| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > flqcld | GIF version | ||
| Description: The floor (greatest integer) function is an integer (closure law). (Contributed by Jim Kingdon, 8-Oct-2021.) |
| Ref | Expression |
|---|---|
| flqcld.1 | ⊢ (𝜑 → 𝐴 ∈ ℚ) |
| Ref | Expression |
|---|---|
| flqcld | ⊢ (𝜑 → (⌊‘𝐴) ∈ ℤ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | flqcld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℚ) | |
| 2 | flqcl 10416 | . 2 ⊢ (𝐴 ∈ ℚ → (⌊‘𝐴) ∈ ℤ) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → (⌊‘𝐴) ∈ ℤ) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2176 ‘cfv 5271 ℤcz 9372 ℚcq 9740 ⌊cfl 10411 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-setind 4585 ax-cnex 8016 ax-resscn 8017 ax-1cn 8018 ax-1re 8019 ax-icn 8020 ax-addcl 8021 ax-addrcl 8022 ax-mulcl 8023 ax-mulrcl 8024 ax-addcom 8025 ax-mulcom 8026 ax-addass 8027 ax-mulass 8028 ax-distr 8029 ax-i2m1 8030 ax-0lt1 8031 ax-1rid 8032 ax-0id 8033 ax-rnegex 8034 ax-precex 8035 ax-cnre 8036 ax-pre-ltirr 8037 ax-pre-ltwlin 8038 ax-pre-lttrn 8039 ax-pre-apti 8040 ax-pre-ltadd 8041 ax-pre-mulgt0 8042 ax-pre-mulext 8043 ax-arch 8044 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-nel 2472 df-ral 2489 df-rex 2490 df-reu 2491 df-rmo 2492 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-iun 3929 df-br 4045 df-opab 4106 df-mpt 4107 df-id 4340 df-po 4343 df-iso 4344 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-res 4687 df-ima 4688 df-iota 5232 df-fun 5273 df-fn 5274 df-f 5275 df-fv 5279 df-riota 5899 df-ov 5947 df-oprab 5948 df-mpo 5949 df-1st 6226 df-2nd 6227 df-pnf 8109 df-mnf 8110 df-xr 8111 df-ltxr 8112 df-le 8113 df-sub 8245 df-neg 8246 df-reap 8648 df-ap 8655 df-div 8746 df-inn 9037 df-n0 9296 df-z 9373 df-q 9741 df-rp 9776 df-fl 10413 |
| This theorem is referenced by: flqge 10425 flqlt 10426 flid 10427 flqltnz 10430 flqwordi 10431 flqword2 10432 flqaddz 10440 flhalf 10445 flltdivnn0lt 10447 fldiv4p1lem1div2 10448 fldiv4lem1div2uz2 10449 ceiqcl 10452 ceiqge 10454 ceiqm1l 10456 intfracq 10465 flqdiv 10466 modqval 10469 modqvalr 10470 modqcl 10471 flqpmodeq 10472 modq0 10474 modqge0 10477 modqlt 10478 modqdiffl 10480 modqdifz 10481 modqmulnn 10487 modqvalp1 10488 zmodcl 10489 modqcyc 10504 modqadd1 10506 modqmuladd 10511 modqmul1 10522 modqdi 10537 modqsubdir 10538 iexpcyc 10789 facavg 10891 dvdsmod 12173 divalglemnn 12229 divalgmod 12238 flodddiv4t2lthalf 12250 bitsdc 12258 bitsp1 12262 bitsmod 12267 bitscmp 12269 modgcd 12312 hashdvds 12543 prmdiv 12557 odzdvds 12568 fldivp1 12671 pcfac 12673 pcbc 12674 mulgmodid 13497 gausslemma2dlem3 15540 gausslemma2dlem4 15541 gausslemma2dlem5a 15542 gausslemma2dlem5 15543 gausslemma2dlem6 15544 lgseisenlem4 15550 lgseisen 15551 lgsquadlem1 15554 lgsquadlem2 15555 2lgslem1 15568 2lgslem2 15569 |
| Copyright terms: Public domain | W3C validator |