| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > wrdfin | GIF version | ||
| Description: A word is a finite set. (Contributed by Stefan O'Rear, 2-Nov-2015.) (Proof shortened by AV, 18-Nov-2018.) |
| Ref | Expression |
|---|---|
| wrdfin | ⊢ (𝑊 ∈ Word 𝑆 → 𝑊 ∈ Fin) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wrdfn 11016 | . 2 ⊢ (𝑊 ∈ Word 𝑆 → 𝑊 Fn (0..^(♯‘𝑊))) | |
| 2 | 0z 9390 | . . 3 ⊢ 0 ∈ ℤ | |
| 3 | lencl 11005 | . . . 4 ⊢ (𝑊 ∈ Word 𝑆 → (♯‘𝑊) ∈ ℕ0) | |
| 4 | 3 | nn0zd 9500 | . . 3 ⊢ (𝑊 ∈ Word 𝑆 → (♯‘𝑊) ∈ ℤ) |
| 5 | fzofig 10584 | . . 3 ⊢ ((0 ∈ ℤ ∧ (♯‘𝑊) ∈ ℤ) → (0..^(♯‘𝑊)) ∈ Fin) | |
| 6 | 2, 4, 5 | sylancr 414 | . 2 ⊢ (𝑊 ∈ Word 𝑆 → (0..^(♯‘𝑊)) ∈ Fin) |
| 7 | fnfi 7045 | . 2 ⊢ ((𝑊 Fn (0..^(♯‘𝑊)) ∧ (0..^(♯‘𝑊)) ∈ Fin) → 𝑊 ∈ Fin) | |
| 8 | 1, 6, 7 | syl2anc 411 | 1 ⊢ (𝑊 ∈ Word 𝑆 → 𝑊 ∈ Fin) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2177 Fn wfn 5271 ‘cfv 5276 (class class class)co 5951 Fincfn 6834 0cc0 7932 ℤcz 9379 ..^cfzo 10271 ♯chash 10927 Word cword 11001 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4163 ax-sep 4166 ax-nul 4174 ax-pow 4222 ax-pr 4257 ax-un 4484 ax-setind 4589 ax-iinf 4640 ax-cnex 8023 ax-resscn 8024 ax-1cn 8025 ax-1re 8026 ax-icn 8027 ax-addcl 8028 ax-addrcl 8029 ax-mulcl 8030 ax-addcom 8032 ax-addass 8034 ax-distr 8036 ax-i2m1 8037 ax-0lt1 8038 ax-0id 8040 ax-rnegex 8041 ax-cnre 8043 ax-pre-ltirr 8044 ax-pre-ltwlin 8045 ax-pre-lttrn 8046 ax-pre-apti 8047 ax-pre-ltadd 8048 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3000 df-csb 3095 df-dif 3169 df-un 3171 df-in 3173 df-ss 3180 df-nul 3462 df-if 3573 df-pw 3619 df-sn 3640 df-pr 3641 df-op 3643 df-uni 3853 df-int 3888 df-iun 3931 df-br 4048 df-opab 4110 df-mpt 4111 df-tr 4147 df-id 4344 df-iord 4417 df-on 4419 df-ilim 4420 df-suc 4422 df-iom 4643 df-xp 4685 df-rel 4686 df-cnv 4687 df-co 4688 df-dm 4689 df-rn 4690 df-res 4691 df-ima 4692 df-iota 5237 df-fun 5278 df-fn 5279 df-f 5280 df-f1 5281 df-fo 5282 df-f1o 5283 df-fv 5284 df-riota 5906 df-ov 5954 df-oprab 5955 df-mpo 5956 df-1st 6233 df-2nd 6234 df-recs 6398 df-frec 6484 df-1o 6509 df-er 6627 df-en 6835 df-dom 6836 df-fin 6837 df-pnf 8116 df-mnf 8117 df-xr 8118 df-ltxr 8119 df-le 8120 df-sub 8252 df-neg 8253 df-inn 9044 df-n0 9303 df-z 9380 df-uz 9656 df-fz 10138 df-fzo 10272 df-ihash 10928 df-word 11002 |
| This theorem is referenced by: lennncl 11021 wrdlenge1n0 11034 lswex 11052 lswlgt0cl 11053 ccatcl 11057 ccatlen 11059 ccat0 11060 ccatval1 11061 ccatval2 11062 ccatvalfn 11065 ccat1st1st 11101 swrdlsw 11130 pfxtrcfv 11152 pfxsuff1eqwrdeq 11158 gsumwsubmcl 13372 gsumwmhm 13374 |
| Copyright terms: Public domain | W3C validator |