Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  aks4d1p7d1 Structured version   Visualization version   GIF version

Theorem aks4d1p7d1 41687
Description: Technical step in AKS lemma 4.1 (Contributed by metakunt, 31-Oct-2024.)
Hypotheses
Ref Expression
aks4d1p7d1.1 (𝜑𝑁 ∈ (ℤ‘3))
aks4d1p7d1.2 𝐴 = ((𝑁↑(⌊‘(2 logb 𝐵))) · ∏𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑁𝑘) − 1))
aks4d1p7d1.3 𝐵 = (⌈‘((2 logb 𝑁)↑5))
aks4d1p7d1.4 𝑅 = inf({𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟𝐴}, ℝ, < )
aks4d1p7d1.5 (𝜑 → ∀𝑝 ∈ ℙ (𝑝𝑅𝑝𝑁))
Assertion
Ref Expression
aks4d1p7d1 (𝜑𝑅 ∥ (𝑁↑(⌊‘(2 logb 𝐵))))
Distinct variable groups:   𝐴,𝑟   𝐵,𝑝   𝐵,𝑟   𝑘,𝑁,𝑝   𝑅,𝑘,𝑝   𝑅,𝑟   𝜑,𝑘,𝑝
Allowed substitution hints:   𝜑(𝑟)   𝐴(𝑘,𝑝)   𝐵(𝑘)   𝑁(𝑟)

Proof of Theorem aks4d1p7d1
StepHypRef Expression
1 simp2 1134 . . . . . . . 8 ((𝜑𝑝 ∈ ℙ ∧ 𝑝𝑅) → 𝑝 ∈ ℙ)
2 aks4d1p7d1.1 . . . . . . . . . . . 12 (𝜑𝑁 ∈ (ℤ‘3))
3 aks4d1p7d1.2 . . . . . . . . . . . 12 𝐴 = ((𝑁↑(⌊‘(2 logb 𝐵))) · ∏𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑁𝑘) − 1))
4 aks4d1p7d1.3 . . . . . . . . . . . 12 𝐵 = (⌈‘((2 logb 𝑁)↑5))
5 aks4d1p7d1.4 . . . . . . . . . . . 12 𝑅 = inf({𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟𝐴}, ℝ, < )
62, 3, 4, 5aks4d1p4 41684 . . . . . . . . . . 11 (𝜑 → (𝑅 ∈ (1...𝐵) ∧ ¬ 𝑅𝐴))
76simpld 493 . . . . . . . . . 10 (𝜑𝑅 ∈ (1...𝐵))
8 elfznn 13570 . . . . . . . . . 10 (𝑅 ∈ (1...𝐵) → 𝑅 ∈ ℕ)
97, 8syl 17 . . . . . . . . 9 (𝜑𝑅 ∈ ℕ)
1093ad2ant1 1130 . . . . . . . 8 ((𝜑𝑝 ∈ ℙ ∧ 𝑝𝑅) → 𝑅 ∈ ℕ)
111, 10pccld 16827 . . . . . . 7 ((𝜑𝑝 ∈ ℙ ∧ 𝑝𝑅) → (𝑝 pCnt 𝑅) ∈ ℕ0)
12113expa 1115 . . . . . 6 (((𝜑𝑝 ∈ ℙ) ∧ 𝑝𝑅) → (𝑝 pCnt 𝑅) ∈ ℕ0)
1312nn0red 12571 . . . . 5 (((𝜑𝑝 ∈ ℙ) ∧ 𝑝𝑅) → (𝑝 pCnt 𝑅) ∈ ℝ)
14 2re 12324 . . . . . . . . . 10 2 ∈ ℝ
1514a1i 11 . . . . . . . . 9 (𝜑 → 2 ∈ ℝ)
16 2pos 12353 . . . . . . . . . 10 0 < 2
1716a1i 11 . . . . . . . . 9 (𝜑 → 0 < 2)
184a1i 11 . . . . . . . . . 10 (𝜑𝐵 = (⌈‘((2 logb 𝑁)↑5)))
19 eluzelz 12870 . . . . . . . . . . . . . . . 16 (𝑁 ∈ (ℤ‘3) → 𝑁 ∈ ℤ)
202, 19syl 17 . . . . . . . . . . . . . . 15 (𝜑𝑁 ∈ ℤ)
2120zred 12704 . . . . . . . . . . . . . 14 (𝜑𝑁 ∈ ℝ)
22 0red 11254 . . . . . . . . . . . . . . 15 (𝜑 → 0 ∈ ℝ)
23 3re 12330 . . . . . . . . . . . . . . . 16 3 ∈ ℝ
2423a1i 11 . . . . . . . . . . . . . . 15 (𝜑 → 3 ∈ ℝ)
25 3pos 12355 . . . . . . . . . . . . . . . 16 0 < 3
2625a1i 11 . . . . . . . . . . . . . . 15 (𝜑 → 0 < 3)
27 eluzle 12873 . . . . . . . . . . . . . . . 16 (𝑁 ∈ (ℤ‘3) → 3 ≤ 𝑁)
282, 27syl 17 . . . . . . . . . . . . . . 15 (𝜑 → 3 ≤ 𝑁)
2922, 24, 21, 26, 28ltletrd 11411 . . . . . . . . . . . . . 14 (𝜑 → 0 < 𝑁)
30 1red 11252 . . . . . . . . . . . . . . . 16 (𝜑 → 1 ∈ ℝ)
31 1lt2 12421 . . . . . . . . . . . . . . . . 17 1 < 2
3231a1i 11 . . . . . . . . . . . . . . . 16 (𝜑 → 1 < 2)
3330, 32ltned 11387 . . . . . . . . . . . . . . 15 (𝜑 → 1 ≠ 2)
3433necomd 2985 . . . . . . . . . . . . . 14 (𝜑 → 2 ≠ 1)
3515, 17, 21, 29, 34relogbcld 41577 . . . . . . . . . . . . 13 (𝜑 → (2 logb 𝑁) ∈ ℝ)
36 5nn0 12530 . . . . . . . . . . . . . 14 5 ∈ ℕ0
3736a1i 11 . . . . . . . . . . . . 13 (𝜑 → 5 ∈ ℕ0)
3835, 37reexpcld 14168 . . . . . . . . . . . 12 (𝜑 → ((2 logb 𝑁)↑5) ∈ ℝ)
39 ceilcl 13848 . . . . . . . . . . . 12 (((2 logb 𝑁)↑5) ∈ ℝ → (⌈‘((2 logb 𝑁)↑5)) ∈ ℤ)
4038, 39syl 17 . . . . . . . . . . 11 (𝜑 → (⌈‘((2 logb 𝑁)↑5)) ∈ ℤ)
4140zred 12704 . . . . . . . . . 10 (𝜑 → (⌈‘((2 logb 𝑁)↑5)) ∈ ℝ)
4218, 41eqeltrd 2825 . . . . . . . . 9 (𝜑𝐵 ∈ ℝ)
43 9re 12349 . . . . . . . . . . . . 13 9 ∈ ℝ
4443a1i 11 . . . . . . . . . . . 12 (𝜑 → 9 ∈ ℝ)
45 9pos 12363 . . . . . . . . . . . . 13 0 < 9
4645a1i 11 . . . . . . . . . . . 12 (𝜑 → 0 < 9)
4721, 283lexlogpow5ineq4 41661 . . . . . . . . . . . 12 (𝜑 → 9 < ((2 logb 𝑁)↑5))
4822, 44, 38, 46, 47lttrd 11412 . . . . . . . . . . 11 (𝜑 → 0 < ((2 logb 𝑁)↑5))
49 ceilge 13851 . . . . . . . . . . . 12 (((2 logb 𝑁)↑5) ∈ ℝ → ((2 logb 𝑁)↑5) ≤ (⌈‘((2 logb 𝑁)↑5)))
5038, 49syl 17 . . . . . . . . . . 11 (𝜑 → ((2 logb 𝑁)↑5) ≤ (⌈‘((2 logb 𝑁)↑5)))
5122, 38, 41, 48, 50ltletrd 11411 . . . . . . . . . 10 (𝜑 → 0 < (⌈‘((2 logb 𝑁)↑5)))
5251, 18breqtrrd 5177 . . . . . . . . 9 (𝜑 → 0 < 𝐵)
5315, 17, 42, 52, 34relogbcld 41577 . . . . . . . 8 (𝜑 → (2 logb 𝐵) ∈ ℝ)
5453flcld 13804 . . . . . . 7 (𝜑 → (⌊‘(2 logb 𝐵)) ∈ ℤ)
5554zred 12704 . . . . . 6 (𝜑 → (⌊‘(2 logb 𝐵)) ∈ ℝ)
5655ad2antrr 724 . . . . 5 (((𝜑𝑝 ∈ ℙ) ∧ 𝑝𝑅) → (⌊‘(2 logb 𝐵)) ∈ ℝ)
57 simplr 767 . . . . . . 7 (((𝜑𝑝 ∈ ℙ) ∧ 𝑝𝑅) → 𝑝 ∈ ℙ)
5820, 29jca 510 . . . . . . . . . 10 (𝜑 → (𝑁 ∈ ℤ ∧ 0 < 𝑁))
59 elnnz 12606 . . . . . . . . . 10 (𝑁 ∈ ℕ ↔ (𝑁 ∈ ℤ ∧ 0 < 𝑁))
6058, 59sylibr 233 . . . . . . . . 9 (𝜑𝑁 ∈ ℕ)
6160ad2antrr 724 . . . . . . . 8 (((𝜑𝑝 ∈ ℙ) ∧ 𝑝𝑅) → 𝑁 ∈ ℕ)
62 1cnd 11246 . . . . . . . . . . . . . . . . 17 (𝜑 → 1 ∈ ℂ)
6362addlidd 11452 . . . . . . . . . . . . . . . 16 (𝜑 → (0 + 1) = 1)
6415recnd 11279 . . . . . . . . . . . . . . . . . 18 (𝜑 → 2 ∈ ℂ)
6522, 17gtned 11386 . . . . . . . . . . . . . . . . . 18 (𝜑 → 2 ≠ 0)
66 logbid1 26750 . . . . . . . . . . . . . . . . . 18 ((2 ∈ ℂ ∧ 2 ≠ 0 ∧ 2 ≠ 1) → (2 logb 2) = 1)
6764, 65, 34, 66syl3anc 1368 . . . . . . . . . . . . . . . . 17 (𝜑 → (2 logb 2) = 1)
6867eqcomd 2731 . . . . . . . . . . . . . . . 16 (𝜑 → 1 = (2 logb 2))
6963, 68eqtrd 2765 . . . . . . . . . . . . . . 15 (𝜑 → (0 + 1) = (2 logb 2))
70 2z 12632 . . . . . . . . . . . . . . . . 17 2 ∈ ℤ
7170a1i 11 . . . . . . . . . . . . . . . 16 (𝜑 → 2 ∈ ℤ)
7215leidd 11817 . . . . . . . . . . . . . . . 16 (𝜑 → 2 ≤ 2)
73 2lt9 12455 . . . . . . . . . . . . . . . . . . 19 2 < 9
7473a1i 11 . . . . . . . . . . . . . . . . . 18 (𝜑 → 2 < 9)
7515, 44, 74ltled 11399 . . . . . . . . . . . . . . . . 17 (𝜑 → 2 ≤ 9)
7644, 38, 41, 47, 50ltletrd 11411 . . . . . . . . . . . . . . . . . . 19 (𝜑 → 9 < (⌈‘((2 logb 𝑁)↑5)))
7776, 18breqtrrd 5177 . . . . . . . . . . . . . . . . . 18 (𝜑 → 9 < 𝐵)
7844, 42, 77ltled 11399 . . . . . . . . . . . . . . . . 17 (𝜑 → 9 ≤ 𝐵)
7915, 44, 42, 75, 78letrd 11408 . . . . . . . . . . . . . . . 16 (𝜑 → 2 ≤ 𝐵)
8071, 72, 15, 17, 42, 52, 79logblebd 41580 . . . . . . . . . . . . . . 15 (𝜑 → (2 logb 2) ≤ (2 logb 𝐵))
8169, 80eqbrtrd 5171 . . . . . . . . . . . . . 14 (𝜑 → (0 + 1) ≤ (2 logb 𝐵))
82 0zd 12608 . . . . . . . . . . . . . . . 16 (𝜑 → 0 ∈ ℤ)
8382peano2zd 12707 . . . . . . . . . . . . . . 15 (𝜑 → (0 + 1) ∈ ℤ)
84 flge 13811 . . . . . . . . . . . . . . 15 (((2 logb 𝐵) ∈ ℝ ∧ (0 + 1) ∈ ℤ) → ((0 + 1) ≤ (2 logb 𝐵) ↔ (0 + 1) ≤ (⌊‘(2 logb 𝐵))))
8553, 83, 84syl2anc 582 . . . . . . . . . . . . . 14 (𝜑 → ((0 + 1) ≤ (2 logb 𝐵) ↔ (0 + 1) ≤ (⌊‘(2 logb 𝐵))))
8681, 85mpbid 231 . . . . . . . . . . . . 13 (𝜑 → (0 + 1) ≤ (⌊‘(2 logb 𝐵)))
8782, 54zltp1led 41584 . . . . . . . . . . . . 13 (𝜑 → (0 < (⌊‘(2 logb 𝐵)) ↔ (0 + 1) ≤ (⌊‘(2 logb 𝐵))))
8886, 87mpbird 256 . . . . . . . . . . . 12 (𝜑 → 0 < (⌊‘(2 logb 𝐵)))
8954, 88jca 510 . . . . . . . . . . 11 (𝜑 → ((⌊‘(2 logb 𝐵)) ∈ ℤ ∧ 0 < (⌊‘(2 logb 𝐵))))
90 elnnz 12606 . . . . . . . . . . 11 ((⌊‘(2 logb 𝐵)) ∈ ℕ ↔ ((⌊‘(2 logb 𝐵)) ∈ ℤ ∧ 0 < (⌊‘(2 logb 𝐵))))
9189, 90sylibr 233 . . . . . . . . . 10 (𝜑 → (⌊‘(2 logb 𝐵)) ∈ ℕ)
9291nnnn0d 12570 . . . . . . . . 9 (𝜑 → (⌊‘(2 logb 𝐵)) ∈ ℕ0)
9392ad2antrr 724 . . . . . . . 8 (((𝜑𝑝 ∈ ℙ) ∧ 𝑝𝑅) → (⌊‘(2 logb 𝐵)) ∈ ℕ0)
9461, 93nnexpcld 14248 . . . . . . 7 (((𝜑𝑝 ∈ ℙ) ∧ 𝑝𝑅) → (𝑁↑(⌊‘(2 logb 𝐵))) ∈ ℕ)
9557, 94pccld 16827 . . . . . 6 (((𝜑𝑝 ∈ ℙ) ∧ 𝑝𝑅) → (𝑝 pCnt (𝑁↑(⌊‘(2 logb 𝐵)))) ∈ ℕ0)
9695nn0red 12571 . . . . 5 (((𝜑𝑝 ∈ ℙ) ∧ 𝑝𝑅) → (𝑝 pCnt (𝑁↑(⌊‘(2 logb 𝐵)))) ∈ ℝ)
9723ad2ant1 1130 . . . . . . 7 ((𝜑𝑝 ∈ ℙ ∧ 𝑝𝑅) → 𝑁 ∈ (ℤ‘3))
98 simp3 1135 . . . . . . 7 ((𝜑𝑝 ∈ ℙ ∧ 𝑝𝑅) → 𝑝𝑅)
99 eqid 2725 . . . . . . 7 (𝑝 pCnt 𝑅) = (𝑝 pCnt 𝑅)
10097, 3, 4, 5, 1, 98, 99aks4d1p6 41686 . . . . . 6 ((𝜑𝑝 ∈ ℙ ∧ 𝑝𝑅) → (𝑝 pCnt 𝑅) ≤ (⌊‘(2 logb 𝐵)))
1011003expa 1115 . . . . 5 (((𝜑𝑝 ∈ ℙ) ∧ 𝑝𝑅) → (𝑝 pCnt 𝑅) ≤ (⌊‘(2 logb 𝐵)))
10257, 61pccld 16827 . . . . . . . 8 (((𝜑𝑝 ∈ ℙ) ∧ 𝑝𝑅) → (𝑝 pCnt 𝑁) ∈ ℕ0)
103102nn0red 12571 . . . . . . 7 (((𝜑𝑝 ∈ ℙ) ∧ 𝑝𝑅) → (𝑝 pCnt 𝑁) ∈ ℝ)
10422, 55, 88ltled 11399 . . . . . . . . 9 (𝜑 → 0 ≤ (⌊‘(2 logb 𝐵)))
105104adantr 479 . . . . . . . 8 ((𝜑𝑝 ∈ ℙ) → 0 ≤ (⌊‘(2 logb 𝐵)))
106105adantr 479 . . . . . . 7 (((𝜑𝑝 ∈ ℙ) ∧ 𝑝𝑅) → 0 ≤ (⌊‘(2 logb 𝐵)))
107 aks4d1p7d1.5 . . . . . . . . . . . 12 (𝜑 → ∀𝑝 ∈ ℙ (𝑝𝑅𝑝𝑁))
108 rsp 3234 . . . . . . . . . . . 12 (∀𝑝 ∈ ℙ (𝑝𝑅𝑝𝑁) → (𝑝 ∈ ℙ → (𝑝𝑅𝑝𝑁)))
109107, 108syl 17 . . . . . . . . . . 11 (𝜑 → (𝑝 ∈ ℙ → (𝑝𝑅𝑝𝑁)))
110109imp 405 . . . . . . . . . 10 ((𝜑𝑝 ∈ ℙ) → (𝑝𝑅𝑝𝑁))
111110imp 405 . . . . . . . . 9 (((𝜑𝑝 ∈ ℙ) ∧ 𝑝𝑅) → 𝑝𝑁)
11260adantr 479 . . . . . . . . . . 11 ((𝜑𝑝 ∈ ℙ) → 𝑁 ∈ ℕ)
113112adantr 479 . . . . . . . . . 10 (((𝜑𝑝 ∈ ℙ) ∧ 𝑝𝑅) → 𝑁 ∈ ℕ)
114 pcelnn 16847 . . . . . . . . . 10 ((𝑝 ∈ ℙ ∧ 𝑁 ∈ ℕ) → ((𝑝 pCnt 𝑁) ∈ ℕ ↔ 𝑝𝑁))
11557, 113, 114syl2anc 582 . . . . . . . . 9 (((𝜑𝑝 ∈ ℙ) ∧ 𝑝𝑅) → ((𝑝 pCnt 𝑁) ∈ ℕ ↔ 𝑝𝑁))
116111, 115mpbird 256 . . . . . . . 8 (((𝜑𝑝 ∈ ℙ) ∧ 𝑝𝑅) → (𝑝 pCnt 𝑁) ∈ ℕ)
117 nnge1 12278 . . . . . . . 8 ((𝑝 pCnt 𝑁) ∈ ℕ → 1 ≤ (𝑝 pCnt 𝑁))
118116, 117syl 17 . . . . . . 7 (((𝜑𝑝 ∈ ℙ) ∧ 𝑝𝑅) → 1 ≤ (𝑝 pCnt 𝑁))
11956, 103, 106, 118lemulge11d 12189 . . . . . 6 (((𝜑𝑝 ∈ ℙ) ∧ 𝑝𝑅) → (⌊‘(2 logb 𝐵)) ≤ ((⌊‘(2 logb 𝐵)) · (𝑝 pCnt 𝑁)))
120 zq 12976 . . . . . . . . . . 11 (𝑁 ∈ ℤ → 𝑁 ∈ ℚ)
12120, 120syl 17 . . . . . . . . . 10 (𝜑𝑁 ∈ ℚ)
12260nnne0d 12300 . . . . . . . . . 10 (𝜑𝑁 ≠ 0)
123121, 122jca 510 . . . . . . . . 9 (𝜑 → (𝑁 ∈ ℚ ∧ 𝑁 ≠ 0))
124123adantr 479 . . . . . . . 8 ((𝜑𝑝 ∈ ℙ) → (𝑁 ∈ ℚ ∧ 𝑁 ≠ 0))
125124adantr 479 . . . . . . 7 (((𝜑𝑝 ∈ ℙ) ∧ 𝑝𝑅) → (𝑁 ∈ ℚ ∧ 𝑁 ≠ 0))
12654adantr 479 . . . . . . . 8 ((𝜑𝑝 ∈ ℙ) → (⌊‘(2 logb 𝐵)) ∈ ℤ)
127126adantr 479 . . . . . . 7 (((𝜑𝑝 ∈ ℙ) ∧ 𝑝𝑅) → (⌊‘(2 logb 𝐵)) ∈ ℤ)
128 pcexp 16836 . . . . . . 7 ((𝑝 ∈ ℙ ∧ (𝑁 ∈ ℚ ∧ 𝑁 ≠ 0) ∧ (⌊‘(2 logb 𝐵)) ∈ ℤ) → (𝑝 pCnt (𝑁↑(⌊‘(2 logb 𝐵)))) = ((⌊‘(2 logb 𝐵)) · (𝑝 pCnt 𝑁)))
12957, 125, 127, 128syl3anc 1368 . . . . . 6 (((𝜑𝑝 ∈ ℙ) ∧ 𝑝𝑅) → (𝑝 pCnt (𝑁↑(⌊‘(2 logb 𝐵)))) = ((⌊‘(2 logb 𝐵)) · (𝑝 pCnt 𝑁)))
130119, 129breqtrrd 5177 . . . . 5 (((𝜑𝑝 ∈ ℙ) ∧ 𝑝𝑅) → (⌊‘(2 logb 𝐵)) ≤ (𝑝 pCnt (𝑁↑(⌊‘(2 logb 𝐵)))))
13113, 56, 96, 101, 130letrd 11408 . . . 4 (((𝜑𝑝 ∈ ℙ) ∧ 𝑝𝑅) → (𝑝 pCnt 𝑅) ≤ (𝑝 pCnt (𝑁↑(⌊‘(2 logb 𝐵)))))
132 simpr 483 . . . . . 6 (((𝜑𝑝 ∈ ℙ) ∧ ¬ 𝑝𝑅) → ¬ 𝑝𝑅)
133 simplr 767 . . . . . . 7 (((𝜑𝑝 ∈ ℙ) ∧ ¬ 𝑝𝑅) → 𝑝 ∈ ℙ)
1349adantr 479 . . . . . . . 8 ((𝜑𝑝 ∈ ℙ) → 𝑅 ∈ ℕ)
135134adantr 479 . . . . . . 7 (((𝜑𝑝 ∈ ℙ) ∧ ¬ 𝑝𝑅) → 𝑅 ∈ ℕ)
136 pceq0 16848 . . . . . . 7 ((𝑝 ∈ ℙ ∧ 𝑅 ∈ ℕ) → ((𝑝 pCnt 𝑅) = 0 ↔ ¬ 𝑝𝑅))
137133, 135, 136syl2anc 582 . . . . . 6 (((𝜑𝑝 ∈ ℙ) ∧ ¬ 𝑝𝑅) → ((𝑝 pCnt 𝑅) = 0 ↔ ¬ 𝑝𝑅))
138132, 137mpbird 256 . . . . 5 (((𝜑𝑝 ∈ ℙ) ∧ ¬ 𝑝𝑅) → (𝑝 pCnt 𝑅) = 0)
139112adantr 479 . . . . . . . 8 (((𝜑𝑝 ∈ ℙ) ∧ ¬ 𝑝𝑅) → 𝑁 ∈ ℕ)
14092adantr 479 . . . . . . . . 9 ((𝜑𝑝 ∈ ℙ) → (⌊‘(2 logb 𝐵)) ∈ ℕ0)
141140adantr 479 . . . . . . . 8 (((𝜑𝑝 ∈ ℙ) ∧ ¬ 𝑝𝑅) → (⌊‘(2 logb 𝐵)) ∈ ℕ0)
142139, 141nnexpcld 14248 . . . . . . 7 (((𝜑𝑝 ∈ ℙ) ∧ ¬ 𝑝𝑅) → (𝑁↑(⌊‘(2 logb 𝐵))) ∈ ℕ)
143133, 142pccld 16827 . . . . . 6 (((𝜑𝑝 ∈ ℙ) ∧ ¬ 𝑝𝑅) → (𝑝 pCnt (𝑁↑(⌊‘(2 logb 𝐵)))) ∈ ℕ0)
144143nn0ge0d 12573 . . . . 5 (((𝜑𝑝 ∈ ℙ) ∧ ¬ 𝑝𝑅) → 0 ≤ (𝑝 pCnt (𝑁↑(⌊‘(2 logb 𝐵)))))
145138, 144eqbrtrd 5171 . . . 4 (((𝜑𝑝 ∈ ℙ) ∧ ¬ 𝑝𝑅) → (𝑝 pCnt 𝑅) ≤ (𝑝 pCnt (𝑁↑(⌊‘(2 logb 𝐵)))))
146131, 145pm2.61dan 811 . . 3 ((𝜑𝑝 ∈ ℙ) → (𝑝 pCnt 𝑅) ≤ (𝑝 pCnt (𝑁↑(⌊‘(2 logb 𝐵)))))
147146ralrimiva 3135 . 2 (𝜑 → ∀𝑝 ∈ ℙ (𝑝 pCnt 𝑅) ≤ (𝑝 pCnt (𝑁↑(⌊‘(2 logb 𝐵)))))
1487elfzelzd 13542 . . 3 (𝜑𝑅 ∈ ℤ)
14920, 92zexpcld 14093 . . 3 (𝜑 → (𝑁↑(⌊‘(2 logb 𝐵))) ∈ ℤ)
150 pc2dvds 16856 . . 3 ((𝑅 ∈ ℤ ∧ (𝑁↑(⌊‘(2 logb 𝐵))) ∈ ℤ) → (𝑅 ∥ (𝑁↑(⌊‘(2 logb 𝐵))) ↔ ∀𝑝 ∈ ℙ (𝑝 pCnt 𝑅) ≤ (𝑝 pCnt (𝑁↑(⌊‘(2 logb 𝐵))))))
151148, 149, 150syl2anc 582 . 2 (𝜑 → (𝑅 ∥ (𝑁↑(⌊‘(2 logb 𝐵))) ↔ ∀𝑝 ∈ ℙ (𝑝 pCnt 𝑅) ≤ (𝑝 pCnt (𝑁↑(⌊‘(2 logb 𝐵))))))
152147, 151mpbird 256 1 (𝜑𝑅 ∥ (𝑁↑(⌊‘(2 logb 𝐵))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 394  w3a 1084   = wceq 1533  wcel 2098  wne 2929  wral 3050  {crab 3418   class class class wbr 5149  cfv 6549  (class class class)co 7419  infcinf 9471  cc 11143  cr 11144  0cc0 11145  1c1 11146   + caddc 11148   · cmul 11150   < clt 11285  cle 11286  cmin 11481  cn 12250  2c2 12305  3c3 12306  5c5 12308  9c9 12312  0cn0 12510  cz 12596  cuz 12860  cq 12970  ...cfz 13524  cfl 13796  cceil 13797  cexp 14067  cprod 15890  cdvds 16239  cprime 16650   pCnt cpc 16813   logb clogb 26746
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741  ax-inf2 9671  ax-cc 10465  ax-cnex 11201  ax-resscn 11202  ax-1cn 11203  ax-icn 11204  ax-addcl 11205  ax-addrcl 11206  ax-mulcl 11207  ax-mulrcl 11208  ax-mulcom 11209  ax-addass 11210  ax-mulass 11211  ax-distr 11212  ax-i2m1 11213  ax-1ne0 11214  ax-1rid 11215  ax-rnegex 11216  ax-rrecex 11217  ax-cnre 11218  ax-pre-lttri 11219  ax-pre-lttrn 11220  ax-pre-ltadd 11221  ax-pre-mulgt0 11222  ax-pre-sup 11223  ax-addf 11224
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-symdif 4241  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-tp 4635  df-op 4637  df-uni 4910  df-int 4951  df-iun 4999  df-iin 5000  df-disj 5115  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-se 5634  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6307  df-ord 6374  df-on 6375  df-lim 6376  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-isom 6558  df-riota 7375  df-ov 7422  df-oprab 7423  df-mpo 7424  df-of 7685  df-ofr 7686  df-om 7872  df-1st 7994  df-2nd 7995  df-supp 8166  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-1o 8487  df-2o 8488  df-oadd 8491  df-omul 8492  df-er 8725  df-map 8847  df-pm 8848  df-ixp 8917  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-fsupp 9393  df-fi 9441  df-sup 9472  df-inf 9473  df-oi 9540  df-dju 9931  df-card 9969  df-acn 9972  df-pnf 11287  df-mnf 11288  df-xr 11289  df-ltxr 11290  df-le 11291  df-sub 11483  df-neg 11484  df-div 11909  df-nn 12251  df-2 12313  df-3 12314  df-4 12315  df-5 12316  df-6 12317  df-7 12318  df-8 12319  df-9 12320  df-n0 12511  df-z 12597  df-dec 12716  df-uz 12861  df-q 12971  df-rp 13015  df-xneg 13132  df-xadd 13133  df-xmul 13134  df-ioo 13368  df-ioc 13369  df-ico 13370  df-icc 13371  df-fz 13525  df-fzo 13668  df-fl 13798  df-ceil 13799  df-mod 13876  df-seq 14008  df-exp 14068  df-fac 14274  df-bc 14303  df-hash 14331  df-shft 15055  df-cj 15087  df-re 15088  df-im 15089  df-sqrt 15223  df-abs 15224  df-limsup 15456  df-clim 15473  df-rlim 15474  df-sum 15674  df-prod 15891  df-ef 16052  df-e 16053  df-sin 16054  df-cos 16055  df-pi 16057  df-dvds 16240  df-gcd 16478  df-lcm 16569  df-lcmf 16570  df-prm 16651  df-pc 16814  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17189  df-ress 17218  df-plusg 17254  df-mulr 17255  df-starv 17256  df-sca 17257  df-vsca 17258  df-ip 17259  df-tset 17260  df-ple 17261  df-ds 17263  df-unif 17264  df-hom 17265  df-cco 17266  df-rest 17412  df-topn 17413  df-0g 17431  df-gsum 17432  df-topgen 17433  df-pt 17434  df-prds 17437  df-xrs 17492  df-qtop 17497  df-imas 17498  df-xps 17500  df-mre 17574  df-mrc 17575  df-acs 17577  df-mgm 18608  df-sgrp 18687  df-mnd 18703  df-submnd 18749  df-mulg 19037  df-cntz 19285  df-cmn 19754  df-psmet 21293  df-xmet 21294  df-met 21295  df-bl 21296  df-mopn 21297  df-fbas 21298  df-fg 21299  df-cnfld 21302  df-top 22845  df-topon 22862  df-topsp 22884  df-bases 22898  df-cld 22972  df-ntr 22973  df-cls 22974  df-nei 23051  df-lp 23089  df-perf 23090  df-cn 23180  df-cnp 23181  df-haus 23268  df-cmp 23340  df-tx 23515  df-hmeo 23708  df-fil 23799  df-fm 23891  df-flim 23892  df-flf 23893  df-xms 24275  df-ms 24276  df-tms 24277  df-cncf 24847  df-ovol 25442  df-vol 25443  df-mbf 25597  df-itg1 25598  df-itg2 25599  df-ibl 25600  df-itg 25601  df-0p 25648  df-limc 25844  df-dv 25845  df-log 26540  df-cxp 26541  df-logb 26747
This theorem is referenced by:  aks4d1p7  41688
  Copyright terms: Public domain W3C validator