| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > lencl | GIF version | ||
| Description: The length of a word is a nonnegative integer. This corresponds to the definition in Section 9.1 of [AhoHopUll] p. 318. (Contributed by Stefan O'Rear, 27-Aug-2015.) |
| Ref | Expression |
|---|---|
| lencl | ⊢ (𝑊 ∈ Word 𝑆 → (♯‘𝑊) ∈ ℕ0) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iswrd 11013 | . . 3 ⊢ (𝑊 ∈ Word 𝑆 ↔ ∃𝑙 ∈ ℕ0 𝑊:(0..^𝑙)⟶𝑆) | |
| 2 | 1 | biimpi 120 | . 2 ⊢ (𝑊 ∈ Word 𝑆 → ∃𝑙 ∈ ℕ0 𝑊:(0..^𝑙)⟶𝑆) |
| 3 | fnfzo0hash 10997 | . . . 4 ⊢ ((𝑙 ∈ ℕ0 ∧ 𝑊:(0..^𝑙)⟶𝑆) → (♯‘𝑊) = 𝑙) | |
| 4 | 3 | adantl 277 | . . 3 ⊢ ((𝑊 ∈ Word 𝑆 ∧ (𝑙 ∈ ℕ0 ∧ 𝑊:(0..^𝑙)⟶𝑆)) → (♯‘𝑊) = 𝑙) |
| 5 | simprl 529 | . . 3 ⊢ ((𝑊 ∈ Word 𝑆 ∧ (𝑙 ∈ ℕ0 ∧ 𝑊:(0..^𝑙)⟶𝑆)) → 𝑙 ∈ ℕ0) | |
| 6 | 4, 5 | eqeltrd 2283 | . 2 ⊢ ((𝑊 ∈ Word 𝑆 ∧ (𝑙 ∈ ℕ0 ∧ 𝑊:(0..^𝑙)⟶𝑆)) → (♯‘𝑊) ∈ ℕ0) |
| 7 | 2, 6 | rexlimddv 2629 | 1 ⊢ (𝑊 ∈ Word 𝑆 → (♯‘𝑊) ∈ ℕ0) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1373 ∈ wcel 2177 ∃wrex 2486 ⟶wf 5275 ‘cfv 5279 (class class class)co 5956 0cc0 7940 ℕ0cn0 9310 ..^cfzo 10279 ♯chash 10937 Word cword 11011 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4166 ax-sep 4169 ax-nul 4177 ax-pow 4225 ax-pr 4260 ax-un 4487 ax-setind 4592 ax-iinf 4643 ax-cnex 8031 ax-resscn 8032 ax-1cn 8033 ax-1re 8034 ax-icn 8035 ax-addcl 8036 ax-addrcl 8037 ax-mulcl 8038 ax-addcom 8040 ax-addass 8042 ax-distr 8044 ax-i2m1 8045 ax-0lt1 8046 ax-0id 8048 ax-rnegex 8049 ax-cnre 8051 ax-pre-ltirr 8052 ax-pre-ltwlin 8053 ax-pre-lttrn 8054 ax-pre-apti 8055 ax-pre-ltadd 8056 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-if 3576 df-pw 3622 df-sn 3643 df-pr 3644 df-op 3646 df-uni 3856 df-int 3891 df-iun 3934 df-br 4051 df-opab 4113 df-mpt 4114 df-tr 4150 df-id 4347 df-iord 4420 df-on 4422 df-ilim 4423 df-suc 4425 df-iom 4646 df-xp 4688 df-rel 4689 df-cnv 4690 df-co 4691 df-dm 4692 df-rn 4693 df-res 4694 df-ima 4695 df-iota 5240 df-fun 5281 df-fn 5282 df-f 5283 df-f1 5284 df-fo 5285 df-f1o 5286 df-fv 5287 df-riota 5911 df-ov 5959 df-oprab 5960 df-mpo 5961 df-1st 6238 df-2nd 6239 df-recs 6403 df-frec 6489 df-1o 6514 df-er 6632 df-en 6840 df-dom 6841 df-fin 6842 df-pnf 8124 df-mnf 8125 df-xr 8126 df-ltxr 8127 df-le 8128 df-sub 8260 df-neg 8261 df-inn 9052 df-n0 9311 df-z 9388 df-uz 9664 df-fz 10146 df-fzo 10280 df-ihash 10938 df-word 11012 |
| This theorem is referenced by: iswrdsymb 11029 wrdfin 11030 wrdffz 11032 wrdsymb 11038 wrdsymb0 11043 wrdlenge1n0 11044 wrdlenge2n0 11046 wrdsymb1 11047 eqwrd 11051 wrdred1 11053 wrdred1hash 11054 lswwrd 11057 ccatcl 11067 ccatlen 11069 ccat0 11070 ccatval1 11071 ccatval2 11072 ccatval3 11073 elfzelfzccat 11074 ccatvalfn 11075 ccatsymb 11076 ccatfv0 11077 ccatval21sw 11079 ccatlid 11080 ccatrid 11081 ccatass 11082 ccatrn 11083 lswccatn0lsw 11085 ccatws1lenp1bg 11107 ccats1val2 11110 ccat1st1st 11111 lswccats1 11113 lswccats1fst 11114 fzowrddc 11118 swrdnd 11130 swrdrlen 11132 swrdlen2 11133 swrdfv2 11134 swrdlsw 11140 swrdccat2 11142 pfxid 11157 pfxn0 11159 pfxwrdsymbg 11161 addlenpfx 11162 pfxtrcfv0 11165 pfxeq 11167 pfxtrcfvl 11168 pfxsuffeqwrdeq 11169 pfxccat1 11173 pfxcctswrd 11181 lenrevpfxcctswrd 11183 ccats1pfxeq 11185 ccats1pfxeqrex 11186 ccatopth2 11188 cats1un 11192 wrdind 11193 wrd2ind 11194 wrdupgren 15762 wrdumgren 15772 |
| Copyright terms: Public domain | W3C validator |