| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > znfi | GIF version | ||
| Description: The ℤ/nℤ structure is a finite ring. (Contributed by Mario Carneiro, 2-May-2016.) | 
| Ref | Expression | 
|---|---|
| zntos.y | ⊢ 𝑌 = (ℤ/nℤ‘𝑁) | 
| znhash.1 | ⊢ 𝐵 = (Base‘𝑌) | 
| Ref | Expression | 
|---|---|
| znfi | ⊢ (𝑁 ∈ ℕ → 𝐵 ∈ Fin) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | 0z 9337 | . . 3 ⊢ 0 ∈ ℤ | |
| 2 | nnz 9345 | . . 3 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℤ) | |
| 3 | fzofig 10524 | . . 3 ⊢ ((0 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (0..^𝑁) ∈ Fin) | |
| 4 | 1, 2, 3 | sylancr 414 | . 2 ⊢ (𝑁 ∈ ℕ → (0..^𝑁) ∈ Fin) | 
| 5 | nnnn0 9256 | . . . . . 6 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0) | |
| 6 | zntos.y | . . . . . . 7 ⊢ 𝑌 = (ℤ/nℤ‘𝑁) | |
| 7 | znhash.1 | . . . . . . 7 ⊢ 𝐵 = (Base‘𝑌) | |
| 8 | eqid 2196 | . . . . . . 7 ⊢ ((ℤRHom‘𝑌) ↾ if(𝑁 = 0, ℤ, (0..^𝑁))) = ((ℤRHom‘𝑌) ↾ if(𝑁 = 0, ℤ, (0..^𝑁))) | |
| 9 | eqid 2196 | . . . . . . 7 ⊢ if(𝑁 = 0, ℤ, (0..^𝑁)) = if(𝑁 = 0, ℤ, (0..^𝑁)) | |
| 10 | 6, 7, 8, 9 | znf1o 14207 | . . . . . 6 ⊢ (𝑁 ∈ ℕ0 → ((ℤRHom‘𝑌) ↾ if(𝑁 = 0, ℤ, (0..^𝑁))):if(𝑁 = 0, ℤ, (0..^𝑁))–1-1-onto→𝐵) | 
| 11 | 5, 10 | syl 14 | . . . . 5 ⊢ (𝑁 ∈ ℕ → ((ℤRHom‘𝑌) ↾ if(𝑁 = 0, ℤ, (0..^𝑁))):if(𝑁 = 0, ℤ, (0..^𝑁))–1-1-onto→𝐵) | 
| 12 | nnne0 9018 | . . . . . 6 ⊢ (𝑁 ∈ ℕ → 𝑁 ≠ 0) | |
| 13 | ifnefalse 3572 | . . . . . 6 ⊢ (𝑁 ≠ 0 → if(𝑁 = 0, ℤ, (0..^𝑁)) = (0..^𝑁)) | |
| 14 | f1oeq2 5493 | . . . . . 6 ⊢ (if(𝑁 = 0, ℤ, (0..^𝑁)) = (0..^𝑁) → (((ℤRHom‘𝑌) ↾ if(𝑁 = 0, ℤ, (0..^𝑁))):if(𝑁 = 0, ℤ, (0..^𝑁))–1-1-onto→𝐵 ↔ ((ℤRHom‘𝑌) ↾ if(𝑁 = 0, ℤ, (0..^𝑁))):(0..^𝑁)–1-1-onto→𝐵)) | |
| 15 | 12, 13, 14 | 3syl 17 | . . . . 5 ⊢ (𝑁 ∈ ℕ → (((ℤRHom‘𝑌) ↾ if(𝑁 = 0, ℤ, (0..^𝑁))):if(𝑁 = 0, ℤ, (0..^𝑁))–1-1-onto→𝐵 ↔ ((ℤRHom‘𝑌) ↾ if(𝑁 = 0, ℤ, (0..^𝑁))):(0..^𝑁)–1-1-onto→𝐵)) | 
| 16 | 11, 15 | mpbid 147 | . . . 4 ⊢ (𝑁 ∈ ℕ → ((ℤRHom‘𝑌) ↾ if(𝑁 = 0, ℤ, (0..^𝑁))):(0..^𝑁)–1-1-onto→𝐵) | 
| 17 | f1oeng 6816 | . . . 4 ⊢ (((0..^𝑁) ∈ Fin ∧ ((ℤRHom‘𝑌) ↾ if(𝑁 = 0, ℤ, (0..^𝑁))):(0..^𝑁)–1-1-onto→𝐵) → (0..^𝑁) ≈ 𝐵) | |
| 18 | 4, 16, 17 | syl2anc 411 | . . 3 ⊢ (𝑁 ∈ ℕ → (0..^𝑁) ≈ 𝐵) | 
| 19 | 18 | ensymd 6842 | . 2 ⊢ (𝑁 ∈ ℕ → 𝐵 ≈ (0..^𝑁)) | 
| 20 | enfii 6935 | . 2 ⊢ (((0..^𝑁) ∈ Fin ∧ 𝐵 ≈ (0..^𝑁)) → 𝐵 ∈ Fin) | |
| 21 | 4, 19, 20 | syl2anc 411 | 1 ⊢ (𝑁 ∈ ℕ → 𝐵 ∈ Fin) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1364 ∈ wcel 2167 ≠ wne 2367 ifcif 3561 class class class wbr 4033 ↾ cres 4665 –1-1-onto→wf1o 5257 ‘cfv 5258 (class class class)co 5922 ≈ cen 6797 Fincfn 6799 0cc0 7879 ℕcn 8990 ℕ0cn0 9249 ℤcz 9326 ..^cfzo 10217 Basecbs 12678 ℤRHomczrh 14167 ℤ/nℤczn 14169 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-iinf 4624 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-mulrcl 7978 ax-addcom 7979 ax-mulcom 7980 ax-addass 7981 ax-mulass 7982 ax-distr 7983 ax-i2m1 7984 ax-0lt1 7985 ax-1rid 7986 ax-0id 7987 ax-rnegex 7988 ax-precex 7989 ax-cnre 7990 ax-pre-ltirr 7991 ax-pre-ltwlin 7992 ax-pre-lttrn 7993 ax-pre-apti 7994 ax-pre-ltadd 7995 ax-pre-mulgt0 7996 ax-pre-mulext 7997 ax-arch 7998 ax-addf 8001 ax-mulf 8002 | 
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-if 3562 df-pw 3607 df-sn 3628 df-pr 3629 df-tp 3630 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-tr 4132 df-id 4328 df-po 4331 df-iso 4332 df-iord 4401 df-on 4403 df-ilim 4404 df-suc 4406 df-iom 4627 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-1st 6198 df-2nd 6199 df-tpos 6303 df-recs 6363 df-frec 6449 df-1o 6474 df-er 6592 df-ec 6594 df-qs 6598 df-map 6709 df-en 6800 df-fin 6802 df-pnf 8063 df-mnf 8064 df-xr 8065 df-ltxr 8066 df-le 8067 df-sub 8199 df-neg 8200 df-reap 8602 df-ap 8609 df-div 8700 df-inn 8991 df-2 9049 df-3 9050 df-4 9051 df-5 9052 df-6 9053 df-7 9054 df-8 9055 df-9 9056 df-n0 9250 df-z 9327 df-dec 9458 df-uz 9602 df-q 9694 df-rp 9729 df-fz 10084 df-fzo 10218 df-fl 10360 df-mod 10415 df-seqfrec 10540 df-cj 11007 df-abs 11164 df-dvds 11953 df-struct 12680 df-ndx 12681 df-slot 12682 df-base 12684 df-sets 12685 df-iress 12686 df-plusg 12768 df-mulr 12769 df-starv 12770 df-sca 12771 df-vsca 12772 df-ip 12773 df-tset 12774 df-ple 12775 df-ds 12777 df-unif 12778 df-0g 12929 df-topgen 12931 df-iimas 12945 df-qus 12946 df-mgm 12999 df-sgrp 13045 df-mnd 13058 df-mhm 13091 df-grp 13135 df-minusg 13136 df-sbg 13137 df-mulg 13250 df-subg 13300 df-nsg 13301 df-eqg 13302 df-ghm 13371 df-cmn 13416 df-abl 13417 df-mgp 13477 df-rng 13489 df-ur 13516 df-srg 13520 df-ring 13554 df-cring 13555 df-oppr 13624 df-dvdsr 13645 df-rhm 13708 df-subrg 13775 df-lmod 13845 df-lssm 13909 df-lsp 13943 df-sra 13991 df-rgmod 13992 df-lidl 14025 df-rsp 14026 df-2idl 14056 df-bl 14102 df-mopn 14103 df-fg 14105 df-metu 14106 df-cnfld 14113 df-zring 14147 df-zrh 14170 df-zn 14172 | 
| This theorem is referenced by: znhash 14212 znidom 14213 znidomb 14214 | 
| Copyright terms: Public domain | W3C validator |