| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0zs | Structured version Visualization version GIF version | ||
| Description: Zero is a surreal integer. (Contributed by Scott Fenton, 26-May-2025.) |
| Ref | Expression |
|---|---|
| 0zs | ⊢ 0s ∈ ℤs |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1nns 28272 | . . 3 ⊢ 1s ∈ ℕs | |
| 2 | 1sno 27766 | . . . . 5 ⊢ 1s ∈ No | |
| 3 | subsid 28004 | . . . . 5 ⊢ ( 1s ∈ No → ( 1s -s 1s ) = 0s ) | |
| 4 | 2, 3 | ax-mp 5 | . . . 4 ⊢ ( 1s -s 1s ) = 0s |
| 5 | 4 | eqcomi 2740 | . . 3 ⊢ 0s = ( 1s -s 1s ) |
| 6 | rspceov 7390 | . . 3 ⊢ (( 1s ∈ ℕs ∧ 1s ∈ ℕs ∧ 0s = ( 1s -s 1s )) → ∃𝑛 ∈ ℕs ∃𝑚 ∈ ℕs 0s = (𝑛 -s 𝑚)) | |
| 7 | 1, 1, 5, 6 | mp3an 1463 | . 2 ⊢ ∃𝑛 ∈ ℕs ∃𝑚 ∈ ℕs 0s = (𝑛 -s 𝑚) |
| 8 | elzs 28303 | . 2 ⊢ ( 0s ∈ ℤs ↔ ∃𝑛 ∈ ℕs ∃𝑚 ∈ ℕs 0s = (𝑛 -s 𝑚)) | |
| 9 | 7, 8 | mpbir 231 | 1 ⊢ 0s ∈ ℤs |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∈ wcel 2111 ∃wrex 3056 (class class class)co 7341 No csur 27573 0s c0s 27761 1s c1s 27762 -s csubs 27957 ℕscnns 28238 ℤsczs 28297 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5212 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-tp 4576 df-op 4578 df-ot 4580 df-uni 4855 df-int 4893 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-se 5565 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-1st 7916 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-1o 8380 df-2o 8381 df-nadd 8576 df-no 27576 df-slt 27577 df-bday 27578 df-sle 27679 df-sslt 27716 df-scut 27718 df-0s 27763 df-1s 27764 df-made 27783 df-old 27784 df-left 27786 df-right 27787 df-norec 27876 df-norec2 27887 df-adds 27898 df-negs 27958 df-subs 27959 df-n0s 28239 df-nns 28240 df-zs 28298 |
| This theorem is referenced by: n0zs 28308 zsoring 28327 exps0 28345 |
| Copyright terms: Public domain | W3C validator |