| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 1e0p1 | Structured version Visualization version GIF version | ||
| Description: The successor of zero. (Contributed by Mario Carneiro, 18-Feb-2014.) |
| Ref | Expression |
|---|---|
| 1e0p1 | ⊢ 1 = (0 + 1) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0p1e1 12242 | . 2 ⊢ (0 + 1) = 1 | |
| 2 | 1 | eqcomi 2740 | 1 ⊢ 1 = (0 + 1) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 (class class class)co 7346 0cc0 11006 1c1 11007 + caddc 11009 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-po 5522 df-so 5523 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11148 df-mnf 11149 df-ltxr 11151 |
| This theorem is referenced by: 6p5e11 12661 7p4e11 12664 8p3e11 12669 9p2e11 12675 fz1ssfz0 13523 fz0to3un2pr 13529 fzo01 13647 fz01pr 13651 bcp1nk 14224 pfx1 14610 arisum2 15768 ege2le3 15997 ef4p 16022 efgt1p2 16023 efgt1p 16024 bitsmod 16347 prmdiv 16696 prmreclem2 16829 vdwap1 16889 11prm 17026 631prm 17038 mulgnn0p1 18998 gsummptfzsplitl 19845 itgcnlem 25718 dveflem 25910 ply1rem 26098 vieta1lem2 26246 vieta1 26247 pserdvlem2 26365 pserdv2 26367 abelthlem6 26373 abelthlem9 26377 cosne0 26465 logf1o2 26586 logtayl 26596 ang180lem3 26748 birthdaylem2 26889 ftalem5 27014 ppi2 27107 ppiublem2 27141 ppiub 27142 bclbnd 27218 bposlem2 27223 lgsdir2lem3 27265 lgseisenlem1 27313 axlowdimlem13 28932 spthispth 29702 uhgrwkspthlem2 29732 cyclnumvtx 29778 upgr3v3e3cycl 30160 upgr4cycl4dv4e 30165 ballotlemii 34517 ballotlem1c 34521 subfacval2 35231 cvmliftlem5 35333 aks6d1c5lem1 42228 sticksstones11 42248 sticksstones12 42250 3cubeslem1 42776 halffl 45396 sinaover2ne0 45965 stoweidlem11 46108 stoweidlem13 46110 stirlinglem7 46177 fourierdlem48 46251 fourierdlem49 46252 fourierdlem69 46272 fourierdlem79 46282 fourierdlem93 46296 etransclem7 46338 etransclem25 46356 etransclem26 46357 etransclem37 46368 iccpartlt 47523 31prm 47696 gpgprismgr4cycllem3 48196 1odd 48270 itcoval1 48763 ackval1 48781 ackval41a 48794 |
| Copyright terms: Public domain | W3C validator |