdi 10463 modqsubdir 10464 iexpcyc 10715 facavg 10817 dvdsmod 12004 divalglemnn 12059 divalgmod 12068 flodddiv4t2lthalf 12078 modgcd 12128 hashdvds 12359 prmdiv 12373 odzdvds 12383 fldivp1 12486 pcfac 12488 pcbc 12489 mulgmodid 13231 gausslemma2dlem3 15179 gausslemma2dlem4 15180 gausslemma2dlem5a 15181 gausslemma2dlem5 15182 gausslemma2dlem6 15183 lgseisenlem4 15189 lgseisen 15190 lgsquadlem1 15191 |
Copyright terms: Public domain | W3C validator |