| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 1e0p1 | Structured version Visualization version GIF version | ||
| Description: The successor of zero. (Contributed by Mario Carneiro, 18-Feb-2014.) |
| Ref | Expression |
|---|---|
| 1e0p1 | ⊢ 1 = (0 + 1) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0p1e1 12367 | . 2 ⊢ (0 + 1) = 1 | |
| 2 | 1 | eqcomi 2745 | 1 ⊢ 1 = (0 + 1) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 (class class class)co 7410 0cc0 11134 1c1 11135 + caddc 11137 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-po 5566 df-so 5567 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-ov 7413 df-er 8724 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11276 df-mnf 11277 df-ltxr 11279 |
| This theorem is referenced by: 6p5e11 12786 7p4e11 12789 8p3e11 12794 9p2e11 12800 fz1ssfz0 13645 fz0to3un2pr 13651 fzo01 13768 fz01pr 13772 bcp1nk 14340 pfx1 14726 arisum2 15882 ege2le3 16111 ef4p 16136 efgt1p2 16137 efgt1p 16138 bitsmod 16460 prmdiv 16809 prmreclem2 16942 vdwap1 17002 11prm 17139 631prm 17151 mulgnn0p1 19073 gsummptfzsplitl 19919 itgcnlem 25748 dveflem 25940 ply1rem 26128 vieta1lem2 26276 vieta1 26277 pserdvlem2 26395 pserdv2 26397 abelthlem6 26403 abelthlem9 26407 cosne0 26495 logf1o2 26616 logtayl 26626 ang180lem3 26778 birthdaylem2 26919 ftalem5 27044 ppi2 27137 ppiublem2 27171 ppiub 27172 bclbnd 27248 bposlem2 27253 lgsdir2lem3 27295 lgseisenlem1 27343 axlowdimlem13 28938 spthispth 29711 uhgrwkspthlem2 29741 cyclnumvtx 29787 upgr3v3e3cycl 30166 upgr4cycl4dv4e 30171 ballotlemii 34541 ballotlem1c 34545 subfacval2 35214 cvmliftlem5 35316 aks6d1c5lem1 42154 sticksstones11 42174 sticksstones12 42176 3cubeslem1 42682 halffl 45305 sinaover2ne0 45877 stoweidlem11 46020 stoweidlem13 46022 stirlinglem7 46089 fourierdlem48 46163 fourierdlem49 46164 fourierdlem69 46184 fourierdlem79 46194 fourierdlem93 46208 etransclem7 46250 etransclem25 46268 etransclem26 46269 etransclem37 46280 tworepnotupword 46895 iccpartlt 47418 31prm 47591 gpgprismgr4cycllem3 48076 1odd 48126 itcoval1 48623 ackval1 48641 ackval41a 48654 |
| Copyright terms: Public domain | W3C validator |