| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 1e0p1 | Structured version Visualization version GIF version | ||
| Description: The successor of zero. (Contributed by Mario Carneiro, 18-Feb-2014.) |
| Ref | Expression |
|---|---|
| 1e0p1 | ⊢ 1 = (0 + 1) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0p1e1 12303 | . 2 ⊢ (0 + 1) = 1 | |
| 2 | 1 | eqcomi 2738 | 1 ⊢ 1 = (0 + 1) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 (class class class)co 7387 0cc0 11068 1c1 11069 + caddc 11071 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-po 5546 df-so 5547 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-ltxr 11213 |
| This theorem is referenced by: 6p5e11 12722 7p4e11 12725 8p3e11 12730 9p2e11 12736 fz1ssfz0 13584 fz0to3un2pr 13590 fzo01 13708 fz01pr 13712 bcp1nk 14282 pfx1 14668 arisum2 15827 ege2le3 16056 ef4p 16081 efgt1p2 16082 efgt1p 16083 bitsmod 16406 prmdiv 16755 prmreclem2 16888 vdwap1 16948 11prm 17085 631prm 17097 mulgnn0p1 19017 gsummptfzsplitl 19863 itgcnlem 25691 dveflem 25883 ply1rem 26071 vieta1lem2 26219 vieta1 26220 pserdvlem2 26338 pserdv2 26340 abelthlem6 26346 abelthlem9 26350 cosne0 26438 logf1o2 26559 logtayl 26569 ang180lem3 26721 birthdaylem2 26862 ftalem5 26987 ppi2 27080 ppiublem2 27114 ppiub 27115 bclbnd 27191 bposlem2 27196 lgsdir2lem3 27238 lgseisenlem1 27286 axlowdimlem13 28881 spthispth 29654 uhgrwkspthlem2 29684 cyclnumvtx 29730 upgr3v3e3cycl 30109 upgr4cycl4dv4e 30114 ballotlemii 34495 ballotlem1c 34499 subfacval2 35174 cvmliftlem5 35276 aks6d1c5lem1 42124 sticksstones11 42144 sticksstones12 42146 3cubeslem1 42672 halffl 45294 sinaover2ne0 45866 stoweidlem11 46009 stoweidlem13 46011 stirlinglem7 46078 fourierdlem48 46152 fourierdlem49 46153 fourierdlem69 46173 fourierdlem79 46183 fourierdlem93 46197 etransclem7 46239 etransclem25 46257 etransclem26 46258 etransclem37 46269 tworepnotupword 46884 iccpartlt 47425 31prm 47598 gpgprismgr4cycllem3 48087 1odd 48159 itcoval1 48652 ackval1 48670 ackval41a 48683 |
| Copyright terms: Public domain | W3C validator |