| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 1e0p1 | Structured version Visualization version GIF version | ||
| Description: The successor of zero. (Contributed by Mario Carneiro, 18-Feb-2014.) |
| Ref | Expression |
|---|---|
| 1e0p1 | ⊢ 1 = (0 + 1) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0p1e1 12279 | . 2 ⊢ (0 + 1) = 1 | |
| 2 | 1 | eqcomi 2738 | 1 ⊢ 1 = (0 + 1) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 (class class class)co 7369 0cc0 11044 1c1 11045 + caddc 11047 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-po 5539 df-so 5540 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-ov 7372 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-pnf 11186 df-mnf 11187 df-ltxr 11189 |
| This theorem is referenced by: 6p5e11 12698 7p4e11 12701 8p3e11 12706 9p2e11 12712 fz1ssfz0 13560 fz0to3un2pr 13566 fzo01 13684 fz01pr 13688 bcp1nk 14258 pfx1 14644 arisum2 15803 ege2le3 16032 ef4p 16057 efgt1p2 16058 efgt1p 16059 bitsmod 16382 prmdiv 16731 prmreclem2 16864 vdwap1 16924 11prm 17061 631prm 17073 mulgnn0p1 18999 gsummptfzsplitl 19847 itgcnlem 25724 dveflem 25916 ply1rem 26104 vieta1lem2 26252 vieta1 26253 pserdvlem2 26371 pserdv2 26373 abelthlem6 26379 abelthlem9 26383 cosne0 26471 logf1o2 26592 logtayl 26602 ang180lem3 26754 birthdaylem2 26895 ftalem5 27020 ppi2 27113 ppiublem2 27147 ppiub 27148 bclbnd 27224 bposlem2 27229 lgsdir2lem3 27271 lgseisenlem1 27319 axlowdimlem13 28934 spthispth 29704 uhgrwkspthlem2 29734 cyclnumvtx 29780 upgr3v3e3cycl 30159 upgr4cycl4dv4e 30164 ballotlemii 34488 ballotlem1c 34492 subfacval2 35167 cvmliftlem5 35269 aks6d1c5lem1 42117 sticksstones11 42137 sticksstones12 42139 3cubeslem1 42665 halffl 45287 sinaover2ne0 45859 stoweidlem11 46002 stoweidlem13 46004 stirlinglem7 46071 fourierdlem48 46145 fourierdlem49 46146 fourierdlem69 46166 fourierdlem79 46176 fourierdlem93 46190 etransclem7 46232 etransclem25 46250 etransclem26 46251 etransclem37 46262 tworepnotupword 46877 iccpartlt 47418 31prm 47591 gpgprismgr4cycllem3 48080 1odd 48152 itcoval1 48645 ackval1 48663 ackval41a 48676 |
| Copyright terms: Public domain | W3C validator |