MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abstri Structured version   Visualization version   GIF version

Theorem abstri 14894
Description: Triangle inequality for absolute value. Proposition 10-3.7(h) of [Gleason] p. 133. (Contributed by NM, 7-Mar-2005.) (Proof shortened by Mario Carneiro, 29-May-2016.)
Assertion
Ref Expression
abstri ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (abs‘(𝐴 + 𝐵)) ≤ ((abs‘𝐴) + (abs‘𝐵)))

Proof of Theorem abstri
StepHypRef Expression
1 2re 11904 . . . . . 6 2 ∈ ℝ
21a1i 11 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 2 ∈ ℝ)
3 simpl 486 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 𝐴 ∈ ℂ)
4 simpr 488 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 𝐵 ∈ ℂ)
54cjcld 14759 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (∗‘𝐵) ∈ ℂ)
63, 5mulcld 10853 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · (∗‘𝐵)) ∈ ℂ)
76recld 14757 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℜ‘(𝐴 · (∗‘𝐵))) ∈ ℝ)
82, 7remulcld 10863 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (2 · (ℜ‘(𝐴 · (∗‘𝐵)))) ∈ ℝ)
9 abscl 14842 . . . . . . 7 (𝐴 ∈ ℂ → (abs‘𝐴) ∈ ℝ)
103, 9syl 17 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (abs‘𝐴) ∈ ℝ)
11 abscl 14842 . . . . . . 7 (𝐵 ∈ ℂ → (abs‘𝐵) ∈ ℝ)
124, 11syl 17 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (abs‘𝐵) ∈ ℝ)
1310, 12remulcld 10863 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((abs‘𝐴) · (abs‘𝐵)) ∈ ℝ)
142, 13remulcld 10863 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (2 · ((abs‘𝐴) · (abs‘𝐵))) ∈ ℝ)
1510resqcld 13817 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((abs‘𝐴)↑2) ∈ ℝ)
1612resqcld 13817 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((abs‘𝐵)↑2) ∈ ℝ)
1715, 16readdcld 10862 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((abs‘𝐴)↑2) + ((abs‘𝐵)↑2)) ∈ ℝ)
18 releabs 14885 . . . . . . 7 ((𝐴 · (∗‘𝐵)) ∈ ℂ → (ℜ‘(𝐴 · (∗‘𝐵))) ≤ (abs‘(𝐴 · (∗‘𝐵))))
196, 18syl 17 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℜ‘(𝐴 · (∗‘𝐵))) ≤ (abs‘(𝐴 · (∗‘𝐵))))
20 absmul 14858 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (∗‘𝐵) ∈ ℂ) → (abs‘(𝐴 · (∗‘𝐵))) = ((abs‘𝐴) · (abs‘(∗‘𝐵))))
213, 5, 20syl2anc 587 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (abs‘(𝐴 · (∗‘𝐵))) = ((abs‘𝐴) · (abs‘(∗‘𝐵))))
22 abscj 14843 . . . . . . . . 9 (𝐵 ∈ ℂ → (abs‘(∗‘𝐵)) = (abs‘𝐵))
234, 22syl 17 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (abs‘(∗‘𝐵)) = (abs‘𝐵))
2423oveq2d 7229 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((abs‘𝐴) · (abs‘(∗‘𝐵))) = ((abs‘𝐴) · (abs‘𝐵)))
2521, 24eqtrd 2777 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (abs‘(𝐴 · (∗‘𝐵))) = ((abs‘𝐴) · (abs‘𝐵)))
2619, 25breqtrd 5079 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℜ‘(𝐴 · (∗‘𝐵))) ≤ ((abs‘𝐴) · (abs‘𝐵)))
27 2rp 12591 . . . . . . 7 2 ∈ ℝ+
2827a1i 11 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 2 ∈ ℝ+)
297, 13, 28lemul2d 12672 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((ℜ‘(𝐴 · (∗‘𝐵))) ≤ ((abs‘𝐴) · (abs‘𝐵)) ↔ (2 · (ℜ‘(𝐴 · (∗‘𝐵)))) ≤ (2 · ((abs‘𝐴) · (abs‘𝐵)))))
3026, 29mpbid 235 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (2 · (ℜ‘(𝐴 · (∗‘𝐵)))) ≤ (2 · ((abs‘𝐴) · (abs‘𝐵))))
318, 14, 17, 30leadd2dd 11447 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((((abs‘𝐴)↑2) + ((abs‘𝐵)↑2)) + (2 · (ℜ‘(𝐴 · (∗‘𝐵))))) ≤ ((((abs‘𝐴)↑2) + ((abs‘𝐵)↑2)) + (2 · ((abs‘𝐴) · (abs‘𝐵)))))
32 sqabsadd 14846 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((abs‘(𝐴 + 𝐵))↑2) = ((((abs‘𝐴)↑2) + ((abs‘𝐵)↑2)) + (2 · (ℜ‘(𝐴 · (∗‘𝐵))))))
3310recnd 10861 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (abs‘𝐴) ∈ ℂ)
3412recnd 10861 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (abs‘𝐵) ∈ ℂ)
35 binom2 13785 . . . . 5 (((abs‘𝐴) ∈ ℂ ∧ (abs‘𝐵) ∈ ℂ) → (((abs‘𝐴) + (abs‘𝐵))↑2) = ((((abs‘𝐴)↑2) + (2 · ((abs‘𝐴) · (abs‘𝐵)))) + ((abs‘𝐵)↑2)))
3633, 34, 35syl2anc 587 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((abs‘𝐴) + (abs‘𝐵))↑2) = ((((abs‘𝐴)↑2) + (2 · ((abs‘𝐴) · (abs‘𝐵)))) + ((abs‘𝐵)↑2)))
3715recnd 10861 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((abs‘𝐴)↑2) ∈ ℂ)
3814recnd 10861 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (2 · ((abs‘𝐴) · (abs‘𝐵))) ∈ ℂ)
3916recnd 10861 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((abs‘𝐵)↑2) ∈ ℂ)
4037, 38, 39add32d 11059 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((((abs‘𝐴)↑2) + (2 · ((abs‘𝐴) · (abs‘𝐵)))) + ((abs‘𝐵)↑2)) = ((((abs‘𝐴)↑2) + ((abs‘𝐵)↑2)) + (2 · ((abs‘𝐴) · (abs‘𝐵)))))
4136, 40eqtrd 2777 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((abs‘𝐴) + (abs‘𝐵))↑2) = ((((abs‘𝐴)↑2) + ((abs‘𝐵)↑2)) + (2 · ((abs‘𝐴) · (abs‘𝐵)))))
4231, 32, 413brtr4d 5085 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((abs‘(𝐴 + 𝐵))↑2) ≤ (((abs‘𝐴) + (abs‘𝐵))↑2))
43 addcl 10811 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) ∈ ℂ)
44 abscl 14842 . . . 4 ((𝐴 + 𝐵) ∈ ℂ → (abs‘(𝐴 + 𝐵)) ∈ ℝ)
4543, 44syl 17 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (abs‘(𝐴 + 𝐵)) ∈ ℝ)
4610, 12readdcld 10862 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((abs‘𝐴) + (abs‘𝐵)) ∈ ℝ)
47 absge0 14851 . . . 4 ((𝐴 + 𝐵) ∈ ℂ → 0 ≤ (abs‘(𝐴 + 𝐵)))
4843, 47syl 17 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 0 ≤ (abs‘(𝐴 + 𝐵)))
49 absge0 14851 . . . . 5 (𝐴 ∈ ℂ → 0 ≤ (abs‘𝐴))
503, 49syl 17 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 0 ≤ (abs‘𝐴))
51 absge0 14851 . . . . 5 (𝐵 ∈ ℂ → 0 ≤ (abs‘𝐵))
524, 51syl 17 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 0 ≤ (abs‘𝐵))
5310, 12, 50, 52addge0d 11408 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 0 ≤ ((abs‘𝐴) + (abs‘𝐵)))
5445, 46, 48, 53le2sqd 13826 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((abs‘(𝐴 + 𝐵)) ≤ ((abs‘𝐴) + (abs‘𝐵)) ↔ ((abs‘(𝐴 + 𝐵))↑2) ≤ (((abs‘𝐴) + (abs‘𝐵))↑2)))
5542, 54mpbird 260 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (abs‘(𝐴 + 𝐵)) ≤ ((abs‘𝐴) + (abs‘𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1543  wcel 2110   class class class wbr 5053  cfv 6380  (class class class)co 7213  cc 10727  cr 10728  0cc0 10729   + caddc 10732   · cmul 10734  cle 10868  2c2 11885  +crp 12586  cexp 13635  ccj 14659  cre 14660  abscabs 14797
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-cnex 10785  ax-resscn 10786  ax-1cn 10787  ax-icn 10788  ax-addcl 10789  ax-addrcl 10790  ax-mulcl 10791  ax-mulrcl 10792  ax-mulcom 10793  ax-addass 10794  ax-mulass 10795  ax-distr 10796  ax-i2m1 10797  ax-1ne0 10798  ax-1rid 10799  ax-rnegex 10800  ax-rrecex 10801  ax-cnre 10802  ax-pre-lttri 10803  ax-pre-lttrn 10804  ax-pre-ltadd 10805  ax-pre-mulgt0 10806  ax-pre-sup 10807
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-om 7645  df-2nd 7762  df-wrecs 8047  df-recs 8108  df-rdg 8146  df-er 8391  df-en 8627  df-dom 8628  df-sdom 8629  df-sup 9058  df-pnf 10869  df-mnf 10870  df-xr 10871  df-ltxr 10872  df-le 10873  df-sub 11064  df-neg 11065  df-div 11490  df-nn 11831  df-2 11893  df-3 11894  df-n0 12091  df-z 12177  df-uz 12439  df-rp 12587  df-seq 13575  df-exp 13636  df-cj 14662  df-re 14663  df-im 14664  df-sqrt 14798  df-abs 14799
This theorem is referenced by:  abs3dif  14895  abs2dif2  14897  abstrii  14972  abstrid  15020  absabv  20420  cnnv  28758  ftc1anclem7  35593  ftc1anclem8  35594
  Copyright terms: Public domain W3C validator