| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sincos2sgn | Structured version Visualization version GIF version | ||
| Description: The signs of the sine and cosine of 2. (Contributed by Paul Chapman, 19-Jan-2008.) |
| Ref | Expression |
|---|---|
| sincos2sgn | ⊢ (0 < (sin‘2) ∧ (cos‘2) < 0) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2re 12261 | . . . 4 ⊢ 2 ∈ ℝ | |
| 2 | 2pos 12290 | . . . 4 ⊢ 0 < 2 | |
| 3 | 1 | leidi 11718 | . . . 4 ⊢ 2 ≤ 2 |
| 4 | 0xr 11227 | . . . . 5 ⊢ 0 ∈ ℝ* | |
| 5 | elioc2 13376 | . . . . 5 ⊢ ((0 ∈ ℝ* ∧ 2 ∈ ℝ) → (2 ∈ (0(,]2) ↔ (2 ∈ ℝ ∧ 0 < 2 ∧ 2 ≤ 2))) | |
| 6 | 4, 1, 5 | mp2an 692 | . . . 4 ⊢ (2 ∈ (0(,]2) ↔ (2 ∈ ℝ ∧ 0 < 2 ∧ 2 ≤ 2)) |
| 7 | 1, 2, 3, 6 | mpbir3an 1342 | . . 3 ⊢ 2 ∈ (0(,]2) |
| 8 | sin02gt0 16166 | . . 3 ⊢ (2 ∈ (0(,]2) → 0 < (sin‘2)) | |
| 9 | 7, 8 | ax-mp 5 | . 2 ⊢ 0 < (sin‘2) |
| 10 | cos2bnd 16162 | . . . 4 ⊢ (-(7 / 9) < (cos‘2) ∧ (cos‘2) < -(1 / 9)) | |
| 11 | 10 | simpri 485 | . . 3 ⊢ (cos‘2) < -(1 / 9) |
| 12 | 9re 12286 | . . . . 5 ⊢ 9 ∈ ℝ | |
| 13 | 9pos 12300 | . . . . 5 ⊢ 0 < 9 | |
| 14 | 12, 13 | recgt0ii 12095 | . . . 4 ⊢ 0 < (1 / 9) |
| 15 | 12, 13 | gt0ne0ii 11720 | . . . . . 6 ⊢ 9 ≠ 0 |
| 16 | 12, 15 | rereccli 11953 | . . . . 5 ⊢ (1 / 9) ∈ ℝ |
| 17 | lt0neg2 11691 | . . . . 5 ⊢ ((1 / 9) ∈ ℝ → (0 < (1 / 9) ↔ -(1 / 9) < 0)) | |
| 18 | 16, 17 | ax-mp 5 | . . . 4 ⊢ (0 < (1 / 9) ↔ -(1 / 9) < 0) |
| 19 | 14, 18 | mpbi 230 | . . 3 ⊢ -(1 / 9) < 0 |
| 20 | recoscl 16115 | . . . . 5 ⊢ (2 ∈ ℝ → (cos‘2) ∈ ℝ) | |
| 21 | 1, 20 | ax-mp 5 | . . . 4 ⊢ (cos‘2) ∈ ℝ |
| 22 | 16 | renegcli 11489 | . . . 4 ⊢ -(1 / 9) ∈ ℝ |
| 23 | 0re 11182 | . . . 4 ⊢ 0 ∈ ℝ | |
| 24 | 21, 22, 23 | lttri 11306 | . . 3 ⊢ (((cos‘2) < -(1 / 9) ∧ -(1 / 9) < 0) → (cos‘2) < 0) |
| 25 | 11, 19, 24 | mp2an 692 | . 2 ⊢ (cos‘2) < 0 |
| 26 | 9, 25 | pm3.2i 470 | 1 ⊢ (0 < (sin‘2) ∧ (cos‘2) < 0) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2109 class class class wbr 5109 ‘cfv 6513 (class class class)co 7389 ℝcr 11073 0cc0 11074 1c1 11075 ℝ*cxr 11213 < clt 11214 ≤ cle 11215 -cneg 11412 / cdiv 11841 2c2 12242 7c7 12247 9c9 12249 (,]cioc 13313 sincsin 16035 cosccos 16036 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5236 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 ax-inf2 9600 ax-cnex 11130 ax-resscn 11131 ax-1cn 11132 ax-icn 11133 ax-addcl 11134 ax-addrcl 11135 ax-mulcl 11136 ax-mulrcl 11137 ax-mulcom 11138 ax-addass 11139 ax-mulass 11140 ax-distr 11141 ax-i2m1 11142 ax-1ne0 11143 ax-1rid 11144 ax-rnegex 11145 ax-rrecex 11146 ax-cnre 11147 ax-pre-lttri 11148 ax-pre-lttrn 11149 ax-pre-ltadd 11150 ax-pre-mulgt0 11151 ax-pre-sup 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-pss 3936 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-int 4913 df-iun 4959 df-br 5110 df-opab 5172 df-mpt 5191 df-tr 5217 df-id 5535 df-eprel 5540 df-po 5548 df-so 5549 df-fr 5593 df-se 5594 df-we 5595 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-pred 6276 df-ord 6337 df-on 6338 df-lim 6339 df-suc 6340 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-fv 6521 df-isom 6522 df-riota 7346 df-ov 7392 df-oprab 7393 df-mpo 7394 df-om 7845 df-1st 7970 df-2nd 7971 df-frecs 8262 df-wrecs 8293 df-recs 8342 df-rdg 8380 df-1o 8436 df-er 8673 df-pm 8804 df-en 8921 df-dom 8922 df-sdom 8923 df-fin 8924 df-sup 9399 df-inf 9400 df-oi 9469 df-card 9898 df-pnf 11216 df-mnf 11217 df-xr 11218 df-ltxr 11219 df-le 11220 df-sub 11413 df-neg 11414 df-div 11842 df-nn 12188 df-2 12250 df-3 12251 df-4 12252 df-5 12253 df-6 12254 df-7 12255 df-8 12256 df-9 12257 df-n0 12449 df-z 12536 df-uz 12800 df-rp 12958 df-ioc 13317 df-ico 13318 df-fz 13475 df-fzo 13622 df-fl 13760 df-seq 13973 df-exp 14033 df-fac 14245 df-bc 14274 df-hash 14302 df-shft 15039 df-cj 15071 df-re 15072 df-im 15073 df-sqrt 15207 df-abs 15208 df-limsup 15443 df-clim 15460 df-rlim 15461 df-sum 15659 df-ef 16039 df-sin 16041 df-cos 16042 |
| This theorem is referenced by: sin4lt0 16169 pilem3 26369 |
| Copyright terms: Public domain | W3C validator |