Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  aks4d1p7d1 Structured version   Visualization version   GIF version

Theorem aks4d1p7d1 40539
Description: Technical step in AKS lemma 4.1 (Contributed by metakunt, 31-Oct-2024.)
Hypotheses
Ref Expression
aks4d1p7d1.1 (𝜑𝑁 ∈ (ℤ‘3))
aks4d1p7d1.2 𝐴 = ((𝑁↑(⌊‘(2 logb 𝐵))) · ∏𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑁𝑘) − 1))
aks4d1p7d1.3 𝐵 = (⌈‘((2 logb 𝑁)↑5))
aks4d1p7d1.4 𝑅 = inf({𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟𝐴}, ℝ, < )
aks4d1p7d1.5 (𝜑 → ∀𝑝 ∈ ℙ (𝑝𝑅𝑝𝑁))
Assertion
Ref Expression
aks4d1p7d1 (𝜑𝑅 ∥ (𝑁↑(⌊‘(2 logb 𝐵))))
Distinct variable groups:   𝐴,𝑟   𝐵,𝑝   𝐵,𝑟   𝑘,𝑁,𝑝   𝑅,𝑘,𝑝   𝑅,𝑟   𝜑,𝑘,𝑝
Allowed substitution hints:   𝜑(𝑟)   𝐴(𝑘,𝑝)   𝐵(𝑘)   𝑁(𝑟)

Proof of Theorem aks4d1p7d1
StepHypRef Expression
1 simp2 1137 . . . . . . . 8 ((𝜑𝑝 ∈ ℙ ∧ 𝑝𝑅) → 𝑝 ∈ ℙ)
2 aks4d1p7d1.1 . . . . . . . . . . . 12 (𝜑𝑁 ∈ (ℤ‘3))
3 aks4d1p7d1.2 . . . . . . . . . . . 12 𝐴 = ((𝑁↑(⌊‘(2 logb 𝐵))) · ∏𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑁𝑘) − 1))
4 aks4d1p7d1.3 . . . . . . . . . . . 12 𝐵 = (⌈‘((2 logb 𝑁)↑5))
5 aks4d1p7d1.4 . . . . . . . . . . . 12 𝑅 = inf({𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟𝐴}, ℝ, < )
62, 3, 4, 5aks4d1p4 40536 . . . . . . . . . . 11 (𝜑 → (𝑅 ∈ (1...𝐵) ∧ ¬ 𝑅𝐴))
76simpld 495 . . . . . . . . . 10 (𝜑𝑅 ∈ (1...𝐵))
8 elfznn 13470 . . . . . . . . . 10 (𝑅 ∈ (1...𝐵) → 𝑅 ∈ ℕ)
97, 8syl 17 . . . . . . . . 9 (𝜑𝑅 ∈ ℕ)
1093ad2ant1 1133 . . . . . . . 8 ((𝜑𝑝 ∈ ℙ ∧ 𝑝𝑅) → 𝑅 ∈ ℕ)
111, 10pccld 16722 . . . . . . 7 ((𝜑𝑝 ∈ ℙ ∧ 𝑝𝑅) → (𝑝 pCnt 𝑅) ∈ ℕ0)
12113expa 1118 . . . . . 6 (((𝜑𝑝 ∈ ℙ) ∧ 𝑝𝑅) → (𝑝 pCnt 𝑅) ∈ ℕ0)
1312nn0red 12474 . . . . 5 (((𝜑𝑝 ∈ ℙ) ∧ 𝑝𝑅) → (𝑝 pCnt 𝑅) ∈ ℝ)
14 2re 12227 . . . . . . . . . 10 2 ∈ ℝ
1514a1i 11 . . . . . . . . 9 (𝜑 → 2 ∈ ℝ)
16 2pos 12256 . . . . . . . . . 10 0 < 2
1716a1i 11 . . . . . . . . 9 (𝜑 → 0 < 2)
184a1i 11 . . . . . . . . . 10 (𝜑𝐵 = (⌈‘((2 logb 𝑁)↑5)))
19 eluzelz 12773 . . . . . . . . . . . . . . . 16 (𝑁 ∈ (ℤ‘3) → 𝑁 ∈ ℤ)
202, 19syl 17 . . . . . . . . . . . . . . 15 (𝜑𝑁 ∈ ℤ)
2120zred 12607 . . . . . . . . . . . . . 14 (𝜑𝑁 ∈ ℝ)
22 0red 11158 . . . . . . . . . . . . . . 15 (𝜑 → 0 ∈ ℝ)
23 3re 12233 . . . . . . . . . . . . . . . 16 3 ∈ ℝ
2423a1i 11 . . . . . . . . . . . . . . 15 (𝜑 → 3 ∈ ℝ)
25 3pos 12258 . . . . . . . . . . . . . . . 16 0 < 3
2625a1i 11 . . . . . . . . . . . . . . 15 (𝜑 → 0 < 3)
27 eluzle 12776 . . . . . . . . . . . . . . . 16 (𝑁 ∈ (ℤ‘3) → 3 ≤ 𝑁)
282, 27syl 17 . . . . . . . . . . . . . . 15 (𝜑 → 3 ≤ 𝑁)
2922, 24, 21, 26, 28ltletrd 11315 . . . . . . . . . . . . . 14 (𝜑 → 0 < 𝑁)
30 1red 11156 . . . . . . . . . . . . . . . 16 (𝜑 → 1 ∈ ℝ)
31 1lt2 12324 . . . . . . . . . . . . . . . . 17 1 < 2
3231a1i 11 . . . . . . . . . . . . . . . 16 (𝜑 → 1 < 2)
3330, 32ltned 11291 . . . . . . . . . . . . . . 15 (𝜑 → 1 ≠ 2)
3433necomd 2999 . . . . . . . . . . . . . 14 (𝜑 → 2 ≠ 1)
3515, 17, 21, 29, 34relogbcld 40430 . . . . . . . . . . . . 13 (𝜑 → (2 logb 𝑁) ∈ ℝ)
36 5nn0 12433 . . . . . . . . . . . . . 14 5 ∈ ℕ0
3736a1i 11 . . . . . . . . . . . . 13 (𝜑 → 5 ∈ ℕ0)
3835, 37reexpcld 14068 . . . . . . . . . . . 12 (𝜑 → ((2 logb 𝑁)↑5) ∈ ℝ)
39 ceilcl 13747 . . . . . . . . . . . 12 (((2 logb 𝑁)↑5) ∈ ℝ → (⌈‘((2 logb 𝑁)↑5)) ∈ ℤ)
4038, 39syl 17 . . . . . . . . . . 11 (𝜑 → (⌈‘((2 logb 𝑁)↑5)) ∈ ℤ)
4140zred 12607 . . . . . . . . . 10 (𝜑 → (⌈‘((2 logb 𝑁)↑5)) ∈ ℝ)
4218, 41eqeltrd 2838 . . . . . . . . 9 (𝜑𝐵 ∈ ℝ)
43 9re 12252 . . . . . . . . . . . . 13 9 ∈ ℝ
4443a1i 11 . . . . . . . . . . . 12 (𝜑 → 9 ∈ ℝ)
45 9pos 12266 . . . . . . . . . . . . 13 0 < 9
4645a1i 11 . . . . . . . . . . . 12 (𝜑 → 0 < 9)
4721, 283lexlogpow5ineq4 40513 . . . . . . . . . . . 12 (𝜑 → 9 < ((2 logb 𝑁)↑5))
4822, 44, 38, 46, 47lttrd 11316 . . . . . . . . . . 11 (𝜑 → 0 < ((2 logb 𝑁)↑5))
49 ceilge 13750 . . . . . . . . . . . 12 (((2 logb 𝑁)↑5) ∈ ℝ → ((2 logb 𝑁)↑5) ≤ (⌈‘((2 logb 𝑁)↑5)))
5038, 49syl 17 . . . . . . . . . . 11 (𝜑 → ((2 logb 𝑁)↑5) ≤ (⌈‘((2 logb 𝑁)↑5)))
5122, 38, 41, 48, 50ltletrd 11315 . . . . . . . . . 10 (𝜑 → 0 < (⌈‘((2 logb 𝑁)↑5)))
5251, 18breqtrrd 5133 . . . . . . . . 9 (𝜑 → 0 < 𝐵)
5315, 17, 42, 52, 34relogbcld 40430 . . . . . . . 8 (𝜑 → (2 logb 𝐵) ∈ ℝ)
5453flcld 13703 . . . . . . 7 (𝜑 → (⌊‘(2 logb 𝐵)) ∈ ℤ)
5554zred 12607 . . . . . 6 (𝜑 → (⌊‘(2 logb 𝐵)) ∈ ℝ)
5655ad2antrr 724 . . . . 5 (((𝜑𝑝 ∈ ℙ) ∧ 𝑝𝑅) → (⌊‘(2 logb 𝐵)) ∈ ℝ)
57 simplr 767 . . . . . . 7 (((𝜑𝑝 ∈ ℙ) ∧ 𝑝𝑅) → 𝑝 ∈ ℙ)
5820, 29jca 512 . . . . . . . . . 10 (𝜑 → (𝑁 ∈ ℤ ∧ 0 < 𝑁))
59 elnnz 12509 . . . . . . . . . 10 (𝑁 ∈ ℕ ↔ (𝑁 ∈ ℤ ∧ 0 < 𝑁))
6058, 59sylibr 233 . . . . . . . . 9 (𝜑𝑁 ∈ ℕ)
6160ad2antrr 724 . . . . . . . 8 (((𝜑𝑝 ∈ ℙ) ∧ 𝑝𝑅) → 𝑁 ∈ ℕ)
62 1cnd 11150 . . . . . . . . . . . . . . . . 17 (𝜑 → 1 ∈ ℂ)
6362addid2d 11356 . . . . . . . . . . . . . . . 16 (𝜑 → (0 + 1) = 1)
6415recnd 11183 . . . . . . . . . . . . . . . . . 18 (𝜑 → 2 ∈ ℂ)
6522, 17gtned 11290 . . . . . . . . . . . . . . . . . 18 (𝜑 → 2 ≠ 0)
66 logbid1 26118 . . . . . . . . . . . . . . . . . 18 ((2 ∈ ℂ ∧ 2 ≠ 0 ∧ 2 ≠ 1) → (2 logb 2) = 1)
6764, 65, 34, 66syl3anc 1371 . . . . . . . . . . . . . . . . 17 (𝜑 → (2 logb 2) = 1)
6867eqcomd 2742 . . . . . . . . . . . . . . . 16 (𝜑 → 1 = (2 logb 2))
6963, 68eqtrd 2776 . . . . . . . . . . . . . . 15 (𝜑 → (0 + 1) = (2 logb 2))
70 2z 12535 . . . . . . . . . . . . . . . . 17 2 ∈ ℤ
7170a1i 11 . . . . . . . . . . . . . . . 16 (𝜑 → 2 ∈ ℤ)
7215leidd 11721 . . . . . . . . . . . . . . . 16 (𝜑 → 2 ≤ 2)
73 2lt9 12358 . . . . . . . . . . . . . . . . . . 19 2 < 9
7473a1i 11 . . . . . . . . . . . . . . . . . 18 (𝜑 → 2 < 9)
7515, 44, 74ltled 11303 . . . . . . . . . . . . . . . . 17 (𝜑 → 2 ≤ 9)
7644, 38, 41, 47, 50ltletrd 11315 . . . . . . . . . . . . . . . . . . 19 (𝜑 → 9 < (⌈‘((2 logb 𝑁)↑5)))
7776, 18breqtrrd 5133 . . . . . . . . . . . . . . . . . 18 (𝜑 → 9 < 𝐵)
7844, 42, 77ltled 11303 . . . . . . . . . . . . . . . . 17 (𝜑 → 9 ≤ 𝐵)
7915, 44, 42, 75, 78letrd 11312 . . . . . . . . . . . . . . . 16 (𝜑 → 2 ≤ 𝐵)
8071, 72, 15, 17, 42, 52, 79logblebd 40433 . . . . . . . . . . . . . . 15 (𝜑 → (2 logb 2) ≤ (2 logb 𝐵))
8169, 80eqbrtrd 5127 . . . . . . . . . . . . . 14 (𝜑 → (0 + 1) ≤ (2 logb 𝐵))
82 0zd 12511 . . . . . . . . . . . . . . . 16 (𝜑 → 0 ∈ ℤ)
8382peano2zd 12610 . . . . . . . . . . . . . . 15 (𝜑 → (0 + 1) ∈ ℤ)
84 flge 13710 . . . . . . . . . . . . . . 15 (((2 logb 𝐵) ∈ ℝ ∧ (0 + 1) ∈ ℤ) → ((0 + 1) ≤ (2 logb 𝐵) ↔ (0 + 1) ≤ (⌊‘(2 logb 𝐵))))
8553, 83, 84syl2anc 584 . . . . . . . . . . . . . 14 (𝜑 → ((0 + 1) ≤ (2 logb 𝐵) ↔ (0 + 1) ≤ (⌊‘(2 logb 𝐵))))
8681, 85mpbid 231 . . . . . . . . . . . . 13 (𝜑 → (0 + 1) ≤ (⌊‘(2 logb 𝐵)))
8782, 54zltp1led 40437 . . . . . . . . . . . . 13 (𝜑 → (0 < (⌊‘(2 logb 𝐵)) ↔ (0 + 1) ≤ (⌊‘(2 logb 𝐵))))
8886, 87mpbird 256 . . . . . . . . . . . 12 (𝜑 → 0 < (⌊‘(2 logb 𝐵)))
8954, 88jca 512 . . . . . . . . . . 11 (𝜑 → ((⌊‘(2 logb 𝐵)) ∈ ℤ ∧ 0 < (⌊‘(2 logb 𝐵))))
90 elnnz 12509 . . . . . . . . . . 11 ((⌊‘(2 logb 𝐵)) ∈ ℕ ↔ ((⌊‘(2 logb 𝐵)) ∈ ℤ ∧ 0 < (⌊‘(2 logb 𝐵))))
9189, 90sylibr 233 . . . . . . . . . 10 (𝜑 → (⌊‘(2 logb 𝐵)) ∈ ℕ)
9291nnnn0d 12473 . . . . . . . . 9 (𝜑 → (⌊‘(2 logb 𝐵)) ∈ ℕ0)
9392ad2antrr 724 . . . . . . . 8 (((𝜑𝑝 ∈ ℙ) ∧ 𝑝𝑅) → (⌊‘(2 logb 𝐵)) ∈ ℕ0)
9461, 93nnexpcld 14148 . . . . . . 7 (((𝜑𝑝 ∈ ℙ) ∧ 𝑝𝑅) → (𝑁↑(⌊‘(2 logb 𝐵))) ∈ ℕ)
9557, 94pccld 16722 . . . . . 6 (((𝜑𝑝 ∈ ℙ) ∧ 𝑝𝑅) → (𝑝 pCnt (𝑁↑(⌊‘(2 logb 𝐵)))) ∈ ℕ0)
9695nn0red 12474 . . . . 5 (((𝜑𝑝 ∈ ℙ) ∧ 𝑝𝑅) → (𝑝 pCnt (𝑁↑(⌊‘(2 logb 𝐵)))) ∈ ℝ)
9723ad2ant1 1133 . . . . . . 7 ((𝜑𝑝 ∈ ℙ ∧ 𝑝𝑅) → 𝑁 ∈ (ℤ‘3))
98 simp3 1138 . . . . . . 7 ((𝜑𝑝 ∈ ℙ ∧ 𝑝𝑅) → 𝑝𝑅)
99 eqid 2736 . . . . . . 7 (𝑝 pCnt 𝑅) = (𝑝 pCnt 𝑅)
10097, 3, 4, 5, 1, 98, 99aks4d1p6 40538 . . . . . 6 ((𝜑𝑝 ∈ ℙ ∧ 𝑝𝑅) → (𝑝 pCnt 𝑅) ≤ (⌊‘(2 logb 𝐵)))
1011003expa 1118 . . . . 5 (((𝜑𝑝 ∈ ℙ) ∧ 𝑝𝑅) → (𝑝 pCnt 𝑅) ≤ (⌊‘(2 logb 𝐵)))
10257, 61pccld 16722 . . . . . . . 8 (((𝜑𝑝 ∈ ℙ) ∧ 𝑝𝑅) → (𝑝 pCnt 𝑁) ∈ ℕ0)
103102nn0red 12474 . . . . . . 7 (((𝜑𝑝 ∈ ℙ) ∧ 𝑝𝑅) → (𝑝 pCnt 𝑁) ∈ ℝ)
10422, 55, 88ltled 11303 . . . . . . . . 9 (𝜑 → 0 ≤ (⌊‘(2 logb 𝐵)))
105104adantr 481 . . . . . . . 8 ((𝜑𝑝 ∈ ℙ) → 0 ≤ (⌊‘(2 logb 𝐵)))
106105adantr 481 . . . . . . 7 (((𝜑𝑝 ∈ ℙ) ∧ 𝑝𝑅) → 0 ≤ (⌊‘(2 logb 𝐵)))
107 aks4d1p7d1.5 . . . . . . . . . . . 12 (𝜑 → ∀𝑝 ∈ ℙ (𝑝𝑅𝑝𝑁))
108 rsp 3230 . . . . . . . . . . . 12 (∀𝑝 ∈ ℙ (𝑝𝑅𝑝𝑁) → (𝑝 ∈ ℙ → (𝑝𝑅𝑝𝑁)))
109107, 108syl 17 . . . . . . . . . . 11 (𝜑 → (𝑝 ∈ ℙ → (𝑝𝑅𝑝𝑁)))
110109imp 407 . . . . . . . . . 10 ((𝜑𝑝 ∈ ℙ) → (𝑝𝑅𝑝𝑁))
111110imp 407 . . . . . . . . 9 (((𝜑𝑝 ∈ ℙ) ∧ 𝑝𝑅) → 𝑝𝑁)
11260adantr 481 . . . . . . . . . . 11 ((𝜑𝑝 ∈ ℙ) → 𝑁 ∈ ℕ)
113112adantr 481 . . . . . . . . . 10 (((𝜑𝑝 ∈ ℙ) ∧ 𝑝𝑅) → 𝑁 ∈ ℕ)
114 pcelnn 16742 . . . . . . . . . 10 ((𝑝 ∈ ℙ ∧ 𝑁 ∈ ℕ) → ((𝑝 pCnt 𝑁) ∈ ℕ ↔ 𝑝𝑁))
11557, 113, 114syl2anc 584 . . . . . . . . 9 (((𝜑𝑝 ∈ ℙ) ∧ 𝑝𝑅) → ((𝑝 pCnt 𝑁) ∈ ℕ ↔ 𝑝𝑁))
116111, 115mpbird 256 . . . . . . . 8 (((𝜑𝑝 ∈ ℙ) ∧ 𝑝𝑅) → (𝑝 pCnt 𝑁) ∈ ℕ)
117 nnge1 12181 . . . . . . . 8 ((𝑝 pCnt 𝑁) ∈ ℕ → 1 ≤ (𝑝 pCnt 𝑁))
118116, 117syl 17 . . . . . . 7 (((𝜑𝑝 ∈ ℙ) ∧ 𝑝𝑅) → 1 ≤ (𝑝 pCnt 𝑁))
11956, 103, 106, 118lemulge11d 12092 . . . . . 6 (((𝜑𝑝 ∈ ℙ) ∧ 𝑝𝑅) → (⌊‘(2 logb 𝐵)) ≤ ((⌊‘(2 logb 𝐵)) · (𝑝 pCnt 𝑁)))
120 zq 12879 . . . . . . . . . . 11 (𝑁 ∈ ℤ → 𝑁 ∈ ℚ)
12120, 120syl 17 . . . . . . . . . 10 (𝜑𝑁 ∈ ℚ)
12260nnne0d 12203 . . . . . . . . . 10 (𝜑𝑁 ≠ 0)
123121, 122jca 512 . . . . . . . . 9 (𝜑 → (𝑁 ∈ ℚ ∧ 𝑁 ≠ 0))
124123adantr 481 . . . . . . . 8 ((𝜑𝑝 ∈ ℙ) → (𝑁 ∈ ℚ ∧ 𝑁 ≠ 0))
125124adantr 481 . . . . . . 7 (((𝜑𝑝 ∈ ℙ) ∧ 𝑝𝑅) → (𝑁 ∈ ℚ ∧ 𝑁 ≠ 0))
12654adantr 481 . . . . . . . 8 ((𝜑𝑝 ∈ ℙ) → (⌊‘(2 logb 𝐵)) ∈ ℤ)
127126adantr 481 . . . . . . 7 (((𝜑𝑝 ∈ ℙ) ∧ 𝑝𝑅) → (⌊‘(2 logb 𝐵)) ∈ ℤ)
128 pcexp 16731 . . . . . . 7 ((𝑝 ∈ ℙ ∧ (𝑁 ∈ ℚ ∧ 𝑁 ≠ 0) ∧ (⌊‘(2 logb 𝐵)) ∈ ℤ) → (𝑝 pCnt (𝑁↑(⌊‘(2 logb 𝐵)))) = ((⌊‘(2 logb 𝐵)) · (𝑝 pCnt 𝑁)))
12957, 125, 127, 128syl3anc 1371 . . . . . 6 (((𝜑𝑝 ∈ ℙ) ∧ 𝑝𝑅) → (𝑝 pCnt (𝑁↑(⌊‘(2 logb 𝐵)))) = ((⌊‘(2 logb 𝐵)) · (𝑝 pCnt 𝑁)))
130119, 129breqtrrd 5133 . . . . 5 (((𝜑𝑝 ∈ ℙ) ∧ 𝑝𝑅) → (⌊‘(2 logb 𝐵)) ≤ (𝑝 pCnt (𝑁↑(⌊‘(2 logb 𝐵)))))
13113, 56, 96, 101, 130letrd 11312 . . . 4 (((𝜑𝑝 ∈ ℙ) ∧ 𝑝𝑅) → (𝑝 pCnt 𝑅) ≤ (𝑝 pCnt (𝑁↑(⌊‘(2 logb 𝐵)))))
132 simpr 485 . . . . . 6 (((𝜑𝑝 ∈ ℙ) ∧ ¬ 𝑝𝑅) → ¬ 𝑝𝑅)
133 simplr 767 . . . . . . 7 (((𝜑𝑝 ∈ ℙ) ∧ ¬ 𝑝𝑅) → 𝑝 ∈ ℙ)
1349adantr 481 . . . . . . . 8 ((𝜑𝑝 ∈ ℙ) → 𝑅 ∈ ℕ)
135134adantr 481 . . . . . . 7 (((𝜑𝑝 ∈ ℙ) ∧ ¬ 𝑝𝑅) → 𝑅 ∈ ℕ)
136 pceq0 16743 . . . . . . 7 ((𝑝 ∈ ℙ ∧ 𝑅 ∈ ℕ) → ((𝑝 pCnt 𝑅) = 0 ↔ ¬ 𝑝𝑅))
137133, 135, 136syl2anc 584 . . . . . 6 (((𝜑𝑝 ∈ ℙ) ∧ ¬ 𝑝𝑅) → ((𝑝 pCnt 𝑅) = 0 ↔ ¬ 𝑝𝑅))
138132, 137mpbird 256 . . . . 5 (((𝜑𝑝 ∈ ℙ) ∧ ¬ 𝑝𝑅) → (𝑝 pCnt 𝑅) = 0)
139112adantr 481 . . . . . . . 8 (((𝜑𝑝 ∈ ℙ) ∧ ¬ 𝑝𝑅) → 𝑁 ∈ ℕ)
14092adantr 481 . . . . . . . . 9 ((𝜑𝑝 ∈ ℙ) → (⌊‘(2 logb 𝐵)) ∈ ℕ0)
141140adantr 481 . . . . . . . 8 (((𝜑𝑝 ∈ ℙ) ∧ ¬ 𝑝𝑅) → (⌊‘(2 logb 𝐵)) ∈ ℕ0)
142139, 141nnexpcld 14148 . . . . . . 7 (((𝜑𝑝 ∈ ℙ) ∧ ¬ 𝑝𝑅) → (𝑁↑(⌊‘(2 logb 𝐵))) ∈ ℕ)
143133, 142pccld 16722 . . . . . 6 (((𝜑𝑝 ∈ ℙ) ∧ ¬ 𝑝𝑅) → (𝑝 pCnt (𝑁↑(⌊‘(2 logb 𝐵)))) ∈ ℕ0)
144143nn0ge0d 12476 . . . . 5 (((𝜑𝑝 ∈ ℙ) ∧ ¬ 𝑝𝑅) → 0 ≤ (𝑝 pCnt (𝑁↑(⌊‘(2 logb 𝐵)))))
145138, 144eqbrtrd 5127 . . . 4 (((𝜑𝑝 ∈ ℙ) ∧ ¬ 𝑝𝑅) → (𝑝 pCnt 𝑅) ≤ (𝑝 pCnt (𝑁↑(⌊‘(2 logb 𝐵)))))
146131, 145pm2.61dan 811 . . 3 ((𝜑𝑝 ∈ ℙ) → (𝑝 pCnt 𝑅) ≤ (𝑝 pCnt (𝑁↑(⌊‘(2 logb 𝐵)))))
147146ralrimiva 3143 . 2 (𝜑 → ∀𝑝 ∈ ℙ (𝑝 pCnt 𝑅) ≤ (𝑝 pCnt (𝑁↑(⌊‘(2 logb 𝐵)))))
1487elfzelzd 13442 . . 3 (𝜑𝑅 ∈ ℤ)
14920, 92zexpcld 13993 . . 3 (𝜑 → (𝑁↑(⌊‘(2 logb 𝐵))) ∈ ℤ)
150 pc2dvds 16751 . . 3 ((𝑅 ∈ ℤ ∧ (𝑁↑(⌊‘(2 logb 𝐵))) ∈ ℤ) → (𝑅 ∥ (𝑁↑(⌊‘(2 logb 𝐵))) ↔ ∀𝑝 ∈ ℙ (𝑝 pCnt 𝑅) ≤ (𝑝 pCnt (𝑁↑(⌊‘(2 logb 𝐵))))))
151148, 149, 150syl2anc 584 . 2 (𝜑 → (𝑅 ∥ (𝑁↑(⌊‘(2 logb 𝐵))) ↔ ∀𝑝 ∈ ℙ (𝑝 pCnt 𝑅) ≤ (𝑝 pCnt (𝑁↑(⌊‘(2 logb 𝐵))))))
152147, 151mpbird 256 1 (𝜑𝑅 ∥ (𝑁↑(⌊‘(2 logb 𝐵))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  wne 2943  wral 3064  {crab 3407   class class class wbr 5105  cfv 6496  (class class class)co 7357  infcinf 9377  cc 11049  cr 11050  0cc0 11051  1c1 11052   + caddc 11054   · cmul 11056   < clt 11189  cle 11190  cmin 11385  cn 12153  2c2 12208  3c3 12209  5c5 12211  9c9 12215  0cn0 12413  cz 12499  cuz 12763  cq 12873  ...cfz 13424  cfl 13695  cceil 13696  cexp 13967  cprod 15788  cdvds 16136  cprime 16547   pCnt cpc 16708   logb clogb 26114
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-inf2 9577  ax-cc 10371  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129  ax-addf 11130  ax-mulf 11131
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-symdif 4202  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-iin 4957  df-disj 5071  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-of 7617  df-ofr 7618  df-om 7803  df-1st 7921  df-2nd 7922  df-supp 8093  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-2o 8413  df-oadd 8416  df-omul 8417  df-er 8648  df-map 8767  df-pm 8768  df-ixp 8836  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-fsupp 9306  df-fi 9347  df-sup 9378  df-inf 9379  df-oi 9446  df-dju 9837  df-card 9875  df-acn 9878  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-7 12221  df-8 12222  df-9 12223  df-n0 12414  df-z 12500  df-dec 12619  df-uz 12764  df-q 12874  df-rp 12916  df-xneg 13033  df-xadd 13034  df-xmul 13035  df-ioo 13268  df-ioc 13269  df-ico 13270  df-icc 13271  df-fz 13425  df-fzo 13568  df-fl 13697  df-ceil 13698  df-mod 13775  df-seq 13907  df-exp 13968  df-fac 14174  df-bc 14203  df-hash 14231  df-shft 14952  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-limsup 15353  df-clim 15370  df-rlim 15371  df-sum 15571  df-prod 15789  df-ef 15950  df-e 15951  df-sin 15952  df-cos 15953  df-pi 15955  df-dvds 16137  df-gcd 16375  df-lcm 16466  df-lcmf 16467  df-prm 16548  df-pc 16709  df-struct 17019  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-ress 17113  df-plusg 17146  df-mulr 17147  df-starv 17148  df-sca 17149  df-vsca 17150  df-ip 17151  df-tset 17152  df-ple 17153  df-ds 17155  df-unif 17156  df-hom 17157  df-cco 17158  df-rest 17304  df-topn 17305  df-0g 17323  df-gsum 17324  df-topgen 17325  df-pt 17326  df-prds 17329  df-xrs 17384  df-qtop 17389  df-imas 17390  df-xps 17392  df-mre 17466  df-mrc 17467  df-acs 17469  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-submnd 18602  df-mulg 18873  df-cntz 19097  df-cmn 19564  df-psmet 20788  df-xmet 20789  df-met 20790  df-bl 20791  df-mopn 20792  df-fbas 20793  df-fg 20794  df-cnfld 20797  df-top 22243  df-topon 22260  df-topsp 22282  df-bases 22296  df-cld 22370  df-ntr 22371  df-cls 22372  df-nei 22449  df-lp 22487  df-perf 22488  df-cn 22578  df-cnp 22579  df-haus 22666  df-cmp 22738  df-tx 22913  df-hmeo 23106  df-fil 23197  df-fm 23289  df-flim 23290  df-flf 23291  df-xms 23673  df-ms 23674  df-tms 23675  df-cncf 24241  df-ovol 24828  df-vol 24829  df-mbf 24983  df-itg1 24984  df-itg2 24985  df-ibl 24986  df-itg 24987  df-0p 25034  df-limc 25230  df-dv 25231  df-log 25912  df-cxp 25913  df-logb 26115
This theorem is referenced by:  aks4d1p7  40540
  Copyright terms: Public domain W3C validator