MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abscjd Structured version   Visualization version   GIF version

Theorem abscjd 15203
Description: The absolute value of a number and its conjugate are the same. Proposition 10-3.7(b) of [Gleason] p. 133. (Contributed by Mario Carneiro, 29-May-2016.)
Hypothesis
Ref Expression
abscld.1 (𝜑𝐴 ∈ ℂ)
Assertion
Ref Expression
abscjd (𝜑 → (abs‘(∗‘𝐴)) = (abs‘𝐴))

Proof of Theorem abscjd
StepHypRef Expression
1 abscld.1 . 2 (𝜑𝐴 ∈ ℂ)
2 abscj 15032 . 2 (𝐴 ∈ ℂ → (abs‘(∗‘𝐴)) = (abs‘𝐴))
31, 2syl 17 1 (𝜑 → (abs‘(∗‘𝐴)) = (abs‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2104  cfv 6454  cc 10911  ccj 14848  abscabs 14986
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707  ax-sep 5232  ax-nul 5239  ax-pow 5297  ax-pr 5361  ax-un 7616  ax-resscn 10970  ax-1cn 10971  ax-icn 10972  ax-addcl 10973  ax-addrcl 10974  ax-mulcl 10975  ax-mulrcl 10976  ax-mulcom 10977  ax-addass 10978  ax-mulass 10979  ax-distr 10980  ax-i2m1 10981  ax-1ne0 10982  ax-1rid 10983  ax-rnegex 10984  ax-rrecex 10985  ax-cnre 10986  ax-pre-lttri 10987  ax-pre-lttrn 10988  ax-pre-ltadd 10989  ax-pre-mulgt0 10990
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3or 1088  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3285  df-reu 3286  df-rab 3287  df-v 3439  df-sbc 3722  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4566  df-pr 4568  df-op 4572  df-uni 4845  df-br 5082  df-opab 5144  df-mpt 5165  df-id 5496  df-po 5510  df-so 5511  df-xp 5602  df-rel 5603  df-cnv 5604  df-co 5605  df-dm 5606  df-rn 5607  df-res 5608  df-ima 5609  df-iota 6406  df-fun 6456  df-fn 6457  df-f 6458  df-f1 6459  df-fo 6460  df-f1o 6461  df-fv 6462  df-riota 7260  df-ov 7306  df-oprab 7307  df-mpo 7308  df-er 8525  df-en 8761  df-dom 8762  df-sdom 8763  df-pnf 11053  df-mnf 11054  df-xr 11055  df-ltxr 11056  df-le 11057  df-sub 11249  df-neg 11250  df-div 11675  df-2 12078  df-cj 14851  df-re 14852  df-im 14853  df-abs 14988
This theorem is referenced by:  cjcn2  15350  tcphcphlem1  24440  itgabs  25040  abshicom  29504  itgabsnc  35887
  Copyright terms: Public domain W3C validator