| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > wrdfin | GIF version | ||
| Description: A word is a finite set. (Contributed by Stefan O'Rear, 2-Nov-2015.) (Proof shortened by AV, 18-Nov-2018.) |
| Ref | Expression |
|---|---|
| wrdfin | ⊢ (𝑊 ∈ Word 𝑆 → 𝑊 ∈ Fin) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wrdfn 11053 | . 2 ⊢ (𝑊 ∈ Word 𝑆 → 𝑊 Fn (0..^(♯‘𝑊))) | |
| 2 | 0z 9425 | . . 3 ⊢ 0 ∈ ℤ | |
| 3 | lencl 11042 | . . . 4 ⊢ (𝑊 ∈ Word 𝑆 → (♯‘𝑊) ∈ ℕ0) | |
| 4 | 3 | nn0zd 9535 | . . 3 ⊢ (𝑊 ∈ Word 𝑆 → (♯‘𝑊) ∈ ℤ) |
| 5 | fzofig 10621 | . . 3 ⊢ ((0 ∈ ℤ ∧ (♯‘𝑊) ∈ ℤ) → (0..^(♯‘𝑊)) ∈ Fin) | |
| 6 | 2, 4, 5 | sylancr 414 | . 2 ⊢ (𝑊 ∈ Word 𝑆 → (0..^(♯‘𝑊)) ∈ Fin) |
| 7 | fnfi 7071 | . 2 ⊢ ((𝑊 Fn (0..^(♯‘𝑊)) ∧ (0..^(♯‘𝑊)) ∈ Fin) → 𝑊 ∈ Fin) | |
| 8 | 1, 6, 7 | syl2anc 411 | 1 ⊢ (𝑊 ∈ Word 𝑆 → 𝑊 ∈ Fin) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2180 Fn wfn 5289 ‘cfv 5294 (class class class)co 5974 Fincfn 6857 0cc0 7967 ℤcz 9414 ..^cfzo 10306 ♯chash 10964 Word cword 11038 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-13 2182 ax-14 2183 ax-ext 2191 ax-coll 4178 ax-sep 4181 ax-nul 4189 ax-pow 4237 ax-pr 4272 ax-un 4501 ax-setind 4606 ax-iinf 4657 ax-cnex 8058 ax-resscn 8059 ax-1cn 8060 ax-1re 8061 ax-icn 8062 ax-addcl 8063 ax-addrcl 8064 ax-mulcl 8065 ax-addcom 8067 ax-addass 8069 ax-distr 8071 ax-i2m1 8072 ax-0lt1 8073 ax-0id 8075 ax-rnegex 8076 ax-cnre 8078 ax-pre-ltirr 8079 ax-pre-ltwlin 8080 ax-pre-lttrn 8081 ax-pre-apti 8082 ax-pre-ltadd 8083 |
| This theorem depends on definitions: df-bi 117 df-dc 839 df-3or 984 df-3an 985 df-tru 1378 df-fal 1381 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ne 2381 df-nel 2476 df-ral 2493 df-rex 2494 df-reu 2495 df-rab 2497 df-v 2781 df-sbc 3009 df-csb 3105 df-dif 3179 df-un 3181 df-in 3183 df-ss 3190 df-nul 3472 df-if 3583 df-pw 3631 df-sn 3652 df-pr 3653 df-op 3655 df-uni 3868 df-int 3903 df-iun 3946 df-br 4063 df-opab 4125 df-mpt 4126 df-tr 4162 df-id 4361 df-iord 4434 df-on 4436 df-ilim 4437 df-suc 4439 df-iom 4660 df-xp 4702 df-rel 4703 df-cnv 4704 df-co 4705 df-dm 4706 df-rn 4707 df-res 4708 df-ima 4709 df-iota 5254 df-fun 5296 df-fn 5297 df-f 5298 df-f1 5299 df-fo 5300 df-f1o 5301 df-fv 5302 df-riota 5927 df-ov 5977 df-oprab 5978 df-mpo 5979 df-1st 6256 df-2nd 6257 df-recs 6421 df-frec 6507 df-1o 6532 df-er 6650 df-en 6858 df-dom 6859 df-fin 6860 df-pnf 8151 df-mnf 8152 df-xr 8153 df-ltxr 8154 df-le 8155 df-sub 8287 df-neg 8288 df-inn 9079 df-n0 9338 df-z 9415 df-uz 9691 df-fz 10173 df-fzo 10307 df-ihash 10965 df-word 11039 |
| This theorem is referenced by: lennncl 11058 wrdlenge1n0 11071 lswex 11089 lswlgt0cl 11090 ccatcl 11094 ccatlen 11096 ccat0 11097 ccatval1 11098 ccatval2 11099 ccatvalfn 11102 ccat1st1st 11138 swrdlsw 11167 pfxtrcfv 11191 pfxsuff1eqwrdeq 11197 pfxlswccat 11211 ccats1pfxeq 11212 ccats1pfxeqrex 11213 wrdeqs1cat 11218 wrdind 11220 wrd2ind 11221 swrdccat3blem 11237 gsumwsubmcl 13495 gsumwmhm 13497 |
| Copyright terms: Public domain | W3C validator |