ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sqval GIF version

Theorem sqval 10708
Description: Value of the square of a complex number. (Contributed by Raph Levien, 10-Apr-2004.)
Assertion
Ref Expression
sqval (𝐴 ∈ ℂ → (𝐴↑2) = (𝐴 · 𝐴))

Proof of Theorem sqval
StepHypRef Expression
1 df-2 9068 . . . 4 2 = (1 + 1)
21oveq2i 5936 . . 3 (𝐴↑2) = (𝐴↑(1 + 1))
3 1nn0 9284 . . . 4 1 ∈ ℕ0
4 expp1 10657 . . . 4 ((𝐴 ∈ ℂ ∧ 1 ∈ ℕ0) → (𝐴↑(1 + 1)) = ((𝐴↑1) · 𝐴))
53, 4mpan2 425 . . 3 (𝐴 ∈ ℂ → (𝐴↑(1 + 1)) = ((𝐴↑1) · 𝐴))
62, 5eqtrid 2241 . 2 (𝐴 ∈ ℂ → (𝐴↑2) = ((𝐴↑1) · 𝐴))
7 exp1 10656 . . 3 (𝐴 ∈ ℂ → (𝐴↑1) = 𝐴)
87oveq1d 5940 . 2 (𝐴 ∈ ℂ → ((𝐴↑1) · 𝐴) = (𝐴 · 𝐴))
96, 8eqtrd 2229 1 (𝐴 ∈ ℂ → (𝐴↑2) = (𝐴 · 𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  wcel 2167  (class class class)co 5925  cc 7896  1c1 7899   + caddc 7901   · cmul 7903  2c2 9060  0cn0 9268  cexp 10649
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7989  ax-resscn 7990  ax-1cn 7991  ax-1re 7992  ax-icn 7993  ax-addcl 7994  ax-addrcl 7995  ax-mulcl 7996  ax-mulrcl 7997  ax-addcom 7998  ax-mulcom 7999  ax-addass 8000  ax-mulass 8001  ax-distr 8002  ax-i2m1 8003  ax-0lt1 8004  ax-1rid 8005  ax-0id 8006  ax-rnegex 8007  ax-precex 8008  ax-cnre 8009  ax-pre-ltirr 8010  ax-pre-ltwlin 8011  ax-pre-lttrn 8012  ax-pre-apti 8013  ax-pre-ltadd 8014  ax-pre-mulgt0 8015  ax-pre-mulext 8016
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-frec 6458  df-pnf 8082  df-mnf 8083  df-xr 8084  df-ltxr 8085  df-le 8086  df-sub 8218  df-neg 8219  df-reap 8621  df-ap 8628  df-div 8719  df-inn 9010  df-2 9068  df-n0 9269  df-z 9346  df-uz 9621  df-seqfrec 10559  df-exp 10650
This theorem is referenced by:  sqneg  10709  sqcl  10711  sqdivap  10714  sqdividap  10715  sqap0  10717  sqgt0ap  10719  nnsqcl  10720  qsqcl  10722  sq11  10723  lt2sq  10724  le2sq  10725  sqge0  10727  sqvali  10730  nnlesq  10754  subsq  10757  subsq2  10758  binom2  10762  binom3  10768  zesq  10769  sqvald  10781  arisum  11682
  Copyright terms: Public domain W3C validator