![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 1e0p1 | Structured version Visualization version GIF version |
Description: The successor of zero. (Contributed by Mario Carneiro, 18-Feb-2014.) |
Ref | Expression |
---|---|
1e0p1 | ⊢ 1 = (0 + 1) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0p1e1 12415 | . 2 ⊢ (0 + 1) = 1 | |
2 | 1 | eqcomi 2749 | 1 ⊢ 1 = (0 + 1) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 (class class class)co 7448 0cc0 11184 1c1 11185 + caddc 11187 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-po 5607 df-so 5608 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-ltxr 11329 |
This theorem is referenced by: 6p5e11 12831 7p4e11 12834 8p3e11 12839 9p2e11 12845 fz1ssfz0 13680 fz0to3un2pr 13686 fzo01 13798 bcp1nk 14366 pfx1 14751 arisum2 15909 ege2le3 16138 ef4p 16161 efgt1p2 16162 efgt1p 16163 bitsmod 16482 prmdiv 16832 prmreclem2 16964 vdwap1 17024 11prm 17162 631prm 17174 mulgnn0p1 19125 gsummptfzsplitl 19975 itgcnlem 25845 dveflem 26037 ply1rem 26225 vieta1lem2 26371 vieta1 26372 pserdvlem2 26490 pserdv2 26492 abelthlem6 26498 abelthlem9 26502 cosne0 26589 logf1o2 26710 logtayl 26720 ang180lem3 26872 birthdaylem2 27013 ftalem5 27138 ppi2 27231 ppiublem2 27265 ppiub 27266 bclbnd 27342 bposlem2 27347 lgsdir2lem3 27389 lgseisenlem1 27437 axlowdimlem13 28987 spthispth 29762 uhgrwkspthlem2 29790 upgr3v3e3cycl 30212 upgr4cycl4dv4e 30217 ballotlemii 34468 ballotlem1c 34472 subfacval2 35155 cvmliftlem5 35257 aks6d1c5lem1 42093 sticksstones11 42113 sticksstones12 42115 metakunt24 42185 3cubeslem1 42640 halffl 45211 sinaover2ne0 45789 stoweidlem11 45932 stoweidlem13 45934 stirlinglem7 46001 fourierdlem48 46075 fourierdlem49 46076 fourierdlem69 46096 fourierdlem79 46106 fourierdlem93 46120 etransclem7 46162 etransclem25 46180 etransclem26 46181 etransclem37 46192 tworepnotupword 46805 iccpartlt 47298 31prm 47471 1odd 47894 itcoval1 48397 ackval1 48415 ackval41a 48428 |
Copyright terms: Public domain | W3C validator |