Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 1e0p1 | Structured version Visualization version GIF version |
Description: The successor of zero. (Contributed by Mario Carneiro, 18-Feb-2014.) |
Ref | Expression |
---|---|
1e0p1 | ⊢ 1 = (0 + 1) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0p1e1 12025 | . 2 ⊢ (0 + 1) = 1 | |
2 | 1 | eqcomi 2747 | 1 ⊢ 1 = (0 + 1) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 (class class class)co 7255 0cc0 10802 1c1 10803 + caddc 10805 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-po 5494 df-so 5495 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-ltxr 10945 |
This theorem is referenced by: 6p5e11 12439 7p4e11 12442 8p3e11 12447 9p2e11 12453 fz1ssfz0 13281 fz0to3un2pr 13287 fzo01 13397 bcp1nk 13959 pfx1 14344 arisum2 15501 ege2le3 15727 ef4p 15750 efgt1p2 15751 efgt1p 15752 bitsmod 16071 prmdiv 16414 prmreclem2 16546 vdwap1 16606 11prm 16744 631prm 16756 mulgnn0p1 18630 gsummptfzsplitl 19449 itgcnlem 24859 dveflem 25048 ply1rem 25233 vieta1lem2 25376 vieta1 25377 pserdvlem2 25492 pserdv2 25494 abelthlem6 25500 abelthlem9 25504 cosne0 25590 logf1o2 25710 logtayl 25720 ang180lem3 25866 birthdaylem2 26007 ftalem5 26131 ppi2 26224 ppiublem2 26256 ppiub 26257 bclbnd 26333 bposlem2 26338 lgsdir2lem3 26380 lgseisenlem1 26428 axlowdimlem13 27225 spthispth 27995 uhgrwkspthlem2 28023 upgr3v3e3cycl 28445 upgr4cycl4dv4e 28450 ballotlemii 32370 ballotlem1c 32374 subfacval2 33049 cvmliftlem5 33151 sticksstones11 40040 sticksstones12 40042 metakunt24 40076 3cubeslem1 40422 halffl 42725 sinaover2ne0 43299 stoweidlem11 43442 stoweidlem13 43444 stirlinglem7 43511 fourierdlem48 43585 fourierdlem49 43586 fourierdlem69 43606 fourierdlem79 43616 fourierdlem93 43630 etransclem7 43672 etransclem25 43690 etransclem26 43691 etransclem37 43702 iccpartlt 44764 31prm 44937 1odd 45253 itcoval1 45897 ackval1 45915 ackval41a 45928 |
Copyright terms: Public domain | W3C validator |