Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  1odd Structured version   Visualization version   GIF version

Theorem 1odd 44883
Description: 1 is an odd integer. (Contributed by AV, 3-Feb-2020.)
Hypothesis
Ref Expression
oddinmgm.e 𝑂 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = ((2 · 𝑥) + 1)}
Assertion
Ref Expression
1odd 1 ∈ 𝑂
Distinct variable group:   𝑥,𝑧
Allowed substitution hints:   𝑂(𝑥,𝑧)

Proof of Theorem 1odd
StepHypRef Expression
1 1z 12086 . 2 1 ∈ ℤ
2 0z 12066 . . 3 0 ∈ ℤ
3 id 22 . . . 4 (0 ∈ ℤ → 0 ∈ ℤ)
4 oveq2 7172 . . . . . . . 8 (𝑥 = 0 → (2 · 𝑥) = (2 · 0))
5 2t0e0 11878 . . . . . . . 8 (2 · 0) = 0
64, 5eqtrdi 2789 . . . . . . 7 (𝑥 = 0 → (2 · 𝑥) = 0)
76oveq1d 7179 . . . . . 6 (𝑥 = 0 → ((2 · 𝑥) + 1) = (0 + 1))
87eqeq2d 2749 . . . . 5 (𝑥 = 0 → (1 = ((2 · 𝑥) + 1) ↔ 1 = (0 + 1)))
98adantl 485 . . . 4 ((0 ∈ ℤ ∧ 𝑥 = 0) → (1 = ((2 · 𝑥) + 1) ↔ 1 = (0 + 1)))
10 1e0p1 12214 . . . . 5 1 = (0 + 1)
1110a1i 11 . . . 4 (0 ∈ ℤ → 1 = (0 + 1))
123, 9, 11rspcedvd 3527 . . 3 (0 ∈ ℤ → ∃𝑥 ∈ ℤ 1 = ((2 · 𝑥) + 1))
132, 12ax-mp 5 . 2 𝑥 ∈ ℤ 1 = ((2 · 𝑥) + 1)
14 eqeq1 2742 . . . 4 (𝑧 = 1 → (𝑧 = ((2 · 𝑥) + 1) ↔ 1 = ((2 · 𝑥) + 1)))
1514rexbidv 3206 . . 3 (𝑧 = 1 → (∃𝑥 ∈ ℤ 𝑧 = ((2 · 𝑥) + 1) ↔ ∃𝑥 ∈ ℤ 1 = ((2 · 𝑥) + 1)))
16 oddinmgm.e . . 3 𝑂 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = ((2 · 𝑥) + 1)}
1715, 16elrab2 3588 . 2 (1 ∈ 𝑂 ↔ (1 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 1 = ((2 · 𝑥) + 1)))
181, 13, 17mpbir2an 711 1 1 ∈ 𝑂
Colors of variables: wff setvar class
Syntax hints:  wb 209   = wceq 1542  wcel 2113  wrex 3054  {crab 3057  (class class class)co 7164  0cc0 10608  1c1 10609   + caddc 10611   · cmul 10613  2c2 11764  cz 12055
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1916  ax-6 1974  ax-7 2019  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2161  ax-12 2178  ax-ext 2710  ax-sep 5164  ax-nul 5171  ax-pow 5229  ax-pr 5293  ax-un 7473  ax-resscn 10665  ax-1cn 10666  ax-icn 10667  ax-addcl 10668  ax-addrcl 10669  ax-mulcl 10670  ax-mulrcl 10671  ax-mulcom 10672  ax-addass 10673  ax-mulass 10674  ax-distr 10675  ax-i2m1 10676  ax-1ne0 10677  ax-1rid 10678  ax-rnegex 10679  ax-rrecex 10680  ax-cnre 10681  ax-pre-lttri 10682  ax-pre-lttrn 10683  ax-pre-ltadd 10684
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2074  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-nel 3039  df-ral 3058  df-rex 3059  df-reu 3060  df-rab 3062  df-v 3399  df-sbc 3680  df-csb 3789  df-dif 3844  df-un 3846  df-in 3848  df-ss 3858  df-pss 3860  df-nul 4210  df-if 4412  df-pw 4487  df-sn 4514  df-pr 4516  df-tp 4518  df-op 4520  df-uni 4794  df-iun 4880  df-br 5028  df-opab 5090  df-mpt 5108  df-tr 5134  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6123  df-ord 6169  df-on 6170  df-lim 6171  df-suc 6172  df-iota 6291  df-fun 6335  df-fn 6336  df-f 6337  df-f1 6338  df-fo 6339  df-f1o 6340  df-fv 6341  df-ov 7167  df-om 7594  df-wrecs 7969  df-recs 8030  df-rdg 8068  df-er 8313  df-en 8549  df-dom 8550  df-sdom 8551  df-pnf 10748  df-mnf 10749  df-ltxr 10751  df-neg 10944  df-nn 11710  df-2 11772  df-z 12056
This theorem is referenced by:  oddinmgm  44887
  Copyright terms: Public domain W3C validator