Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > 1odd | Structured version Visualization version GIF version |
Description: 1 is an odd integer. (Contributed by AV, 3-Feb-2020.) |
Ref | Expression |
---|---|
oddinmgm.e | ⊢ 𝑂 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = ((2 · 𝑥) + 1)} |
Ref | Expression |
---|---|
1odd | ⊢ 1 ∈ 𝑂 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1z 12086 | . 2 ⊢ 1 ∈ ℤ | |
2 | 0z 12066 | . . 3 ⊢ 0 ∈ ℤ | |
3 | id 22 | . . . 4 ⊢ (0 ∈ ℤ → 0 ∈ ℤ) | |
4 | oveq2 7172 | . . . . . . . 8 ⊢ (𝑥 = 0 → (2 · 𝑥) = (2 · 0)) | |
5 | 2t0e0 11878 | . . . . . . . 8 ⊢ (2 · 0) = 0 | |
6 | 4, 5 | eqtrdi 2789 | . . . . . . 7 ⊢ (𝑥 = 0 → (2 · 𝑥) = 0) |
7 | 6 | oveq1d 7179 | . . . . . 6 ⊢ (𝑥 = 0 → ((2 · 𝑥) + 1) = (0 + 1)) |
8 | 7 | eqeq2d 2749 | . . . . 5 ⊢ (𝑥 = 0 → (1 = ((2 · 𝑥) + 1) ↔ 1 = (0 + 1))) |
9 | 8 | adantl 485 | . . . 4 ⊢ ((0 ∈ ℤ ∧ 𝑥 = 0) → (1 = ((2 · 𝑥) + 1) ↔ 1 = (0 + 1))) |
10 | 1e0p1 12214 | . . . . 5 ⊢ 1 = (0 + 1) | |
11 | 10 | a1i 11 | . . . 4 ⊢ (0 ∈ ℤ → 1 = (0 + 1)) |
12 | 3, 9, 11 | rspcedvd 3527 | . . 3 ⊢ (0 ∈ ℤ → ∃𝑥 ∈ ℤ 1 = ((2 · 𝑥) + 1)) |
13 | 2, 12 | ax-mp 5 | . 2 ⊢ ∃𝑥 ∈ ℤ 1 = ((2 · 𝑥) + 1) |
14 | eqeq1 2742 | . . . 4 ⊢ (𝑧 = 1 → (𝑧 = ((2 · 𝑥) + 1) ↔ 1 = ((2 · 𝑥) + 1))) | |
15 | 14 | rexbidv 3206 | . . 3 ⊢ (𝑧 = 1 → (∃𝑥 ∈ ℤ 𝑧 = ((2 · 𝑥) + 1) ↔ ∃𝑥 ∈ ℤ 1 = ((2 · 𝑥) + 1))) |
16 | oddinmgm.e | . . 3 ⊢ 𝑂 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = ((2 · 𝑥) + 1)} | |
17 | 15, 16 | elrab2 3588 | . 2 ⊢ (1 ∈ 𝑂 ↔ (1 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 1 = ((2 · 𝑥) + 1))) |
18 | 1, 13, 17 | mpbir2an 711 | 1 ⊢ 1 ∈ 𝑂 |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 209 = wceq 1542 ∈ wcel 2113 ∃wrex 3054 {crab 3057 (class class class)co 7164 0cc0 10608 1c1 10609 + caddc 10611 · cmul 10613 2c2 11764 ℤcz 12055 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1916 ax-6 1974 ax-7 2019 ax-8 2115 ax-9 2123 ax-10 2144 ax-11 2161 ax-12 2178 ax-ext 2710 ax-sep 5164 ax-nul 5171 ax-pow 5229 ax-pr 5293 ax-un 7473 ax-resscn 10665 ax-1cn 10666 ax-icn 10667 ax-addcl 10668 ax-addrcl 10669 ax-mulcl 10670 ax-mulrcl 10671 ax-mulcom 10672 ax-addass 10673 ax-mulass 10674 ax-distr 10675 ax-i2m1 10676 ax-1ne0 10677 ax-1rid 10678 ax-rnegex 10679 ax-rrecex 10680 ax-cnre 10681 ax-pre-lttri 10682 ax-pre-lttrn 10683 ax-pre-ltadd 10684 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2074 df-mo 2540 df-eu 2570 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-ne 2935 df-nel 3039 df-ral 3058 df-rex 3059 df-reu 3060 df-rab 3062 df-v 3399 df-sbc 3680 df-csb 3789 df-dif 3844 df-un 3846 df-in 3848 df-ss 3858 df-pss 3860 df-nul 4210 df-if 4412 df-pw 4487 df-sn 4514 df-pr 4516 df-tp 4518 df-op 4520 df-uni 4794 df-iun 4880 df-br 5028 df-opab 5090 df-mpt 5108 df-tr 5134 df-id 5425 df-eprel 5430 df-po 5438 df-so 5439 df-fr 5478 df-we 5480 df-xp 5525 df-rel 5526 df-cnv 5527 df-co 5528 df-dm 5529 df-rn 5530 df-res 5531 df-ima 5532 df-pred 6123 df-ord 6169 df-on 6170 df-lim 6171 df-suc 6172 df-iota 6291 df-fun 6335 df-fn 6336 df-f 6337 df-f1 6338 df-fo 6339 df-f1o 6340 df-fv 6341 df-ov 7167 df-om 7594 df-wrecs 7969 df-recs 8030 df-rdg 8068 df-er 8313 df-en 8549 df-dom 8550 df-sdom 8551 df-pnf 10748 df-mnf 10749 df-ltxr 10751 df-neg 10944 df-nn 11710 df-2 11772 df-z 12056 |
This theorem is referenced by: oddinmgm 44887 |
Copyright terms: Public domain | W3C validator |