Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ipsstr | Structured version Visualization version GIF version |
Description: Lemma to shorten proofs of ipsbase 17036 through ipsvsca 17040. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 29-Aug-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.) |
Ref | Expression |
---|---|
ipspart.a | ⊢ 𝐴 = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), × 〉} ∪ {〈(Scalar‘ndx), 𝑆〉, 〈( ·𝑠 ‘ndx), · 〉, 〈(·𝑖‘ndx), 𝐼〉}) |
Ref | Expression |
---|---|
ipsstr | ⊢ 𝐴 Struct 〈1, 8〉 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ipspart.a | . 2 ⊢ 𝐴 = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), × 〉} ∪ {〈(Scalar‘ndx), 𝑆〉, 〈( ·𝑠 ‘ndx), · 〉, 〈(·𝑖‘ndx), 𝐼〉}) | |
2 | eqid 2738 | . . . 4 ⊢ {〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), × 〉} = {〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), × 〉} | |
3 | 2 | rngstr 16997 | . . 3 ⊢ {〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), × 〉} Struct 〈1, 3〉 |
4 | 5nn 12048 | . . . 4 ⊢ 5 ∈ ℕ | |
5 | scandx 17013 | . . . 4 ⊢ (Scalar‘ndx) = 5 | |
6 | 5lt6 12143 | . . . 4 ⊢ 5 < 6 | |
7 | 6nn 12051 | . . . 4 ⊢ 6 ∈ ℕ | |
8 | vscandx 17018 | . . . 4 ⊢ ( ·𝑠 ‘ndx) = 6 | |
9 | 6lt8 12155 | . . . 4 ⊢ 6 < 8 | |
10 | 8nn 12057 | . . . 4 ⊢ 8 ∈ ℕ | |
11 | ipndx 17029 | . . . 4 ⊢ (·𝑖‘ndx) = 8 | |
12 | 4, 5, 6, 7, 8, 9, 10, 11 | strle3 16850 | . . 3 ⊢ {〈(Scalar‘ndx), 𝑆〉, 〈( ·𝑠 ‘ndx), · 〉, 〈(·𝑖‘ndx), 𝐼〉} Struct 〈5, 8〉 |
13 | 3lt5 12140 | . . 3 ⊢ 3 < 5 | |
14 | 3, 12, 13 | strleun 16847 | . 2 ⊢ ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), × 〉} ∪ {〈(Scalar‘ndx), 𝑆〉, 〈( ·𝑠 ‘ndx), · 〉, 〈(·𝑖‘ndx), 𝐼〉}) Struct 〈1, 8〉 |
15 | 1, 14 | eqbrtri 5096 | 1 ⊢ 𝐴 Struct 〈1, 8〉 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∪ cun 3886 {ctp 4567 〈cop 4569 class class class wbr 5075 ‘cfv 6428 1c1 10861 3c3 12018 5c5 12020 6c6 12021 8c8 12023 Struct cstr 16836 ndxcnx 16883 Basecbs 16901 +gcplusg 16951 .rcmulr 16952 Scalarcsca 16954 ·𝑠 cvsca 16955 ·𝑖cip 16956 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7580 ax-cnex 10916 ax-resscn 10917 ax-1cn 10918 ax-icn 10919 ax-addcl 10920 ax-addrcl 10921 ax-mulcl 10922 ax-mulrcl 10923 ax-mulcom 10924 ax-addass 10925 ax-mulass 10926 ax-distr 10927 ax-i2m1 10928 ax-1ne0 10929 ax-1rid 10930 ax-rnegex 10931 ax-rrecex 10932 ax-cnre 10933 ax-pre-lttri 10934 ax-pre-lttrn 10935 ax-pre-ltadd 10936 ax-pre-mulgt0 10937 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3433 df-sbc 3718 df-csb 3834 df-dif 3891 df-un 3893 df-in 3895 df-ss 3905 df-pss 3907 df-nul 4259 df-if 4462 df-pw 4537 df-sn 4564 df-pr 4566 df-tp 4568 df-op 4570 df-uni 4842 df-iun 4928 df-br 5076 df-opab 5138 df-mpt 5159 df-tr 5193 df-id 5486 df-eprel 5492 df-po 5500 df-so 5501 df-fr 5541 df-we 5543 df-xp 5592 df-rel 5593 df-cnv 5594 df-co 5595 df-dm 5596 df-rn 5597 df-res 5598 df-ima 5599 df-pred 6197 df-ord 6264 df-on 6265 df-lim 6266 df-suc 6267 df-iota 6386 df-fun 6430 df-fn 6431 df-f 6432 df-f1 6433 df-fo 6434 df-f1o 6435 df-fv 6436 df-riota 7226 df-ov 7272 df-oprab 7273 df-mpo 7274 df-om 7705 df-1st 7822 df-2nd 7823 df-frecs 8086 df-wrecs 8117 df-recs 8191 df-rdg 8230 df-1o 8286 df-er 8487 df-en 8723 df-dom 8724 df-sdom 8725 df-fin 8726 df-pnf 11000 df-mnf 11001 df-xr 11002 df-ltxr 11003 df-le 11004 df-sub 11196 df-neg 11197 df-nn 11963 df-2 12025 df-3 12026 df-4 12027 df-5 12028 df-6 12029 df-7 12030 df-8 12031 df-n0 12223 df-z 12309 df-uz 12572 df-fz 13229 df-struct 16837 df-slot 16872 df-ndx 16884 df-base 16902 df-plusg 16964 df-mulr 16965 df-sca 16967 df-vsca 16968 df-ip 16969 |
This theorem is referenced by: ipsbase 17036 ipsaddg 17037 ipsmulr 17038 ipssca 17039 ipsvsca 17040 ipsip 17041 imasvalstr 17151 |
Copyright terms: Public domain | W3C validator |