ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rpdivcld GIF version

Theorem rpdivcld 9838
Description: Closure law for division of positive reals. (Contributed by Mario Carneiro, 28-May-2016.)
Hypotheses
Ref Expression
rpred.1 (𝜑𝐴 ∈ ℝ+)
rpaddcld.1 (𝜑𝐵 ∈ ℝ+)
Assertion
Ref Expression
rpdivcld (𝜑 → (𝐴 / 𝐵) ∈ ℝ+)

Proof of Theorem rpdivcld
StepHypRef Expression
1 rpred.1 . 2 (𝜑𝐴 ∈ ℝ+)
2 rpaddcld.1 . 2 (𝜑𝐵 ∈ ℝ+)
3 rpdivcl 9803 . 2 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) → (𝐴 / 𝐵) ∈ ℝ+)
41, 2, 3syl2anc 411 1 (𝜑 → (𝐴 / 𝐵) ∈ ℝ+)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2176  (class class class)co 5946   / cdiv 8747  +crp 9777
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4163  ax-pow 4219  ax-pr 4254  ax-un 4481  ax-setind 4586  ax-cnex 8018  ax-resscn 8019  ax-1cn 8020  ax-1re 8021  ax-icn 8022  ax-addcl 8023  ax-addrcl 8024  ax-mulcl 8025  ax-mulrcl 8026  ax-addcom 8027  ax-mulcom 8028  ax-addass 8029  ax-mulass 8030  ax-distr 8031  ax-i2m1 8032  ax-0lt1 8033  ax-1rid 8034  ax-0id 8035  ax-rnegex 8036  ax-precex 8037  ax-cnre 8038  ax-pre-ltirr 8039  ax-pre-ltwlin 8040  ax-pre-lttrn 8041  ax-pre-apti 8042  ax-pre-ltadd 8043  ax-pre-mulgt0 8044  ax-pre-mulext 8045
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rmo 2492  df-rab 2493  df-v 2774  df-sbc 2999  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4046  df-opab 4107  df-id 4341  df-po 4344  df-iso 4345  df-xp 4682  df-rel 4683  df-cnv 4684  df-co 4685  df-dm 4686  df-iota 5233  df-fun 5274  df-fv 5280  df-riota 5901  df-ov 5949  df-oprab 5950  df-mpo 5951  df-pnf 8111  df-mnf 8112  df-xr 8113  df-ltxr 8114  df-le 8115  df-sub 8247  df-neg 8248  df-reap 8650  df-ap 8657  df-div 8748  df-rp 9778
This theorem is referenced by:  bcpasc  10913  cvg1nlemcxze  11326  cvg1nlemres  11329  resqrexlemcalc2  11359  resqrexlemnmsq  11361  resqrexlemnm  11362  resqrexlemcvg  11363  resqrexlemglsq  11366  resqrexlemga  11367  mulcn2  11656  climrecvg1n  11692  climcvg1nlem  11693  cvgratnnlemfm  11873  cvgratnnlemrate  11874  cvgratnn  11875  mertenslemi1  11879  mertenslem2  11880  effsumlt  12036  efgt1p2  12039  prmind2  12475  tanrpcl  15342  logdivlti  15386  logbgcd1irr  15472  lgsquadlem2  15588  cvgcmp2nlemabs  16008  trilpolemisumle  16014
  Copyright terms: Public domain W3C validator