Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 1e0p1 | Structured version Visualization version GIF version |
Description: The successor of zero. (Contributed by Mario Carneiro, 18-Feb-2014.) |
Ref | Expression |
---|---|
1e0p1 | ⊢ 1 = (0 + 1) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0p1e1 12104 | . 2 ⊢ (0 + 1) = 1 | |
2 | 1 | eqcomi 2748 | 1 ⊢ 1 = (0 + 1) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 (class class class)co 7284 0cc0 10880 1c1 10881 + caddc 10883 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2710 ax-sep 5224 ax-nul 5231 ax-pow 5289 ax-pr 5353 ax-un 7597 ax-resscn 10937 ax-1cn 10938 ax-icn 10939 ax-addcl 10940 ax-addrcl 10941 ax-mulcl 10942 ax-mulrcl 10943 ax-mulcom 10944 ax-addass 10945 ax-mulass 10946 ax-distr 10947 ax-i2m1 10948 ax-1ne0 10949 ax-1rid 10950 ax-rnegex 10951 ax-rrecex 10952 ax-cnre 10953 ax-pre-lttri 10954 ax-pre-lttrn 10955 ax-pre-ltadd 10956 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3435 df-sbc 3718 df-csb 3834 df-dif 3891 df-un 3893 df-in 3895 df-ss 3905 df-nul 4258 df-if 4461 df-pw 4536 df-sn 4563 df-pr 4565 df-op 4569 df-uni 4841 df-br 5076 df-opab 5138 df-mpt 5159 df-id 5490 df-po 5504 df-so 5505 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-iota 6395 df-fun 6439 df-fn 6440 df-f 6441 df-f1 6442 df-fo 6443 df-f1o 6444 df-fv 6445 df-ov 7287 df-er 8507 df-en 8743 df-dom 8744 df-sdom 8745 df-pnf 11020 df-mnf 11021 df-ltxr 11023 |
This theorem is referenced by: 6p5e11 12519 7p4e11 12522 8p3e11 12527 9p2e11 12533 fz1ssfz0 13361 fz0to3un2pr 13367 fzo01 13478 bcp1nk 14040 pfx1 14425 arisum2 15582 ege2le3 15808 ef4p 15831 efgt1p2 15832 efgt1p 15833 bitsmod 16152 prmdiv 16495 prmreclem2 16627 vdwap1 16687 11prm 16825 631prm 16837 mulgnn0p1 18724 gsummptfzsplitl 19543 itgcnlem 24963 dveflem 25152 ply1rem 25337 vieta1lem2 25480 vieta1 25481 pserdvlem2 25596 pserdv2 25598 abelthlem6 25604 abelthlem9 25608 cosne0 25694 logf1o2 25814 logtayl 25824 ang180lem3 25970 birthdaylem2 26111 ftalem5 26235 ppi2 26328 ppiublem2 26360 ppiub 26361 bclbnd 26437 bposlem2 26442 lgsdir2lem3 26484 lgseisenlem1 26532 axlowdimlem13 27331 spthispth 28103 uhgrwkspthlem2 28131 upgr3v3e3cycl 28553 upgr4cycl4dv4e 28558 ballotlemii 32479 ballotlem1c 32483 subfacval2 33158 cvmliftlem5 33260 sticksstones11 40119 sticksstones12 40121 metakunt24 40155 3cubeslem1 40513 halffl 42842 sinaover2ne0 43416 stoweidlem11 43559 stoweidlem13 43561 stirlinglem7 43628 fourierdlem48 43702 fourierdlem49 43703 fourierdlem69 43723 fourierdlem79 43733 fourierdlem93 43747 etransclem7 43789 etransclem25 43807 etransclem26 43808 etransclem37 43819 iccpartlt 44887 31prm 45060 1odd 45376 itcoval1 46020 ackval1 46038 ackval41a 46051 tworepnotupword 46532 |
Copyright terms: Public domain | W3C validator |