| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > s2dmg | GIF version | ||
| Description: The domain of a doubleton word is an unordered pair. (Contributed by AV, 9-Jan-2020.) |
| Ref | Expression |
|---|---|
| s2dmg | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → dom 〈“𝐴𝐵”〉 = {0, 1}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 2789 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ V) | |
| 2 | elex 2789 | . . . 4 ⊢ (𝐵 ∈ 𝑊 → 𝐵 ∈ V) | |
| 3 | s2cl 11278 | . . . . 5 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → 〈“𝐴𝐵”〉 ∈ Word V) | |
| 4 | wrdf 11039 | . . . . 5 ⊢ (〈“𝐴𝐵”〉 ∈ Word V → 〈“𝐴𝐵”〉:(0..^(♯‘〈“𝐴𝐵”〉))⟶V) | |
| 5 | 3, 4 | syl 14 | . . . 4 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → 〈“𝐴𝐵”〉:(0..^(♯‘〈“𝐴𝐵”〉))⟶V) |
| 6 | 1, 2, 5 | syl2an 289 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 〈“𝐴𝐵”〉:(0..^(♯‘〈“𝐴𝐵”〉))⟶V) |
| 7 | s2leng 11282 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (♯‘〈“𝐴𝐵”〉) = 2) | |
| 8 | oveq2 5977 | . . . . . 6 ⊢ ((♯‘〈“𝐴𝐵”〉) = 2 → (0..^(♯‘〈“𝐴𝐵”〉)) = (0..^2)) | |
| 9 | fzo0to2pr 10386 | . . . . . 6 ⊢ (0..^2) = {0, 1} | |
| 10 | 8, 9 | eqtrdi 2256 | . . . . 5 ⊢ ((♯‘〈“𝐴𝐵”〉) = 2 → (0..^(♯‘〈“𝐴𝐵”〉)) = {0, 1}) |
| 11 | 7, 10 | syl 14 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (0..^(♯‘〈“𝐴𝐵”〉)) = {0, 1}) |
| 12 | 11 | feq2d 5434 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (〈“𝐴𝐵”〉:(0..^(♯‘〈“𝐴𝐵”〉))⟶V ↔ 〈“𝐴𝐵”〉:{0, 1}⟶V)) |
| 13 | 6, 12 | mpbid 147 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 〈“𝐴𝐵”〉:{0, 1}⟶V) |
| 14 | 13 | fdmd 5453 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → dom 〈“𝐴𝐵”〉 = {0, 1}) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1373 ∈ wcel 2178 Vcvv 2777 {cpr 3645 dom cdm 4694 ⟶wf 5287 ‘cfv 5291 (class class class)co 5969 0cc0 7962 1c1 7963 2c2 9124 ..^cfzo 10301 ♯chash 10959 Word cword 11033 〈“cs2 11242 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-coll 4176 ax-sep 4179 ax-nul 4187 ax-pow 4235 ax-pr 4270 ax-un 4499 ax-setind 4604 ax-iinf 4655 ax-cnex 8053 ax-resscn 8054 ax-1cn 8055 ax-1re 8056 ax-icn 8057 ax-addcl 8058 ax-addrcl 8059 ax-mulcl 8060 ax-addcom 8062 ax-addass 8064 ax-distr 8066 ax-i2m1 8067 ax-0lt1 8068 ax-0id 8070 ax-rnegex 8071 ax-cnre 8073 ax-pre-ltirr 8074 ax-pre-ltwlin 8075 ax-pre-lttrn 8076 ax-pre-apti 8077 ax-pre-ltadd 8078 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-nel 2474 df-ral 2491 df-rex 2492 df-reu 2493 df-rab 2495 df-v 2779 df-sbc 3007 df-csb 3103 df-dif 3177 df-un 3179 df-in 3181 df-ss 3188 df-nul 3470 df-if 3581 df-pw 3629 df-sn 3650 df-pr 3651 df-op 3653 df-uni 3866 df-int 3901 df-iun 3944 df-br 4061 df-opab 4123 df-mpt 4124 df-tr 4160 df-id 4359 df-iord 4432 df-on 4434 df-ilim 4435 df-suc 4437 df-iom 4658 df-xp 4700 df-rel 4701 df-cnv 4702 df-co 4703 df-dm 4704 df-rn 4705 df-res 4706 df-ima 4707 df-iota 5252 df-fun 5293 df-fn 5294 df-f 5295 df-f1 5296 df-fo 5297 df-f1o 5298 df-fv 5299 df-riota 5924 df-ov 5972 df-oprab 5973 df-mpo 5974 df-1st 6251 df-2nd 6252 df-recs 6416 df-frec 6502 df-1o 6527 df-er 6645 df-en 6853 df-dom 6854 df-fin 6855 df-pnf 8146 df-mnf 8147 df-xr 8148 df-ltxr 8149 df-le 8150 df-sub 8282 df-neg 8283 df-inn 9074 df-2 9132 df-n0 9333 df-z 9410 df-uz 9686 df-fz 10168 df-fzo 10302 df-ihash 10960 df-word 11034 df-concat 11087 df-s1 11110 df-s2 11249 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |