| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0zs | Structured version Visualization version GIF version | ||
| Description: Zero is a surreal integer. (Contributed by Scott Fenton, 26-May-2025.) |
| Ref | Expression |
|---|---|
| 0zs | ⊢ 0s ∈ ℤs |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1nns 28265 | . . 3 ⊢ 1s ∈ ℕs | |
| 2 | 1sno 27760 | . . . . 5 ⊢ 1s ∈ No | |
| 3 | subsid 27997 | . . . . 5 ⊢ ( 1s ∈ No → ( 1s -s 1s ) = 0s ) | |
| 4 | 2, 3 | ax-mp 5 | . . . 4 ⊢ ( 1s -s 1s ) = 0s |
| 5 | 4 | eqcomi 2738 | . . 3 ⊢ 0s = ( 1s -s 1s ) |
| 6 | rspceov 7402 | . . 3 ⊢ (( 1s ∈ ℕs ∧ 1s ∈ ℕs ∧ 0s = ( 1s -s 1s )) → ∃𝑛 ∈ ℕs ∃𝑚 ∈ ℕs 0s = (𝑛 -s 𝑚)) | |
| 7 | 1, 1, 5, 6 | mp3an 1463 | . 2 ⊢ ∃𝑛 ∈ ℕs ∃𝑚 ∈ ℕs 0s = (𝑛 -s 𝑚) |
| 8 | elzs 28296 | . 2 ⊢ ( 0s ∈ ℤs ↔ ∃𝑛 ∈ ℕs ∃𝑚 ∈ ℕs 0s = (𝑛 -s 𝑚)) | |
| 9 | 7, 8 | mpbir 231 | 1 ⊢ 0s ∈ ℤs |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 ∃wrex 3053 (class class class)co 7353 No csur 27568 0s c0s 27755 1s c1s 27756 -s csubs 27950 ℕscnns 28231 ℤsczs 28290 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-tp 4584 df-op 4586 df-ot 4588 df-uni 4862 df-int 4900 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-se 5577 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-1st 7931 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-2o 8396 df-nadd 8591 df-no 27571 df-slt 27572 df-bday 27573 df-sle 27674 df-sslt 27711 df-scut 27713 df-0s 27757 df-1s 27758 df-made 27776 df-old 27777 df-left 27779 df-right 27780 df-norec 27869 df-norec2 27880 df-adds 27891 df-negs 27951 df-subs 27952 df-n0s 28232 df-nns 28233 df-zs 28291 |
| This theorem is referenced by: n0zs 28301 zsoring 28320 exps0 28338 |
| Copyright terms: Public domain | W3C validator |