MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abstri Structured version   Visualization version   GIF version

Theorem abstri 15242
Description: Triangle inequality for absolute value. Proposition 10-3.7(h) of [Gleason] p. 133. (Contributed by NM, 7-Mar-2005.) (Proof shortened by Mario Carneiro, 29-May-2016.)
Assertion
Ref Expression
abstri ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (abs‘(𝐴 + 𝐵)) ≤ ((abs‘𝐴) + (abs‘𝐵)))

Proof of Theorem abstri
StepHypRef Expression
1 2re 12208 . . . . . 6 2 ∈ ℝ
21a1i 11 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 2 ∈ ℝ)
3 simpl 482 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 𝐴 ∈ ℂ)
4 simpr 484 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 𝐵 ∈ ℂ)
54cjcld 15107 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (∗‘𝐵) ∈ ℂ)
63, 5mulcld 11141 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · (∗‘𝐵)) ∈ ℂ)
76recld 15105 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℜ‘(𝐴 · (∗‘𝐵))) ∈ ℝ)
82, 7remulcld 11151 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (2 · (ℜ‘(𝐴 · (∗‘𝐵)))) ∈ ℝ)
9 abscl 15189 . . . . . . 7 (𝐴 ∈ ℂ → (abs‘𝐴) ∈ ℝ)
103, 9syl 17 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (abs‘𝐴) ∈ ℝ)
11 abscl 15189 . . . . . . 7 (𝐵 ∈ ℂ → (abs‘𝐵) ∈ ℝ)
124, 11syl 17 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (abs‘𝐵) ∈ ℝ)
1310, 12remulcld 11151 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((abs‘𝐴) · (abs‘𝐵)) ∈ ℝ)
142, 13remulcld 11151 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (2 · ((abs‘𝐴) · (abs‘𝐵))) ∈ ℝ)
1510resqcld 14036 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((abs‘𝐴)↑2) ∈ ℝ)
1612resqcld 14036 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((abs‘𝐵)↑2) ∈ ℝ)
1715, 16readdcld 11150 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((abs‘𝐴)↑2) + ((abs‘𝐵)↑2)) ∈ ℝ)
18 releabs 15233 . . . . . . 7 ((𝐴 · (∗‘𝐵)) ∈ ℂ → (ℜ‘(𝐴 · (∗‘𝐵))) ≤ (abs‘(𝐴 · (∗‘𝐵))))
196, 18syl 17 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℜ‘(𝐴 · (∗‘𝐵))) ≤ (abs‘(𝐴 · (∗‘𝐵))))
20 absmul 15205 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (∗‘𝐵) ∈ ℂ) → (abs‘(𝐴 · (∗‘𝐵))) = ((abs‘𝐴) · (abs‘(∗‘𝐵))))
213, 5, 20syl2anc 584 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (abs‘(𝐴 · (∗‘𝐵))) = ((abs‘𝐴) · (abs‘(∗‘𝐵))))
22 abscj 15190 . . . . . . . . 9 (𝐵 ∈ ℂ → (abs‘(∗‘𝐵)) = (abs‘𝐵))
234, 22syl 17 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (abs‘(∗‘𝐵)) = (abs‘𝐵))
2423oveq2d 7370 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((abs‘𝐴) · (abs‘(∗‘𝐵))) = ((abs‘𝐴) · (abs‘𝐵)))
2521, 24eqtrd 2768 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (abs‘(𝐴 · (∗‘𝐵))) = ((abs‘𝐴) · (abs‘𝐵)))
2619, 25breqtrd 5121 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℜ‘(𝐴 · (∗‘𝐵))) ≤ ((abs‘𝐴) · (abs‘𝐵)))
27 2rp 12899 . . . . . . 7 2 ∈ ℝ+
2827a1i 11 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 2 ∈ ℝ+)
297, 13, 28lemul2d 12982 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((ℜ‘(𝐴 · (∗‘𝐵))) ≤ ((abs‘𝐴) · (abs‘𝐵)) ↔ (2 · (ℜ‘(𝐴 · (∗‘𝐵)))) ≤ (2 · ((abs‘𝐴) · (abs‘𝐵)))))
3026, 29mpbid 232 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (2 · (ℜ‘(𝐴 · (∗‘𝐵)))) ≤ (2 · ((abs‘𝐴) · (abs‘𝐵))))
318, 14, 17, 30leadd2dd 11741 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((((abs‘𝐴)↑2) + ((abs‘𝐵)↑2)) + (2 · (ℜ‘(𝐴 · (∗‘𝐵))))) ≤ ((((abs‘𝐴)↑2) + ((abs‘𝐵)↑2)) + (2 · ((abs‘𝐴) · (abs‘𝐵)))))
32 sqabsadd 15193 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((abs‘(𝐴 + 𝐵))↑2) = ((((abs‘𝐴)↑2) + ((abs‘𝐵)↑2)) + (2 · (ℜ‘(𝐴 · (∗‘𝐵))))))
3310recnd 11149 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (abs‘𝐴) ∈ ℂ)
3412recnd 11149 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (abs‘𝐵) ∈ ℂ)
35 binom2 14128 . . . . 5 (((abs‘𝐴) ∈ ℂ ∧ (abs‘𝐵) ∈ ℂ) → (((abs‘𝐴) + (abs‘𝐵))↑2) = ((((abs‘𝐴)↑2) + (2 · ((abs‘𝐴) · (abs‘𝐵)))) + ((abs‘𝐵)↑2)))
3633, 34, 35syl2anc 584 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((abs‘𝐴) + (abs‘𝐵))↑2) = ((((abs‘𝐴)↑2) + (2 · ((abs‘𝐴) · (abs‘𝐵)))) + ((abs‘𝐵)↑2)))
3715recnd 11149 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((abs‘𝐴)↑2) ∈ ℂ)
3814recnd 11149 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (2 · ((abs‘𝐴) · (abs‘𝐵))) ∈ ℂ)
3916recnd 11149 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((abs‘𝐵)↑2) ∈ ℂ)
4037, 38, 39add32d 11350 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((((abs‘𝐴)↑2) + (2 · ((abs‘𝐴) · (abs‘𝐵)))) + ((abs‘𝐵)↑2)) = ((((abs‘𝐴)↑2) + ((abs‘𝐵)↑2)) + (2 · ((abs‘𝐴) · (abs‘𝐵)))))
4136, 40eqtrd 2768 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((abs‘𝐴) + (abs‘𝐵))↑2) = ((((abs‘𝐴)↑2) + ((abs‘𝐵)↑2)) + (2 · ((abs‘𝐴) · (abs‘𝐵)))))
4231, 32, 413brtr4d 5127 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((abs‘(𝐴 + 𝐵))↑2) ≤ (((abs‘𝐴) + (abs‘𝐵))↑2))
43 addcl 11097 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) ∈ ℂ)
44 abscl 15189 . . . 4 ((𝐴 + 𝐵) ∈ ℂ → (abs‘(𝐴 + 𝐵)) ∈ ℝ)
4543, 44syl 17 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (abs‘(𝐴 + 𝐵)) ∈ ℝ)
4610, 12readdcld 11150 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((abs‘𝐴) + (abs‘𝐵)) ∈ ℝ)
47 absge0 15198 . . . 4 ((𝐴 + 𝐵) ∈ ℂ → 0 ≤ (abs‘(𝐴 + 𝐵)))
4843, 47syl 17 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 0 ≤ (abs‘(𝐴 + 𝐵)))
49 absge0 15198 . . . . 5 (𝐴 ∈ ℂ → 0 ≤ (abs‘𝐴))
503, 49syl 17 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 0 ≤ (abs‘𝐴))
51 absge0 15198 . . . . 5 (𝐵 ∈ ℂ → 0 ≤ (abs‘𝐵))
524, 51syl 17 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 0 ≤ (abs‘𝐵))
5310, 12, 50, 52addge0d 11702 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 0 ≤ ((abs‘𝐴) + (abs‘𝐵)))
5445, 46, 48, 53le2sqd 14168 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((abs‘(𝐴 + 𝐵)) ≤ ((abs‘𝐴) + (abs‘𝐵)) ↔ ((abs‘(𝐴 + 𝐵))↑2) ≤ (((abs‘𝐴) + (abs‘𝐵))↑2)))
5542, 54mpbird 257 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (abs‘(𝐴 + 𝐵)) ≤ ((abs‘𝐴) + (abs‘𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113   class class class wbr 5095  cfv 6488  (class class class)co 7354  cc 11013  cr 11014  0cc0 11015   + caddc 11018   · cmul 11020  cle 11156  2c2 12189  +crp 12894  cexp 13972  ccj 15007  cre 15008  abscabs 15145
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7676  ax-cnex 11071  ax-resscn 11072  ax-1cn 11073  ax-icn 11074  ax-addcl 11075  ax-addrcl 11076  ax-mulcl 11077  ax-mulrcl 11078  ax-mulcom 11079  ax-addass 11080  ax-mulass 11081  ax-distr 11082  ax-i2m1 11083  ax-1ne0 11084  ax-1rid 11085  ax-rnegex 11086  ax-rrecex 11087  ax-cnre 11088  ax-pre-lttri 11089  ax-pre-lttrn 11090  ax-pre-ltadd 11091  ax-pre-mulgt0 11092  ax-pre-sup 11093
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6255  df-ord 6316  df-on 6317  df-lim 6318  df-suc 6319  df-iota 6444  df-fun 6490  df-fn 6491  df-f 6492  df-f1 6493  df-fo 6494  df-f1o 6495  df-fv 6496  df-riota 7311  df-ov 7357  df-oprab 7358  df-mpo 7359  df-om 7805  df-2nd 7930  df-frecs 8219  df-wrecs 8250  df-recs 8299  df-rdg 8337  df-er 8630  df-en 8878  df-dom 8879  df-sdom 8880  df-sup 9335  df-pnf 11157  df-mnf 11158  df-xr 11159  df-ltxr 11160  df-le 11161  df-sub 11355  df-neg 11356  df-div 11784  df-nn 12135  df-2 12197  df-3 12198  df-n0 12391  df-z 12478  df-uz 12741  df-rp 12895  df-seq 13913  df-exp 13973  df-cj 15010  df-re 15011  df-im 15012  df-sqrt 15146  df-abs 15147
This theorem is referenced by:  abs3dif  15243  abs2dif2  15245  abstrii  15320  abstrid  15370  absabv  21365  cnnv  30661  ftc1anclem7  37762  ftc1anclem8  37763
  Copyright terms: Public domain W3C validator