| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 1e0p1 | Structured version Visualization version GIF version | ||
| Description: The successor of zero. (Contributed by Mario Carneiro, 18-Feb-2014.) |
| Ref | Expression |
|---|---|
| 1e0p1 | ⊢ 1 = (0 + 1) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0p1e1 12354 | . 2 ⊢ (0 + 1) = 1 | |
| 2 | 1 | eqcomi 2743 | 1 ⊢ 1 = (0 + 1) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1539 (class class class)co 7399 0cc0 11121 1c1 11122 + caddc 11124 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5263 ax-nul 5273 ax-pow 5332 ax-pr 5399 ax-un 7723 ax-resscn 11178 ax-1cn 11179 ax-icn 11180 ax-addcl 11181 ax-addrcl 11182 ax-mulcl 11183 ax-mulrcl 11184 ax-mulcom 11185 ax-addass 11186 ax-mulass 11187 ax-distr 11188 ax-i2m1 11189 ax-1ne0 11190 ax-1rid 11191 ax-rnegex 11192 ax-rrecex 11193 ax-cnre 11194 ax-pre-lttri 11195 ax-pre-lttrn 11196 ax-pre-ltadd 11197 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rab 3414 df-v 3459 df-sbc 3764 df-csb 3873 df-dif 3927 df-un 3929 df-in 3931 df-ss 3941 df-nul 4307 df-if 4499 df-pw 4575 df-sn 4600 df-pr 4602 df-op 4606 df-uni 4881 df-br 5117 df-opab 5179 df-mpt 5199 df-id 5545 df-po 5558 df-so 5559 df-xp 5657 df-rel 5658 df-cnv 5659 df-co 5660 df-dm 5661 df-rn 5662 df-res 5663 df-ima 5664 df-iota 6480 df-fun 6529 df-fn 6530 df-f 6531 df-f1 6532 df-fo 6533 df-f1o 6534 df-fv 6535 df-ov 7402 df-er 8713 df-en 8954 df-dom 8955 df-sdom 8956 df-pnf 11263 df-mnf 11264 df-ltxr 11266 |
| This theorem is referenced by: 6p5e11 12773 7p4e11 12776 8p3e11 12781 9p2e11 12787 fz1ssfz0 13629 fz0to3un2pr 13635 fzo01 13752 fz01pr 13756 bcp1nk 14323 pfx1 14708 arisum2 15864 ege2le3 16093 ef4p 16116 efgt1p2 16117 efgt1p 16118 bitsmod 16440 prmdiv 16789 prmreclem2 16922 vdwap1 16982 11prm 17119 631prm 17131 mulgnn0p1 19053 gsummptfzsplitl 19899 itgcnlem 25728 dveflem 25920 ply1rem 26108 vieta1lem2 26256 vieta1 26257 pserdvlem2 26375 pserdv2 26377 abelthlem6 26383 abelthlem9 26387 cosne0 26474 logf1o2 26595 logtayl 26605 ang180lem3 26757 birthdaylem2 26898 ftalem5 27023 ppi2 27116 ppiublem2 27150 ppiub 27151 bclbnd 27227 bposlem2 27232 lgsdir2lem3 27274 lgseisenlem1 27322 axlowdimlem13 28865 spthispth 29638 uhgrwkspthlem2 29668 cyclnumvtx 29714 upgr3v3e3cycl 30093 upgr4cycl4dv4e 30098 ballotlemii 34444 ballotlem1c 34448 subfacval2 35130 cvmliftlem5 35232 aks6d1c5lem1 42071 sticksstones11 42091 sticksstones12 42093 metakunt24 42163 3cubeslem1 42632 halffl 45252 sinaover2ne0 45827 stoweidlem11 45970 stoweidlem13 45972 stirlinglem7 46039 fourierdlem48 46113 fourierdlem49 46114 fourierdlem69 46134 fourierdlem79 46144 fourierdlem93 46158 etransclem7 46200 etransclem25 46218 etransclem26 46219 etransclem37 46230 tworepnotupword 46845 iccpartlt 47356 31prm 47529 1odd 48032 itcoval1 48529 ackval1 48547 ackval41a 48560 |
| Copyright terms: Public domain | W3C validator |