| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > wrdfin | GIF version | ||
| Description: A word is a finite set. (Contributed by Stefan O'Rear, 2-Nov-2015.) (Proof shortened by AV, 18-Nov-2018.) |
| Ref | Expression |
|---|---|
| wrdfin | ⊢ (𝑊 ∈ Word 𝑆 → 𝑊 ∈ Fin) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wrdfn 11094 | . 2 ⊢ (𝑊 ∈ Word 𝑆 → 𝑊 Fn (0..^(♯‘𝑊))) | |
| 2 | 0z 9465 | . . 3 ⊢ 0 ∈ ℤ | |
| 3 | lencl 11083 | . . . 4 ⊢ (𝑊 ∈ Word 𝑆 → (♯‘𝑊) ∈ ℕ0) | |
| 4 | 3 | nn0zd 9575 | . . 3 ⊢ (𝑊 ∈ Word 𝑆 → (♯‘𝑊) ∈ ℤ) |
| 5 | fzofig 10662 | . . 3 ⊢ ((0 ∈ ℤ ∧ (♯‘𝑊) ∈ ℤ) → (0..^(♯‘𝑊)) ∈ Fin) | |
| 6 | 2, 4, 5 | sylancr 414 | . 2 ⊢ (𝑊 ∈ Word 𝑆 → (0..^(♯‘𝑊)) ∈ Fin) |
| 7 | fnfi 7111 | . 2 ⊢ ((𝑊 Fn (0..^(♯‘𝑊)) ∧ (0..^(♯‘𝑊)) ∈ Fin) → 𝑊 ∈ Fin) | |
| 8 | 1, 6, 7 | syl2anc 411 | 1 ⊢ (𝑊 ∈ Word 𝑆 → 𝑊 ∈ Fin) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2200 Fn wfn 5313 ‘cfv 5318 (class class class)co 6007 Fincfn 6895 0cc0 8007 ℤcz 9454 ..^cfzo 10346 ♯chash 11005 Word cword 11079 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-nul 4210 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-iinf 4680 ax-cnex 8098 ax-resscn 8099 ax-1cn 8100 ax-1re 8101 ax-icn 8102 ax-addcl 8103 ax-addrcl 8104 ax-mulcl 8105 ax-addcom 8107 ax-addass 8109 ax-distr 8111 ax-i2m1 8112 ax-0lt1 8113 ax-0id 8115 ax-rnegex 8116 ax-cnre 8118 ax-pre-ltirr 8119 ax-pre-ltwlin 8120 ax-pre-lttrn 8121 ax-pre-apti 8122 ax-pre-ltadd 8123 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-tr 4183 df-id 4384 df-iord 4457 df-on 4459 df-ilim 4460 df-suc 4462 df-iom 4683 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-riota 5960 df-ov 6010 df-oprab 6011 df-mpo 6012 df-1st 6292 df-2nd 6293 df-recs 6457 df-frec 6543 df-1o 6568 df-er 6688 df-en 6896 df-dom 6897 df-fin 6898 df-pnf 8191 df-mnf 8192 df-xr 8193 df-ltxr 8194 df-le 8195 df-sub 8327 df-neg 8328 df-inn 9119 df-n0 9378 df-z 9455 df-uz 9731 df-fz 10213 df-fzo 10347 df-ihash 11006 df-word 11080 |
| This theorem is referenced by: lennncl 11099 wrdlenge1n0 11113 lswex 11131 lswlgt0cl 11132 ccatcl 11136 ccatlen 11138 ccat0 11139 ccatval1 11140 ccatval2 11141 ccatvalfn 11144 ccat1st1st 11180 swrdlsw 11209 pfxtrcfv 11233 pfxsuff1eqwrdeq 11239 pfxlswccat 11253 ccats1pfxeq 11254 ccats1pfxeqrex 11255 wrdeqs1cat 11260 wrdind 11262 wrd2ind 11263 swrdccat3blem 11279 gsumwsubmcl 13537 gsumwmhm 13539 |
| Copyright terms: Public domain | W3C validator |