ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  swrdccatin2d GIF version

Theorem swrdccatin2d 11271
Description: The subword of a concatenation of two words within the second of the concatenated words. (Contributed by AV, 31-May-2018.) (Revised by Mario Carneiro/AV, 21-Oct-2018.)
Hypotheses
Ref Expression
swrdccatind.l (𝜑 → (♯‘𝐴) = 𝐿)
swrdccatind.w (𝜑 → (𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉))
swrdccatin2d.1 (𝜑𝑀 ∈ (𝐿...𝑁))
swrdccatin2d.2 (𝜑𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))
Assertion
Ref Expression
swrdccatin2d (𝜑 → ((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩) = (𝐵 substr ⟨(𝑀𝐿), (𝑁𝐿)⟩))

Proof of Theorem swrdccatin2d
StepHypRef Expression
1 swrdccatind.l . 2 (𝜑 → (♯‘𝐴) = 𝐿)
2 swrdccatind.w . . . . . . 7 (𝜑 → (𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉))
32adantl 277 . . . . . 6 (((♯‘𝐴) = 𝐿𝜑) → (𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉))
4 swrdccatin2d.1 . . . . . . . . 9 (𝜑𝑀 ∈ (𝐿...𝑁))
5 swrdccatin2d.2 . . . . . . . . 9 (𝜑𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))
64, 5jca 306 . . . . . . . 8 (𝜑 → (𝑀 ∈ (𝐿...𝑁) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵)))))
76adantl 277 . . . . . . 7 (((♯‘𝐴) = 𝐿𝜑) → (𝑀 ∈ (𝐿...𝑁) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵)))))
8 oveq1 6007 . . . . . . . . . 10 ((♯‘𝐴) = 𝐿 → ((♯‘𝐴)...𝑁) = (𝐿...𝑁))
98eleq2d 2299 . . . . . . . . 9 ((♯‘𝐴) = 𝐿 → (𝑀 ∈ ((♯‘𝐴)...𝑁) ↔ 𝑀 ∈ (𝐿...𝑁)))
10 id 19 . . . . . . . . . . 11 ((♯‘𝐴) = 𝐿 → (♯‘𝐴) = 𝐿)
11 oveq1 6007 . . . . . . . . . . 11 ((♯‘𝐴) = 𝐿 → ((♯‘𝐴) + (♯‘𝐵)) = (𝐿 + (♯‘𝐵)))
1210, 11oveq12d 6018 . . . . . . . . . 10 ((♯‘𝐴) = 𝐿 → ((♯‘𝐴)...((♯‘𝐴) + (♯‘𝐵))) = (𝐿...(𝐿 + (♯‘𝐵))))
1312eleq2d 2299 . . . . . . . . 9 ((♯‘𝐴) = 𝐿 → (𝑁 ∈ ((♯‘𝐴)...((♯‘𝐴) + (♯‘𝐵))) ↔ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵)))))
149, 13anbi12d 473 . . . . . . . 8 ((♯‘𝐴) = 𝐿 → ((𝑀 ∈ ((♯‘𝐴)...𝑁) ∧ 𝑁 ∈ ((♯‘𝐴)...((♯‘𝐴) + (♯‘𝐵)))) ↔ (𝑀 ∈ (𝐿...𝑁) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))))
1514adantr 276 . . . . . . 7 (((♯‘𝐴) = 𝐿𝜑) → ((𝑀 ∈ ((♯‘𝐴)...𝑁) ∧ 𝑁 ∈ ((♯‘𝐴)...((♯‘𝐴) + (♯‘𝐵)))) ↔ (𝑀 ∈ (𝐿...𝑁) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))))
167, 15mpbird 167 . . . . . 6 (((♯‘𝐴) = 𝐿𝜑) → (𝑀 ∈ ((♯‘𝐴)...𝑁) ∧ 𝑁 ∈ ((♯‘𝐴)...((♯‘𝐴) + (♯‘𝐵)))))
173, 16jca 306 . . . . 5 (((♯‘𝐴) = 𝐿𝜑) → ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ ((♯‘𝐴)...𝑁) ∧ 𝑁 ∈ ((♯‘𝐴)...((♯‘𝐴) + (♯‘𝐵))))))
1817ex 115 . . . 4 ((♯‘𝐴) = 𝐿 → (𝜑 → ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ ((♯‘𝐴)...𝑁) ∧ 𝑁 ∈ ((♯‘𝐴)...((♯‘𝐴) + (♯‘𝐵)))))))
19 eqid 2229 . . . . . 6 (♯‘𝐴) = (♯‘𝐴)
2019swrdccatin2 11256 . . . . 5 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → ((𝑀 ∈ ((♯‘𝐴)...𝑁) ∧ 𝑁 ∈ ((♯‘𝐴)...((♯‘𝐴) + (♯‘𝐵)))) → ((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩) = (𝐵 substr ⟨(𝑀 − (♯‘𝐴)), (𝑁 − (♯‘𝐴))⟩)))
2120imp 124 . . . 4 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ ((♯‘𝐴)...𝑁) ∧ 𝑁 ∈ ((♯‘𝐴)...((♯‘𝐴) + (♯‘𝐵))))) → ((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩) = (𝐵 substr ⟨(𝑀 − (♯‘𝐴)), (𝑁 − (♯‘𝐴))⟩))
2218, 21syl6 33 . . 3 ((♯‘𝐴) = 𝐿 → (𝜑 → ((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩) = (𝐵 substr ⟨(𝑀 − (♯‘𝐴)), (𝑁 − (♯‘𝐴))⟩)))
23 oveq2 6008 . . . . . 6 ((♯‘𝐴) = 𝐿 → (𝑀 − (♯‘𝐴)) = (𝑀𝐿))
24 oveq2 6008 . . . . . 6 ((♯‘𝐴) = 𝐿 → (𝑁 − (♯‘𝐴)) = (𝑁𝐿))
2523, 24opeq12d 3864 . . . . 5 ((♯‘𝐴) = 𝐿 → ⟨(𝑀 − (♯‘𝐴)), (𝑁 − (♯‘𝐴))⟩ = ⟨(𝑀𝐿), (𝑁𝐿)⟩)
2625oveq2d 6016 . . . 4 ((♯‘𝐴) = 𝐿 → (𝐵 substr ⟨(𝑀 − (♯‘𝐴)), (𝑁 − (♯‘𝐴))⟩) = (𝐵 substr ⟨(𝑀𝐿), (𝑁𝐿)⟩))
2726eqeq2d 2241 . . 3 ((♯‘𝐴) = 𝐿 → (((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩) = (𝐵 substr ⟨(𝑀 − (♯‘𝐴)), (𝑁 − (♯‘𝐴))⟩) ↔ ((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩) = (𝐵 substr ⟨(𝑀𝐿), (𝑁𝐿)⟩)))
2822, 27sylibd 149 . 2 ((♯‘𝐴) = 𝐿 → (𝜑 → ((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩) = (𝐵 substr ⟨(𝑀𝐿), (𝑁𝐿)⟩)))
291, 28mpcom 36 1 (𝜑 → ((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩) = (𝐵 substr ⟨(𝑀𝐿), (𝑁𝐿)⟩))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1395  wcel 2200  cop 3669  cfv 5317  (class class class)co 6000   + caddc 7998  cmin 8313  ...cfz 10200  chash 10992  Word cword 11066   ++ cconcat 11120   substr csubstr 11172
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-iinf 4679  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-addcom 8095  ax-addass 8097  ax-distr 8099  ax-i2m1 8100  ax-0lt1 8101  ax-0id 8103  ax-rnegex 8104  ax-cnre 8106  ax-pre-ltirr 8107  ax-pre-ltwlin 8108  ax-pre-lttrn 8109  ax-pre-apti 8110  ax-pre-ltadd 8111
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4383  df-iord 4456  df-on 4458  df-ilim 4459  df-suc 4461  df-iom 4682  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-1st 6284  df-2nd 6285  df-recs 6449  df-frec 6535  df-1o 6560  df-er 6678  df-en 6886  df-dom 6887  df-fin 6888  df-pnf 8179  df-mnf 8180  df-xr 8181  df-ltxr 8182  df-le 8183  df-sub 8315  df-neg 8316  df-inn 9107  df-n0 9366  df-z 9443  df-uz 9719  df-fz 10201  df-fzo 10335  df-ihash 10993  df-word 11067  df-concat 11121  df-substr 11173
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator