![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 1e0p1 | Structured version Visualization version GIF version |
Description: The successor of zero. (Contributed by Mario Carneiro, 18-Feb-2014.) |
Ref | Expression |
---|---|
1e0p1 | ⊢ 1 = (0 + 1) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0p1e1 12385 | . 2 ⊢ (0 + 1) = 1 | |
2 | 1 | eqcomi 2743 | 1 ⊢ 1 = (0 + 1) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1536 (class class class)co 7430 0cc0 11152 1c1 11153 + caddc 11155 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pow 5370 ax-pr 5437 ax-un 7753 ax-resscn 11209 ax-1cn 11210 ax-icn 11211 ax-addcl 11212 ax-addrcl 11213 ax-mulcl 11214 ax-mulrcl 11215 ax-mulcom 11216 ax-addass 11217 ax-mulass 11218 ax-distr 11219 ax-i2m1 11220 ax-1ne0 11221 ax-1rid 11222 ax-rnegex 11223 ax-rrecex 11224 ax-cnre 11225 ax-pre-lttri 11226 ax-pre-lttrn 11227 ax-pre-ltadd 11228 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5582 df-po 5596 df-so 5597 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-f1 6567 df-fo 6568 df-f1o 6569 df-fv 6570 df-ov 7433 df-er 8743 df-en 8984 df-dom 8985 df-sdom 8986 df-pnf 11294 df-mnf 11295 df-ltxr 11297 |
This theorem is referenced by: 6p5e11 12803 7p4e11 12806 8p3e11 12811 9p2e11 12817 fz1ssfz0 13659 fz0to3un2pr 13665 fzo01 13782 fz01pr 13786 bcp1nk 14352 pfx1 14737 arisum2 15893 ege2le3 16122 ef4p 16145 efgt1p2 16146 efgt1p 16147 bitsmod 16469 prmdiv 16818 prmreclem2 16950 vdwap1 17010 11prm 17148 631prm 17160 mulgnn0p1 19115 gsummptfzsplitl 19965 itgcnlem 25839 dveflem 26031 ply1rem 26219 vieta1lem2 26367 vieta1 26368 pserdvlem2 26486 pserdv2 26488 abelthlem6 26494 abelthlem9 26498 cosne0 26585 logf1o2 26706 logtayl 26716 ang180lem3 26868 birthdaylem2 27009 ftalem5 27134 ppi2 27227 ppiublem2 27261 ppiub 27262 bclbnd 27338 bposlem2 27343 lgsdir2lem3 27385 lgseisenlem1 27433 axlowdimlem13 28983 spthispth 29758 uhgrwkspthlem2 29786 upgr3v3e3cycl 30208 upgr4cycl4dv4e 30213 ballotlemii 34484 ballotlem1c 34488 subfacval2 35171 cvmliftlem5 35273 aks6d1c5lem1 42117 sticksstones11 42137 sticksstones12 42139 metakunt24 42209 3cubeslem1 42671 halffl 45246 sinaover2ne0 45823 stoweidlem11 45966 stoweidlem13 45968 stirlinglem7 46035 fourierdlem48 46109 fourierdlem49 46110 fourierdlem69 46130 fourierdlem79 46140 fourierdlem93 46154 etransclem7 46196 etransclem25 46214 etransclem26 46215 etransclem37 46226 tworepnotupword 46839 iccpartlt 47348 31prm 47521 1odd 48014 itcoval1 48512 ackval1 48530 ackval41a 48543 |
Copyright terms: Public domain | W3C validator |