ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  wrdfin GIF version

Theorem wrdfin 11057
Description: A word is a finite set. (Contributed by Stefan O'Rear, 2-Nov-2015.) (Proof shortened by AV, 18-Nov-2018.)
Assertion
Ref Expression
wrdfin (𝑊 ∈ Word 𝑆𝑊 ∈ Fin)

Proof of Theorem wrdfin
StepHypRef Expression
1 wrdfn 11053 . 2 (𝑊 ∈ Word 𝑆𝑊 Fn (0..^(♯‘𝑊)))
2 0z 9425 . . 3 0 ∈ ℤ
3 lencl 11042 . . . 4 (𝑊 ∈ Word 𝑆 → (♯‘𝑊) ∈ ℕ0)
43nn0zd 9535 . . 3 (𝑊 ∈ Word 𝑆 → (♯‘𝑊) ∈ ℤ)
5 fzofig 10621 . . 3 ((0 ∈ ℤ ∧ (♯‘𝑊) ∈ ℤ) → (0..^(♯‘𝑊)) ∈ Fin)
62, 4, 5sylancr 414 . 2 (𝑊 ∈ Word 𝑆 → (0..^(♯‘𝑊)) ∈ Fin)
7 fnfi 7071 . 2 ((𝑊 Fn (0..^(♯‘𝑊)) ∧ (0..^(♯‘𝑊)) ∈ Fin) → 𝑊 ∈ Fin)
81, 6, 7syl2anc 411 1 (𝑊 ∈ Word 𝑆𝑊 ∈ Fin)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2180   Fn wfn 5289  cfv 5294  (class class class)co 5974  Fincfn 6857  0cc0 7967  cz 9414  ..^cfzo 10306  chash 10964  Word cword 11038
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-coll 4178  ax-sep 4181  ax-nul 4189  ax-pow 4237  ax-pr 4272  ax-un 4501  ax-setind 4606  ax-iinf 4657  ax-cnex 8058  ax-resscn 8059  ax-1cn 8060  ax-1re 8061  ax-icn 8062  ax-addcl 8063  ax-addrcl 8064  ax-mulcl 8065  ax-addcom 8067  ax-addass 8069  ax-distr 8071  ax-i2m1 8072  ax-0lt1 8073  ax-0id 8075  ax-rnegex 8076  ax-cnre 8078  ax-pre-ltirr 8079  ax-pre-ltwlin 8080  ax-pre-lttrn 8081  ax-pre-apti 8082  ax-pre-ltadd 8083
This theorem depends on definitions:  df-bi 117  df-dc 839  df-3or 984  df-3an 985  df-tru 1378  df-fal 1381  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ne 2381  df-nel 2476  df-ral 2493  df-rex 2494  df-reu 2495  df-rab 2497  df-v 2781  df-sbc 3009  df-csb 3105  df-dif 3179  df-un 3181  df-in 3183  df-ss 3190  df-nul 3472  df-if 3583  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-int 3903  df-iun 3946  df-br 4063  df-opab 4125  df-mpt 4126  df-tr 4162  df-id 4361  df-iord 4434  df-on 4436  df-ilim 4437  df-suc 4439  df-iom 4660  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-rn 4707  df-res 4708  df-ima 4709  df-iota 5254  df-fun 5296  df-fn 5297  df-f 5298  df-f1 5299  df-fo 5300  df-f1o 5301  df-fv 5302  df-riota 5927  df-ov 5977  df-oprab 5978  df-mpo 5979  df-1st 6256  df-2nd 6257  df-recs 6421  df-frec 6507  df-1o 6532  df-er 6650  df-en 6858  df-dom 6859  df-fin 6860  df-pnf 8151  df-mnf 8152  df-xr 8153  df-ltxr 8154  df-le 8155  df-sub 8287  df-neg 8288  df-inn 9079  df-n0 9338  df-z 9415  df-uz 9691  df-fz 10173  df-fzo 10307  df-ihash 10965  df-word 11039
This theorem is referenced by:  lennncl  11058  wrdlenge1n0  11071  lswex  11089  lswlgt0cl  11090  ccatcl  11094  ccatlen  11096  ccat0  11097  ccatval1  11098  ccatval2  11099  ccatvalfn  11102  ccat1st1st  11138  swrdlsw  11167  pfxtrcfv  11191  pfxsuff1eqwrdeq  11197  pfxlswccat  11211  ccats1pfxeq  11212  ccats1pfxeqrex  11213  wrdeqs1cat  11218  wrdind  11220  wrd2ind  11221  swrdccat3blem  11237  gsumwsubmcl  13495  gsumwmhm  13497
  Copyright terms: Public domain W3C validator