MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abstri Structured version   Visualization version   GIF version

Theorem abstri 14524
Description: Triangle inequality for absolute value. Proposition 10-3.7(h) of [Gleason] p. 133. (Contributed by NM, 7-Mar-2005.) (Proof shortened by Mario Carneiro, 29-May-2016.)
Assertion
Ref Expression
abstri ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (abs‘(𝐴 + 𝐵)) ≤ ((abs‘𝐴) + (abs‘𝐵)))

Proof of Theorem abstri
StepHypRef Expression
1 2re 11559 . . . . . 6 2 ∈ ℝ
21a1i 11 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 2 ∈ ℝ)
3 simpl 483 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 𝐴 ∈ ℂ)
4 simpr 485 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 𝐵 ∈ ℂ)
54cjcld 14389 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (∗‘𝐵) ∈ ℂ)
63, 5mulcld 10507 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · (∗‘𝐵)) ∈ ℂ)
76recld 14387 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℜ‘(𝐴 · (∗‘𝐵))) ∈ ℝ)
82, 7remulcld 10517 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (2 · (ℜ‘(𝐴 · (∗‘𝐵)))) ∈ ℝ)
9 abscl 14472 . . . . . . 7 (𝐴 ∈ ℂ → (abs‘𝐴) ∈ ℝ)
103, 9syl 17 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (abs‘𝐴) ∈ ℝ)
11 abscl 14472 . . . . . . 7 (𝐵 ∈ ℂ → (abs‘𝐵) ∈ ℝ)
124, 11syl 17 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (abs‘𝐵) ∈ ℝ)
1310, 12remulcld 10517 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((abs‘𝐴) · (abs‘𝐵)) ∈ ℝ)
142, 13remulcld 10517 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (2 · ((abs‘𝐴) · (abs‘𝐵))) ∈ ℝ)
1510resqcld 13461 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((abs‘𝐴)↑2) ∈ ℝ)
1612resqcld 13461 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((abs‘𝐵)↑2) ∈ ℝ)
1715, 16readdcld 10516 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((abs‘𝐴)↑2) + ((abs‘𝐵)↑2)) ∈ ℝ)
18 releabs 14515 . . . . . . 7 ((𝐴 · (∗‘𝐵)) ∈ ℂ → (ℜ‘(𝐴 · (∗‘𝐵))) ≤ (abs‘(𝐴 · (∗‘𝐵))))
196, 18syl 17 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℜ‘(𝐴 · (∗‘𝐵))) ≤ (abs‘(𝐴 · (∗‘𝐵))))
20 absmul 14488 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (∗‘𝐵) ∈ ℂ) → (abs‘(𝐴 · (∗‘𝐵))) = ((abs‘𝐴) · (abs‘(∗‘𝐵))))
213, 5, 20syl2anc 584 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (abs‘(𝐴 · (∗‘𝐵))) = ((abs‘𝐴) · (abs‘(∗‘𝐵))))
22 abscj 14473 . . . . . . . . 9 (𝐵 ∈ ℂ → (abs‘(∗‘𝐵)) = (abs‘𝐵))
234, 22syl 17 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (abs‘(∗‘𝐵)) = (abs‘𝐵))
2423oveq2d 7032 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((abs‘𝐴) · (abs‘(∗‘𝐵))) = ((abs‘𝐴) · (abs‘𝐵)))
2521, 24eqtrd 2831 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (abs‘(𝐴 · (∗‘𝐵))) = ((abs‘𝐴) · (abs‘𝐵)))
2619, 25breqtrd 4988 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℜ‘(𝐴 · (∗‘𝐵))) ≤ ((abs‘𝐴) · (abs‘𝐵)))
27 2rp 12244 . . . . . . 7 2 ∈ ℝ+
2827a1i 11 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 2 ∈ ℝ+)
297, 13, 28lemul2d 12325 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((ℜ‘(𝐴 · (∗‘𝐵))) ≤ ((abs‘𝐴) · (abs‘𝐵)) ↔ (2 · (ℜ‘(𝐴 · (∗‘𝐵)))) ≤ (2 · ((abs‘𝐴) · (abs‘𝐵)))))
3026, 29mpbid 233 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (2 · (ℜ‘(𝐴 · (∗‘𝐵)))) ≤ (2 · ((abs‘𝐴) · (abs‘𝐵))))
318, 14, 17, 30leadd2dd 11103 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((((abs‘𝐴)↑2) + ((abs‘𝐵)↑2)) + (2 · (ℜ‘(𝐴 · (∗‘𝐵))))) ≤ ((((abs‘𝐴)↑2) + ((abs‘𝐵)↑2)) + (2 · ((abs‘𝐴) · (abs‘𝐵)))))
32 sqabsadd 14476 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((abs‘(𝐴 + 𝐵))↑2) = ((((abs‘𝐴)↑2) + ((abs‘𝐵)↑2)) + (2 · (ℜ‘(𝐴 · (∗‘𝐵))))))
3310recnd 10515 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (abs‘𝐴) ∈ ℂ)
3412recnd 10515 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (abs‘𝐵) ∈ ℂ)
35 binom2 13429 . . . . 5 (((abs‘𝐴) ∈ ℂ ∧ (abs‘𝐵) ∈ ℂ) → (((abs‘𝐴) + (abs‘𝐵))↑2) = ((((abs‘𝐴)↑2) + (2 · ((abs‘𝐴) · (abs‘𝐵)))) + ((abs‘𝐵)↑2)))
3633, 34, 35syl2anc 584 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((abs‘𝐴) + (abs‘𝐵))↑2) = ((((abs‘𝐴)↑2) + (2 · ((abs‘𝐴) · (abs‘𝐵)))) + ((abs‘𝐵)↑2)))
3715recnd 10515 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((abs‘𝐴)↑2) ∈ ℂ)
3814recnd 10515 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (2 · ((abs‘𝐴) · (abs‘𝐵))) ∈ ℂ)
3916recnd 10515 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((abs‘𝐵)↑2) ∈ ℂ)
4037, 38, 39add32d 10714 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((((abs‘𝐴)↑2) + (2 · ((abs‘𝐴) · (abs‘𝐵)))) + ((abs‘𝐵)↑2)) = ((((abs‘𝐴)↑2) + ((abs‘𝐵)↑2)) + (2 · ((abs‘𝐴) · (abs‘𝐵)))))
4136, 40eqtrd 2831 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((abs‘𝐴) + (abs‘𝐵))↑2) = ((((abs‘𝐴)↑2) + ((abs‘𝐵)↑2)) + (2 · ((abs‘𝐴) · (abs‘𝐵)))))
4231, 32, 413brtr4d 4994 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((abs‘(𝐴 + 𝐵))↑2) ≤ (((abs‘𝐴) + (abs‘𝐵))↑2))
43 addcl 10465 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) ∈ ℂ)
44 abscl 14472 . . . 4 ((𝐴 + 𝐵) ∈ ℂ → (abs‘(𝐴 + 𝐵)) ∈ ℝ)
4543, 44syl 17 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (abs‘(𝐴 + 𝐵)) ∈ ℝ)
4610, 12readdcld 10516 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((abs‘𝐴) + (abs‘𝐵)) ∈ ℝ)
47 absge0 14481 . . . 4 ((𝐴 + 𝐵) ∈ ℂ → 0 ≤ (abs‘(𝐴 + 𝐵)))
4843, 47syl 17 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 0 ≤ (abs‘(𝐴 + 𝐵)))
49 absge0 14481 . . . . 5 (𝐴 ∈ ℂ → 0 ≤ (abs‘𝐴))
503, 49syl 17 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 0 ≤ (abs‘𝐴))
51 absge0 14481 . . . . 5 (𝐵 ∈ ℂ → 0 ≤ (abs‘𝐵))
524, 51syl 17 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 0 ≤ (abs‘𝐵))
5310, 12, 50, 52addge0d 11064 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 0 ≤ ((abs‘𝐴) + (abs‘𝐵)))
5445, 46, 48, 53le2sqd 13470 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((abs‘(𝐴 + 𝐵)) ≤ ((abs‘𝐴) + (abs‘𝐵)) ↔ ((abs‘(𝐴 + 𝐵))↑2) ≤ (((abs‘𝐴) + (abs‘𝐵))↑2)))
5542, 54mpbird 258 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (abs‘(𝐴 + 𝐵)) ≤ ((abs‘𝐴) + (abs‘𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1522  wcel 2081   class class class wbr 4962  cfv 6225  (class class class)co 7016  cc 10381  cr 10382  0cc0 10383   + caddc 10386   · cmul 10388  cle 10522  2c2 11540  +crp 12239  cexp 13279  ccj 14289  cre 14290  abscabs 14427
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1777  ax-4 1791  ax-5 1888  ax-6 1947  ax-7 1992  ax-8 2083  ax-9 2091  ax-10 2112  ax-11 2126  ax-12 2141  ax-13 2344  ax-ext 2769  ax-sep 5094  ax-nul 5101  ax-pow 5157  ax-pr 5221  ax-un 7319  ax-cnex 10439  ax-resscn 10440  ax-1cn 10441  ax-icn 10442  ax-addcl 10443  ax-addrcl 10444  ax-mulcl 10445  ax-mulrcl 10446  ax-mulcom 10447  ax-addass 10448  ax-mulass 10449  ax-distr 10450  ax-i2m1 10451  ax-1ne0 10452  ax-1rid 10453  ax-rnegex 10454  ax-rrecex 10455  ax-cnre 10456  ax-pre-lttri 10457  ax-pre-lttrn 10458  ax-pre-ltadd 10459  ax-pre-mulgt0 10460  ax-pre-sup 10461
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1525  df-ex 1762  df-nf 1766  df-sb 2043  df-mo 2576  df-eu 2612  df-clab 2776  df-cleq 2788  df-clel 2863  df-nfc 2935  df-ne 2985  df-nel 3091  df-ral 3110  df-rex 3111  df-reu 3112  df-rmo 3113  df-rab 3114  df-v 3439  df-sbc 3707  df-csb 3812  df-dif 3862  df-un 3864  df-in 3866  df-ss 3874  df-pss 3876  df-nul 4212  df-if 4382  df-pw 4455  df-sn 4473  df-pr 4475  df-tp 4477  df-op 4479  df-uni 4746  df-iun 4827  df-br 4963  df-opab 5025  df-mpt 5042  df-tr 5064  df-id 5348  df-eprel 5353  df-po 5362  df-so 5363  df-fr 5402  df-we 5404  df-xp 5449  df-rel 5450  df-cnv 5451  df-co 5452  df-dm 5453  df-rn 5454  df-res 5455  df-ima 5456  df-pred 6023  df-ord 6069  df-on 6070  df-lim 6071  df-suc 6072  df-iota 6189  df-fun 6227  df-fn 6228  df-f 6229  df-f1 6230  df-fo 6231  df-f1o 6232  df-fv 6233  df-riota 6977  df-ov 7019  df-oprab 7020  df-mpo 7021  df-om 7437  df-2nd 7546  df-wrecs 7798  df-recs 7860  df-rdg 7898  df-er 8139  df-en 8358  df-dom 8359  df-sdom 8360  df-sup 8752  df-pnf 10523  df-mnf 10524  df-xr 10525  df-ltxr 10526  df-le 10527  df-sub 10719  df-neg 10720  df-div 11146  df-nn 11487  df-2 11548  df-3 11549  df-n0 11746  df-z 11830  df-uz 12094  df-rp 12240  df-seq 13220  df-exp 13280  df-cj 14292  df-re 14293  df-im 14294  df-sqrt 14428  df-abs 14429
This theorem is referenced by:  abs3dif  14525  abs2dif2  14527  abstrii  14602  abstrid  14650  absabv  20284  cnnv  28145  ftc1anclem7  34523  ftc1anclem8  34524
  Copyright terms: Public domain W3C validator