ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iswrdsymb GIF version

Theorem iswrdsymb 11097
Description: An arbitrary word is a word over an alphabet if all of its symbols belong to the alphabet. (Contributed by AV, 23-Jan-2021.)
Assertion
Ref Expression
iswrdsymb ((𝑊 ∈ Word V ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) ∈ 𝑉) → 𝑊 ∈ Word 𝑉)
Distinct variable groups:   𝑖,𝑉   𝑖,𝑊

Proof of Theorem iswrdsymb
StepHypRef Expression
1 wrdfn 11094 . . . 4 (𝑊 ∈ Word V → 𝑊 Fn (0..^(♯‘𝑊)))
21anim1i 340 . . 3 ((𝑊 ∈ Word V ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) ∈ 𝑉) → (𝑊 Fn (0..^(♯‘𝑊)) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) ∈ 𝑉))
3 ffnfv 5795 . . 3 (𝑊:(0..^(♯‘𝑊))⟶𝑉 ↔ (𝑊 Fn (0..^(♯‘𝑊)) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) ∈ 𝑉))
42, 3sylibr 134 . 2 ((𝑊 ∈ Word V ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) ∈ 𝑉) → 𝑊:(0..^(♯‘𝑊))⟶𝑉)
5 lencl 11083 . . 3 (𝑊 ∈ Word V → (♯‘𝑊) ∈ ℕ0)
65adantr 276 . 2 ((𝑊 ∈ Word V ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) ∈ 𝑉) → (♯‘𝑊) ∈ ℕ0)
7 iswrdinn0 11084 . 2 ((𝑊:(0..^(♯‘𝑊))⟶𝑉 ∧ (♯‘𝑊) ∈ ℕ0) → 𝑊 ∈ Word 𝑉)
84, 6, 7syl2anc 411 1 ((𝑊 ∈ Word V ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) ∈ 𝑉) → 𝑊 ∈ Word 𝑉)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wcel 2200  wral 2508  Vcvv 2799   Fn wfn 5313  wf 5314  cfv 5318  (class class class)co 6007  0cc0 8007  0cn0 9377  ..^cfzo 10346  chash 11005  Word cword 11079
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680  ax-cnex 8098  ax-resscn 8099  ax-1cn 8100  ax-1re 8101  ax-icn 8102  ax-addcl 8103  ax-addrcl 8104  ax-mulcl 8105  ax-addcom 8107  ax-addass 8109  ax-distr 8111  ax-i2m1 8112  ax-0lt1 8113  ax-0id 8115  ax-rnegex 8116  ax-cnre 8118  ax-pre-ltirr 8119  ax-pre-ltwlin 8120  ax-pre-lttrn 8121  ax-pre-apti 8122  ax-pre-ltadd 8123
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-iord 4457  df-on 4459  df-ilim 4460  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-riota 5960  df-ov 6010  df-oprab 6011  df-mpo 6012  df-1st 6292  df-2nd 6293  df-recs 6457  df-frec 6543  df-1o 6568  df-er 6688  df-en 6896  df-dom 6897  df-fin 6898  df-pnf 8191  df-mnf 8192  df-xr 8193  df-ltxr 8194  df-le 8195  df-sub 8327  df-neg 8328  df-inn 9119  df-n0 9378  df-z 9455  df-uz 9731  df-fz 10213  df-fzo 10347  df-ihash 11006  df-word 11080
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator