ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  swrdccatin2d GIF version

Theorem swrdccatin2d 11235
Description: The subword of a concatenation of two words within the second of the concatenated words. (Contributed by AV, 31-May-2018.) (Revised by Mario Carneiro/AV, 21-Oct-2018.)
Hypotheses
Ref Expression
swrdccatind.l (𝜑 → (♯‘𝐴) = 𝐿)
swrdccatind.w (𝜑 → (𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉))
swrdccatin2d.1 (𝜑𝑀 ∈ (𝐿...𝑁))
swrdccatin2d.2 (𝜑𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))
Assertion
Ref Expression
swrdccatin2d (𝜑 → ((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩) = (𝐵 substr ⟨(𝑀𝐿), (𝑁𝐿)⟩))

Proof of Theorem swrdccatin2d
StepHypRef Expression
1 swrdccatind.l . 2 (𝜑 → (♯‘𝐴) = 𝐿)
2 swrdccatind.w . . . . . . 7 (𝜑 → (𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉))
32adantl 277 . . . . . 6 (((♯‘𝐴) = 𝐿𝜑) → (𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉))
4 swrdccatin2d.1 . . . . . . . . 9 (𝜑𝑀 ∈ (𝐿...𝑁))
5 swrdccatin2d.2 . . . . . . . . 9 (𝜑𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))
64, 5jca 306 . . . . . . . 8 (𝜑 → (𝑀 ∈ (𝐿...𝑁) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵)))))
76adantl 277 . . . . . . 7 (((♯‘𝐴) = 𝐿𝜑) → (𝑀 ∈ (𝐿...𝑁) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵)))))
8 oveq1 5974 . . . . . . . . . 10 ((♯‘𝐴) = 𝐿 → ((♯‘𝐴)...𝑁) = (𝐿...𝑁))
98eleq2d 2277 . . . . . . . . 9 ((♯‘𝐴) = 𝐿 → (𝑀 ∈ ((♯‘𝐴)...𝑁) ↔ 𝑀 ∈ (𝐿...𝑁)))
10 id 19 . . . . . . . . . . 11 ((♯‘𝐴) = 𝐿 → (♯‘𝐴) = 𝐿)
11 oveq1 5974 . . . . . . . . . . 11 ((♯‘𝐴) = 𝐿 → ((♯‘𝐴) + (♯‘𝐵)) = (𝐿 + (♯‘𝐵)))
1210, 11oveq12d 5985 . . . . . . . . . 10 ((♯‘𝐴) = 𝐿 → ((♯‘𝐴)...((♯‘𝐴) + (♯‘𝐵))) = (𝐿...(𝐿 + (♯‘𝐵))))
1312eleq2d 2277 . . . . . . . . 9 ((♯‘𝐴) = 𝐿 → (𝑁 ∈ ((♯‘𝐴)...((♯‘𝐴) + (♯‘𝐵))) ↔ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵)))))
149, 13anbi12d 473 . . . . . . . 8 ((♯‘𝐴) = 𝐿 → ((𝑀 ∈ ((♯‘𝐴)...𝑁) ∧ 𝑁 ∈ ((♯‘𝐴)...((♯‘𝐴) + (♯‘𝐵)))) ↔ (𝑀 ∈ (𝐿...𝑁) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))))
1514adantr 276 . . . . . . 7 (((♯‘𝐴) = 𝐿𝜑) → ((𝑀 ∈ ((♯‘𝐴)...𝑁) ∧ 𝑁 ∈ ((♯‘𝐴)...((♯‘𝐴) + (♯‘𝐵)))) ↔ (𝑀 ∈ (𝐿...𝑁) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))))
167, 15mpbird 167 . . . . . 6 (((♯‘𝐴) = 𝐿𝜑) → (𝑀 ∈ ((♯‘𝐴)...𝑁) ∧ 𝑁 ∈ ((♯‘𝐴)...((♯‘𝐴) + (♯‘𝐵)))))
173, 16jca 306 . . . . 5 (((♯‘𝐴) = 𝐿𝜑) → ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ ((♯‘𝐴)...𝑁) ∧ 𝑁 ∈ ((♯‘𝐴)...((♯‘𝐴) + (♯‘𝐵))))))
1817ex 115 . . . 4 ((♯‘𝐴) = 𝐿 → (𝜑 → ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ ((♯‘𝐴)...𝑁) ∧ 𝑁 ∈ ((♯‘𝐴)...((♯‘𝐴) + (♯‘𝐵)))))))
19 eqid 2207 . . . . . 6 (♯‘𝐴) = (♯‘𝐴)
2019swrdccatin2 11220 . . . . 5 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → ((𝑀 ∈ ((♯‘𝐴)...𝑁) ∧ 𝑁 ∈ ((♯‘𝐴)...((♯‘𝐴) + (♯‘𝐵)))) → ((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩) = (𝐵 substr ⟨(𝑀 − (♯‘𝐴)), (𝑁 − (♯‘𝐴))⟩)))
2120imp 124 . . . 4 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ ((♯‘𝐴)...𝑁) ∧ 𝑁 ∈ ((♯‘𝐴)...((♯‘𝐴) + (♯‘𝐵))))) → ((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩) = (𝐵 substr ⟨(𝑀 − (♯‘𝐴)), (𝑁 − (♯‘𝐴))⟩))
2218, 21syl6 33 . . 3 ((♯‘𝐴) = 𝐿 → (𝜑 → ((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩) = (𝐵 substr ⟨(𝑀 − (♯‘𝐴)), (𝑁 − (♯‘𝐴))⟩)))
23 oveq2 5975 . . . . . 6 ((♯‘𝐴) = 𝐿 → (𝑀 − (♯‘𝐴)) = (𝑀𝐿))
24 oveq2 5975 . . . . . 6 ((♯‘𝐴) = 𝐿 → (𝑁 − (♯‘𝐴)) = (𝑁𝐿))
2523, 24opeq12d 3841 . . . . 5 ((♯‘𝐴) = 𝐿 → ⟨(𝑀 − (♯‘𝐴)), (𝑁 − (♯‘𝐴))⟩ = ⟨(𝑀𝐿), (𝑁𝐿)⟩)
2625oveq2d 5983 . . . 4 ((♯‘𝐴) = 𝐿 → (𝐵 substr ⟨(𝑀 − (♯‘𝐴)), (𝑁 − (♯‘𝐴))⟩) = (𝐵 substr ⟨(𝑀𝐿), (𝑁𝐿)⟩))
2726eqeq2d 2219 . . 3 ((♯‘𝐴) = 𝐿 → (((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩) = (𝐵 substr ⟨(𝑀 − (♯‘𝐴)), (𝑁 − (♯‘𝐴))⟩) ↔ ((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩) = (𝐵 substr ⟨(𝑀𝐿), (𝑁𝐿)⟩)))
2822, 27sylibd 149 . 2 ((♯‘𝐴) = 𝐿 → (𝜑 → ((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩) = (𝐵 substr ⟨(𝑀𝐿), (𝑁𝐿)⟩)))
291, 28mpcom 36 1 (𝜑 → ((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩) = (𝐵 substr ⟨(𝑀𝐿), (𝑁𝐿)⟩))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1373  wcel 2178  cop 3646  cfv 5290  (class class class)co 5967   + caddc 7963  cmin 8278  ...cfz 10165  chash 10957  Word cword 11031   ++ cconcat 11084   substr csubstr 11136
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-iinf 4654  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-addcom 8060  ax-addass 8062  ax-distr 8064  ax-i2m1 8065  ax-0lt1 8066  ax-0id 8068  ax-rnegex 8069  ax-cnre 8071  ax-pre-ltirr 8072  ax-pre-ltwlin 8073  ax-pre-lttrn 8074  ax-pre-apti 8075  ax-pre-ltadd 8076
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-if 3580  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-tr 4159  df-id 4358  df-iord 4431  df-on 4433  df-ilim 4434  df-suc 4436  df-iom 4657  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250  df-recs 6414  df-frec 6500  df-1o 6525  df-er 6643  df-en 6851  df-dom 6852  df-fin 6853  df-pnf 8144  df-mnf 8145  df-xr 8146  df-ltxr 8147  df-le 8148  df-sub 8280  df-neg 8281  df-inn 9072  df-n0 9331  df-z 9408  df-uz 9684  df-fz 10166  df-fzo 10300  df-ihash 10958  df-word 11032  df-concat 11085  df-substr 11137
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator