| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 1e0p1 | Structured version Visualization version GIF version | ||
| Description: The successor of zero. (Contributed by Mario Carneiro, 18-Feb-2014.) |
| Ref | Expression |
|---|---|
| 1e0p1 | ⊢ 1 = (0 + 1) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0p1e1 12245 | . 2 ⊢ (0 + 1) = 1 | |
| 2 | 1 | eqcomi 2738 | 1 ⊢ 1 = (0 + 1) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 (class class class)co 7349 0cc0 11009 1c1 11010 + caddc 11012 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-po 5527 df-so 5528 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-ov 7352 df-er 8625 df-en 8873 df-dom 8874 df-sdom 8875 df-pnf 11151 df-mnf 11152 df-ltxr 11154 |
| This theorem is referenced by: 6p5e11 12664 7p4e11 12667 8p3e11 12672 9p2e11 12678 fz1ssfz0 13526 fz0to3un2pr 13532 fzo01 13650 fz01pr 13654 bcp1nk 14224 pfx1 14609 arisum2 15768 ege2le3 15997 ef4p 16022 efgt1p2 16023 efgt1p 16024 bitsmod 16347 prmdiv 16696 prmreclem2 16829 vdwap1 16889 11prm 17026 631prm 17038 mulgnn0p1 18964 gsummptfzsplitl 19812 itgcnlem 25689 dveflem 25881 ply1rem 26069 vieta1lem2 26217 vieta1 26218 pserdvlem2 26336 pserdv2 26338 abelthlem6 26344 abelthlem9 26348 cosne0 26436 logf1o2 26557 logtayl 26567 ang180lem3 26719 birthdaylem2 26860 ftalem5 26985 ppi2 27078 ppiublem2 27112 ppiub 27113 bclbnd 27189 bposlem2 27194 lgsdir2lem3 27236 lgseisenlem1 27284 axlowdimlem13 28903 spthispth 29673 uhgrwkspthlem2 29703 cyclnumvtx 29749 upgr3v3e3cycl 30128 upgr4cycl4dv4e 30133 ballotlemii 34488 ballotlem1c 34492 subfacval2 35180 cvmliftlem5 35282 aks6d1c5lem1 42129 sticksstones11 42149 sticksstones12 42151 3cubeslem1 42677 halffl 45298 sinaover2ne0 45869 stoweidlem11 46012 stoweidlem13 46014 stirlinglem7 46081 fourierdlem48 46155 fourierdlem49 46156 fourierdlem69 46176 fourierdlem79 46186 fourierdlem93 46200 etransclem7 46242 etransclem25 46260 etransclem26 46261 etransclem37 46272 tworepnotupword 46887 iccpartlt 47428 31prm 47601 gpgprismgr4cycllem3 48101 1odd 48175 itcoval1 48668 ackval1 48686 ackval41a 48699 |
| Copyright terms: Public domain | W3C validator |