Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  1odd Structured version   Visualization version   GIF version

Theorem 1odd 48201
Description: 1 is an odd integer. (Contributed by AV, 3-Feb-2020.)
Hypothesis
Ref Expression
oddinmgm.e 𝑂 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = ((2 · 𝑥) + 1)}
Assertion
Ref Expression
1odd 1 ∈ 𝑂
Distinct variable group:   𝑥,𝑧
Allowed substitution hints:   𝑂(𝑥,𝑧)

Proof of Theorem 1odd
StepHypRef Expression
1 1z 12499 . 2 1 ∈ ℤ
2 0z 12476 . . 3 0 ∈ ℤ
3 id 22 . . . 4 (0 ∈ ℤ → 0 ∈ ℤ)
4 oveq2 7354 . . . . . . . 8 (𝑥 = 0 → (2 · 𝑥) = (2 · 0))
5 2t0e0 12286 . . . . . . . 8 (2 · 0) = 0
64, 5eqtrdi 2782 . . . . . . 7 (𝑥 = 0 → (2 · 𝑥) = 0)
76oveq1d 7361 . . . . . 6 (𝑥 = 0 → ((2 · 𝑥) + 1) = (0 + 1))
87eqeq2d 2742 . . . . 5 (𝑥 = 0 → (1 = ((2 · 𝑥) + 1) ↔ 1 = (0 + 1)))
98adantl 481 . . . 4 ((0 ∈ ℤ ∧ 𝑥 = 0) → (1 = ((2 · 𝑥) + 1) ↔ 1 = (0 + 1)))
10 1e0p1 12627 . . . . 5 1 = (0 + 1)
1110a1i 11 . . . 4 (0 ∈ ℤ → 1 = (0 + 1))
123, 9, 11rspcedvd 3579 . . 3 (0 ∈ ℤ → ∃𝑥 ∈ ℤ 1 = ((2 · 𝑥) + 1))
132, 12ax-mp 5 . 2 𝑥 ∈ ℤ 1 = ((2 · 𝑥) + 1)
14 eqeq1 2735 . . . 4 (𝑧 = 1 → (𝑧 = ((2 · 𝑥) + 1) ↔ 1 = ((2 · 𝑥) + 1)))
1514rexbidv 3156 . . 3 (𝑧 = 1 → (∃𝑥 ∈ ℤ 𝑧 = ((2 · 𝑥) + 1) ↔ ∃𝑥 ∈ ℤ 1 = ((2 · 𝑥) + 1)))
16 oddinmgm.e . . 3 𝑂 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = ((2 · 𝑥) + 1)}
1715, 16elrab2 3650 . 2 (1 ∈ 𝑂 ↔ (1 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 1 = ((2 · 𝑥) + 1)))
181, 13, 17mpbir2an 711 1 1 ∈ 𝑂
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1541  wcel 2111  wrex 3056  {crab 3395  (class class class)co 7346  0cc0 11003  1c1 11004   + caddc 11006   · cmul 11008  2c2 12177  cz 12465
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-resscn 11060  ax-1cn 11061  ax-icn 11062  ax-addcl 11063  ax-addrcl 11064  ax-mulcl 11065  ax-mulrcl 11066  ax-mulcom 11067  ax-addass 11068  ax-mulass 11069  ax-distr 11070  ax-i2m1 11071  ax-1ne0 11072  ax-1rid 11073  ax-rnegex 11074  ax-rrecex 11075  ax-cnre 11076  ax-pre-lttri 11077  ax-pre-lttrn 11078  ax-pre-ltadd 11079
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-om 7797  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11145  df-mnf 11146  df-ltxr 11148  df-neg 11344  df-nn 12123  df-2 12185  df-z 12466
This theorem is referenced by:  oddinmgm  48205
  Copyright terms: Public domain W3C validator