| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 1e0p1 | Structured version Visualization version GIF version | ||
| Description: The successor of zero. (Contributed by Mario Carneiro, 18-Feb-2014.) |
| Ref | Expression |
|---|---|
| 1e0p1 | ⊢ 1 = (0 + 1) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0p1e1 12282 | . 2 ⊢ (0 + 1) = 1 | |
| 2 | 1 | eqcomi 2738 | 1 ⊢ 1 = (0 + 1) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 (class class class)co 7370 0cc0 11047 1c1 11048 + caddc 11050 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7692 ax-resscn 11104 ax-1cn 11105 ax-icn 11106 ax-addcl 11107 ax-addrcl 11108 ax-mulcl 11109 ax-mulrcl 11110 ax-mulcom 11111 ax-addass 11112 ax-mulass 11113 ax-distr 11114 ax-i2m1 11115 ax-1ne0 11116 ax-1rid 11117 ax-rnegex 11118 ax-rrecex 11119 ax-cnre 11120 ax-pre-lttri 11121 ax-pre-lttrn 11122 ax-pre-ltadd 11123 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-po 5539 df-so 5540 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6453 df-fun 6502 df-fn 6503 df-f 6504 df-f1 6505 df-fo 6506 df-f1o 6507 df-fv 6508 df-ov 7373 df-er 8649 df-en 8897 df-dom 8898 df-sdom 8899 df-pnf 11189 df-mnf 11190 df-ltxr 11192 |
| This theorem is referenced by: 6p5e11 12701 7p4e11 12704 8p3e11 12709 9p2e11 12715 fz1ssfz0 13563 fz0to3un2pr 13569 fzo01 13687 fz01pr 13691 bcp1nk 14261 pfx1 14646 arisum2 15805 ege2le3 16034 ef4p 16059 efgt1p2 16060 efgt1p 16061 bitsmod 16384 prmdiv 16733 prmreclem2 16866 vdwap1 16926 11prm 17063 631prm 17075 mulgnn0p1 19001 gsummptfzsplitl 19849 itgcnlem 25726 dveflem 25918 ply1rem 26106 vieta1lem2 26254 vieta1 26255 pserdvlem2 26373 pserdv2 26375 abelthlem6 26381 abelthlem9 26385 cosne0 26473 logf1o2 26594 logtayl 26604 ang180lem3 26756 birthdaylem2 26897 ftalem5 27022 ppi2 27115 ppiublem2 27149 ppiub 27150 bclbnd 27226 bposlem2 27231 lgsdir2lem3 27273 lgseisenlem1 27321 axlowdimlem13 28936 spthispth 29706 uhgrwkspthlem2 29736 cyclnumvtx 29782 upgr3v3e3cycl 30161 upgr4cycl4dv4e 30166 ballotlemii 34490 ballotlem1c 34494 subfacval2 35169 cvmliftlem5 35271 aks6d1c5lem1 42119 sticksstones11 42139 sticksstones12 42141 3cubeslem1 42667 halffl 45289 sinaover2ne0 45861 stoweidlem11 46004 stoweidlem13 46006 stirlinglem7 46073 fourierdlem48 46147 fourierdlem49 46148 fourierdlem69 46168 fourierdlem79 46178 fourierdlem93 46192 etransclem7 46234 etransclem25 46252 etransclem26 46253 etransclem37 46264 tworepnotupword 46879 iccpartlt 47420 31prm 47593 gpgprismgr4cycllem3 48082 1odd 48154 itcoval1 48647 ackval1 48665 ackval41a 48678 |
| Copyright terms: Public domain | W3C validator |