Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 1e0p1 | Structured version Visualization version GIF version |
Description: The successor of zero. (Contributed by Mario Carneiro, 18-Feb-2014.) |
Ref | Expression |
---|---|
1e0p1 | ⊢ 1 = (0 + 1) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0p1e1 12174 | . 2 ⊢ (0 + 1) = 1 | |
2 | 1 | eqcomi 2745 | 1 ⊢ 1 = (0 + 1) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1540 (class class class)co 7316 0cc0 10950 1c1 10951 + caddc 10953 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-sep 5237 ax-nul 5244 ax-pow 5302 ax-pr 5366 ax-un 7629 ax-resscn 11007 ax-1cn 11008 ax-icn 11009 ax-addcl 11010 ax-addrcl 11011 ax-mulcl 11012 ax-mulrcl 11013 ax-mulcom 11014 ax-addass 11015 ax-mulass 11016 ax-distr 11017 ax-i2m1 11018 ax-1ne0 11019 ax-1rid 11020 ax-rnegex 11021 ax-rrecex 11022 ax-cnre 11023 ax-pre-lttri 11024 ax-pre-lttrn 11025 ax-pre-ltadd 11026 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rab 3404 df-v 3442 df-sbc 3726 df-csb 3842 df-dif 3899 df-un 3901 df-in 3903 df-ss 3913 df-nul 4267 df-if 4471 df-pw 4546 df-sn 4571 df-pr 4573 df-op 4577 df-uni 4850 df-br 5087 df-opab 5149 df-mpt 5170 df-id 5506 df-po 5520 df-so 5521 df-xp 5613 df-rel 5614 df-cnv 5615 df-co 5616 df-dm 5617 df-rn 5618 df-res 5619 df-ima 5620 df-iota 6417 df-fun 6467 df-fn 6468 df-f 6469 df-f1 6470 df-fo 6471 df-f1o 6472 df-fv 6473 df-ov 7319 df-er 8547 df-en 8783 df-dom 8784 df-sdom 8785 df-pnf 11090 df-mnf 11091 df-ltxr 11093 |
This theorem is referenced by: 6p5e11 12589 7p4e11 12592 8p3e11 12597 9p2e11 12603 fz1ssfz0 13431 fz0to3un2pr 13437 fzo01 13548 bcp1nk 14110 pfx1 14492 arisum2 15649 ege2le3 15875 ef4p 15898 efgt1p2 15899 efgt1p 15900 bitsmod 16219 prmdiv 16560 prmreclem2 16692 vdwap1 16752 11prm 16890 631prm 16902 mulgnn0p1 18788 gsummptfzsplitl 19606 itgcnlem 25034 dveflem 25223 ply1rem 25408 vieta1lem2 25551 vieta1 25552 pserdvlem2 25667 pserdv2 25669 abelthlem6 25675 abelthlem9 25679 cosne0 25765 logf1o2 25885 logtayl 25895 ang180lem3 26041 birthdaylem2 26182 ftalem5 26306 ppi2 26399 ppiublem2 26431 ppiub 26432 bclbnd 26508 bposlem2 26513 lgsdir2lem3 26555 lgseisenlem1 26603 axlowdimlem13 27455 spthispth 28226 uhgrwkspthlem2 28254 upgr3v3e3cycl 28676 upgr4cycl4dv4e 28681 ballotlemii 32606 ballotlem1c 32610 subfacval2 33284 cvmliftlem5 33386 sticksstones11 40341 sticksstones12 40343 metakunt24 40377 3cubeslem1 40727 halffl 43089 sinaover2ne0 43664 stoweidlem11 43807 stoweidlem13 43809 stirlinglem7 43876 fourierdlem48 43950 fourierdlem49 43951 fourierdlem69 43971 fourierdlem79 43981 fourierdlem93 43995 etransclem7 44037 etransclem25 44055 etransclem26 44056 etransclem37 44067 iccpartlt 45146 31prm 45319 1odd 45635 itcoval1 46279 ackval1 46297 ackval41a 46310 tworepnotupword 46791 |
Copyright terms: Public domain | W3C validator |