Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 2lt9 | Structured version Visualization version GIF version |
Description: 2 is less than 9. (Contributed by Mario Carneiro, 9-Mar-2015.) |
Ref | Expression |
---|---|
2lt9 | ⊢ 2 < 9 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2lt3 11900 | . 2 ⊢ 2 < 3 | |
2 | 3lt9 11932 | . 2 ⊢ 3 < 9 | |
3 | 2re 11802 | . . 3 ⊢ 2 ∈ ℝ | |
4 | 3re 11808 | . . 3 ⊢ 3 ∈ ℝ | |
5 | 9re 11827 | . . 3 ⊢ 9 ∈ ℝ | |
6 | 3, 4, 5 | lttri 10856 | . 2 ⊢ ((2 < 3 ∧ 3 < 9) → 2 < 9) |
7 | 1, 2, 6 | mp2an 692 | 1 ⊢ 2 < 9 |
Colors of variables: wff setvar class |
Syntax hints: class class class wbr 5040 < clt 10765 2c2 11783 3c3 11784 9c9 11790 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2711 ax-sep 5177 ax-nul 5184 ax-pow 5242 ax-pr 5306 ax-un 7491 ax-resscn 10684 ax-1cn 10685 ax-icn 10686 ax-addcl 10687 ax-addrcl 10688 ax-mulcl 10689 ax-mulrcl 10690 ax-mulcom 10691 ax-addass 10692 ax-mulass 10693 ax-distr 10694 ax-i2m1 10695 ax-1ne0 10696 ax-1rid 10697 ax-rnegex 10698 ax-rrecex 10699 ax-cnre 10700 ax-pre-lttri 10701 ax-pre-lttrn 10702 ax-pre-ltadd 10703 ax-pre-mulgt0 10704 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2541 df-eu 2571 df-clab 2718 df-cleq 2731 df-clel 2812 df-nfc 2882 df-ne 2936 df-nel 3040 df-ral 3059 df-rex 3060 df-reu 3061 df-rab 3063 df-v 3402 df-sbc 3686 df-csb 3801 df-dif 3856 df-un 3858 df-in 3860 df-ss 3870 df-nul 4222 df-if 4425 df-pw 4500 df-sn 4527 df-pr 4529 df-op 4533 df-uni 4807 df-br 5041 df-opab 5103 df-mpt 5121 df-id 5439 df-po 5452 df-so 5453 df-xp 5541 df-rel 5542 df-cnv 5543 df-co 5544 df-dm 5545 df-rn 5546 df-res 5547 df-ima 5548 df-iota 6307 df-fun 6351 df-fn 6352 df-f 6353 df-f1 6354 df-fo 6355 df-f1o 6356 df-fv 6357 df-riota 7139 df-ov 7185 df-oprab 7186 df-mpo 7187 df-er 8332 df-en 8568 df-dom 8569 df-sdom 8570 df-pnf 10767 df-mnf 10768 df-xr 10769 df-ltxr 10770 df-le 10771 df-sub 10962 df-neg 10963 df-2 11791 df-3 11792 df-4 11793 df-5 11794 df-6 11795 df-7 11796 df-8 11797 df-9 11798 |
This theorem is referenced by: 1lt9 11934 topgrpstr 16776 oppgtset 18610 mgptset 19378 cnfldfun 20241 tngplusg 23407 2logb9irr 25545 hgt750leme 32220 31prm 44630 341fppr2 44767 nfermltl2rev 44776 wtgoldbnnsum4prm 44835 bgoldbnnsum3prm 44837 ackval42 45623 |
Copyright terms: Public domain | W3C validator |