Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 3lt9 | Structured version Visualization version GIF version |
Description: 3 is less than 9. (Contributed by Mario Carneiro, 9-Mar-2015.) |
Ref | Expression |
---|---|
3lt9 | ⊢ 3 < 9 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3lt4 12136 | . 2 ⊢ 3 < 4 | |
2 | 4lt9 12165 | . 2 ⊢ 4 < 9 | |
3 | 3re 12042 | . . 3 ⊢ 3 ∈ ℝ | |
4 | 4re 12046 | . . 3 ⊢ 4 ∈ ℝ | |
5 | 9re 12061 | . . 3 ⊢ 9 ∈ ℝ | |
6 | 3, 4, 5 | lttri 11090 | . 2 ⊢ ((3 < 4 ∧ 4 < 9) → 3 < 9) |
7 | 1, 2, 6 | mp2an 689 | 1 ⊢ 3 < 9 |
Colors of variables: wff setvar class |
Syntax hints: class class class wbr 5075 < clt 10998 3c3 12018 4c4 12019 9c9 12024 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7580 ax-resscn 10917 ax-1cn 10918 ax-icn 10919 ax-addcl 10920 ax-addrcl 10921 ax-mulcl 10922 ax-mulrcl 10923 ax-mulcom 10924 ax-addass 10925 ax-mulass 10926 ax-distr 10927 ax-i2m1 10928 ax-1ne0 10929 ax-1rid 10930 ax-rnegex 10931 ax-rrecex 10932 ax-cnre 10933 ax-pre-lttri 10934 ax-pre-lttrn 10935 ax-pre-ltadd 10936 ax-pre-mulgt0 10937 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3433 df-sbc 3718 df-csb 3834 df-dif 3891 df-un 3893 df-in 3895 df-ss 3905 df-nul 4259 df-if 4462 df-pw 4537 df-sn 4564 df-pr 4566 df-op 4570 df-uni 4842 df-br 5076 df-opab 5138 df-mpt 5159 df-id 5486 df-po 5500 df-so 5501 df-xp 5592 df-rel 5593 df-cnv 5594 df-co 5595 df-dm 5596 df-rn 5597 df-res 5598 df-ima 5599 df-iota 6386 df-fun 6430 df-fn 6431 df-f 6432 df-f1 6433 df-fo 6434 df-f1o 6435 df-fv 6436 df-riota 7226 df-ov 7272 df-oprab 7273 df-mpo 7274 df-er 8487 df-en 8723 df-dom 8724 df-sdom 8725 df-pnf 11000 df-mnf 11001 df-xr 11002 df-ltxr 11003 df-le 11004 df-sub 11196 df-neg 11197 df-2 12025 df-3 12026 df-4 12027 df-5 12028 df-6 12029 df-7 12030 df-8 12031 df-9 12032 |
This theorem is referenced by: 2lt9 12167 317prm 16816 tsetndxnmulrndx 17057 odrngstr 17102 cnfldfunALTOLD 20600 tngmulrOLD 23793 idlsrgstr 31634 127prm 45008 nfermltl8rev 45151 nfermltl2rev 45152 |
Copyright terms: Public domain | W3C validator |