Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  jm2.19lem3 Structured version   Visualization version   GIF version

Theorem jm2.19lem3 42990
Description: Lemma for jm2.19 42992. (Contributed by Stefan O'Rear, 26-Sep-2014.)
Assertion
Ref Expression
jm2.19lem3 ((𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐼 ∈ ℕ0) → ((𝐴 Yrm 𝑀) ∥ (𝐴 Yrm 𝑁) ↔ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 + (𝐼 · 𝑀)))))

Proof of Theorem jm2.19lem3
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 7417 . . . . . . . . 9 (𝑎 = 0 → (𝑎 · 𝑀) = (0 · 𝑀))
21oveq2d 7426 . . . . . . . 8 (𝑎 = 0 → (𝑁 + (𝑎 · 𝑀)) = (𝑁 + (0 · 𝑀)))
32oveq2d 7426 . . . . . . 7 (𝑎 = 0 → (𝐴 Yrm (𝑁 + (𝑎 · 𝑀))) = (𝐴 Yrm (𝑁 + (0 · 𝑀))))
43breq2d 5136 . . . . . 6 (𝑎 = 0 → ((𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 + (𝑎 · 𝑀))) ↔ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 + (0 · 𝑀)))))
54bibi2d 342 . . . . 5 (𝑎 = 0 → (((𝐴 Yrm 𝑀) ∥ (𝐴 Yrm 𝑁) ↔ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 + (𝑎 · 𝑀)))) ↔ ((𝐴 Yrm 𝑀) ∥ (𝐴 Yrm 𝑁) ↔ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 + (0 · 𝑀))))))
65imbi2d 340 . . . 4 (𝑎 = 0 → (((𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((𝐴 Yrm 𝑀) ∥ (𝐴 Yrm 𝑁) ↔ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 + (𝑎 · 𝑀))))) ↔ ((𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((𝐴 Yrm 𝑀) ∥ (𝐴 Yrm 𝑁) ↔ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 + (0 · 𝑀)))))))
7 oveq1 7417 . . . . . . . . 9 (𝑎 = 𝑏 → (𝑎 · 𝑀) = (𝑏 · 𝑀))
87oveq2d 7426 . . . . . . . 8 (𝑎 = 𝑏 → (𝑁 + (𝑎 · 𝑀)) = (𝑁 + (𝑏 · 𝑀)))
98oveq2d 7426 . . . . . . 7 (𝑎 = 𝑏 → (𝐴 Yrm (𝑁 + (𝑎 · 𝑀))) = (𝐴 Yrm (𝑁 + (𝑏 · 𝑀))))
109breq2d 5136 . . . . . 6 (𝑎 = 𝑏 → ((𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 + (𝑎 · 𝑀))) ↔ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 + (𝑏 · 𝑀)))))
1110bibi2d 342 . . . . 5 (𝑎 = 𝑏 → (((𝐴 Yrm 𝑀) ∥ (𝐴 Yrm 𝑁) ↔ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 + (𝑎 · 𝑀)))) ↔ ((𝐴 Yrm 𝑀) ∥ (𝐴 Yrm 𝑁) ↔ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 + (𝑏 · 𝑀))))))
1211imbi2d 340 . . . 4 (𝑎 = 𝑏 → (((𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((𝐴 Yrm 𝑀) ∥ (𝐴 Yrm 𝑁) ↔ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 + (𝑎 · 𝑀))))) ↔ ((𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((𝐴 Yrm 𝑀) ∥ (𝐴 Yrm 𝑁) ↔ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 + (𝑏 · 𝑀)))))))
13 oveq1 7417 . . . . . . . . 9 (𝑎 = (𝑏 + 1) → (𝑎 · 𝑀) = ((𝑏 + 1) · 𝑀))
1413oveq2d 7426 . . . . . . . 8 (𝑎 = (𝑏 + 1) → (𝑁 + (𝑎 · 𝑀)) = (𝑁 + ((𝑏 + 1) · 𝑀)))
1514oveq2d 7426 . . . . . . 7 (𝑎 = (𝑏 + 1) → (𝐴 Yrm (𝑁 + (𝑎 · 𝑀))) = (𝐴 Yrm (𝑁 + ((𝑏 + 1) · 𝑀))))
1615breq2d 5136 . . . . . 6 (𝑎 = (𝑏 + 1) → ((𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 + (𝑎 · 𝑀))) ↔ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 + ((𝑏 + 1) · 𝑀)))))
1716bibi2d 342 . . . . 5 (𝑎 = (𝑏 + 1) → (((𝐴 Yrm 𝑀) ∥ (𝐴 Yrm 𝑁) ↔ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 + (𝑎 · 𝑀)))) ↔ ((𝐴 Yrm 𝑀) ∥ (𝐴 Yrm 𝑁) ↔ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 + ((𝑏 + 1) · 𝑀))))))
1817imbi2d 340 . . . 4 (𝑎 = (𝑏 + 1) → (((𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((𝐴 Yrm 𝑀) ∥ (𝐴 Yrm 𝑁) ↔ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 + (𝑎 · 𝑀))))) ↔ ((𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((𝐴 Yrm 𝑀) ∥ (𝐴 Yrm 𝑁) ↔ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 + ((𝑏 + 1) · 𝑀)))))))
19 oveq1 7417 . . . . . . . . 9 (𝑎 = 𝐼 → (𝑎 · 𝑀) = (𝐼 · 𝑀))
2019oveq2d 7426 . . . . . . . 8 (𝑎 = 𝐼 → (𝑁 + (𝑎 · 𝑀)) = (𝑁 + (𝐼 · 𝑀)))
2120oveq2d 7426 . . . . . . 7 (𝑎 = 𝐼 → (𝐴 Yrm (𝑁 + (𝑎 · 𝑀))) = (𝐴 Yrm (𝑁 + (𝐼 · 𝑀))))
2221breq2d 5136 . . . . . 6 (𝑎 = 𝐼 → ((𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 + (𝑎 · 𝑀))) ↔ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 + (𝐼 · 𝑀)))))
2322bibi2d 342 . . . . 5 (𝑎 = 𝐼 → (((𝐴 Yrm 𝑀) ∥ (𝐴 Yrm 𝑁) ↔ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 + (𝑎 · 𝑀)))) ↔ ((𝐴 Yrm 𝑀) ∥ (𝐴 Yrm 𝑁) ↔ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 + (𝐼 · 𝑀))))))
2423imbi2d 340 . . . 4 (𝑎 = 𝐼 → (((𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((𝐴 Yrm 𝑀) ∥ (𝐴 Yrm 𝑁) ↔ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 + (𝑎 · 𝑀))))) ↔ ((𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((𝐴 Yrm 𝑀) ∥ (𝐴 Yrm 𝑁) ↔ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 + (𝐼 · 𝑀)))))))
25 zcn 12598 . . . . . . . . . 10 (𝑀 ∈ ℤ → 𝑀 ∈ ℂ)
2625ad2antrl 728 . . . . . . . . 9 ((𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → 𝑀 ∈ ℂ)
2726mul02d 11438 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (0 · 𝑀) = 0)
2827oveq2d 7426 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (𝑁 + (0 · 𝑀)) = (𝑁 + 0))
29 zcn 12598 . . . . . . . . 9 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
3029ad2antll 729 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → 𝑁 ∈ ℂ)
3130addridd 11440 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (𝑁 + 0) = 𝑁)
3228, 31eqtr2d 2772 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → 𝑁 = (𝑁 + (0 · 𝑀)))
3332oveq2d 7426 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (𝐴 Yrm 𝑁) = (𝐴 Yrm (𝑁 + (0 · 𝑀))))
3433breq2d 5136 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((𝐴 Yrm 𝑀) ∥ (𝐴 Yrm 𝑁) ↔ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 + (0 · 𝑀)))))
35 simp3 1138 . . . . . . 7 ((𝑏 ∈ ℕ0 ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) ∧ ((𝐴 Yrm 𝑀) ∥ (𝐴 Yrm 𝑁) ↔ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 + (𝑏 · 𝑀))))) → ((𝐴 Yrm 𝑀) ∥ (𝐴 Yrm 𝑁) ↔ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 + (𝑏 · 𝑀)))))
36 simprl 770 . . . . . . . . . 10 ((𝑏 ∈ ℕ0 ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → 𝐴 ∈ (ℤ‘2))
37 simprrl 780 . . . . . . . . . 10 ((𝑏 ∈ ℕ0 ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → 𝑀 ∈ ℤ)
38 simprrr 781 . . . . . . . . . . 11 ((𝑏 ∈ ℕ0 ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → 𝑁 ∈ ℤ)
39 nn0z 12618 . . . . . . . . . . . . 13 (𝑏 ∈ ℕ0𝑏 ∈ ℤ)
4039adantr 480 . . . . . . . . . . . 12 ((𝑏 ∈ ℕ0 ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → 𝑏 ∈ ℤ)
4140, 37zmulcld 12708 . . . . . . . . . . 11 ((𝑏 ∈ ℕ0 ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → (𝑏 · 𝑀) ∈ ℤ)
4238, 41zaddcld 12706 . . . . . . . . . 10 ((𝑏 ∈ ℕ0 ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → (𝑁 + (𝑏 · 𝑀)) ∈ ℤ)
43 jm2.19lem2 42989 . . . . . . . . . 10 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ (𝑁 + (𝑏 · 𝑀)) ∈ ℤ) → ((𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 + (𝑏 · 𝑀))) ↔ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm ((𝑁 + (𝑏 · 𝑀)) + 𝑀))))
4436, 37, 42, 43syl3anc 1373 . . . . . . . . 9 ((𝑏 ∈ ℕ0 ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → ((𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 + (𝑏 · 𝑀))) ↔ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm ((𝑁 + (𝑏 · 𝑀)) + 𝑀))))
4538zcnd 12703 . . . . . . . . . . . . 13 ((𝑏 ∈ ℕ0 ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → 𝑁 ∈ ℂ)
4641zcnd 12703 . . . . . . . . . . . . 13 ((𝑏 ∈ ℕ0 ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → (𝑏 · 𝑀) ∈ ℂ)
4737zcnd 12703 . . . . . . . . . . . . 13 ((𝑏 ∈ ℕ0 ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → 𝑀 ∈ ℂ)
4845, 46, 47addassd 11262 . . . . . . . . . . . 12 ((𝑏 ∈ ℕ0 ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → ((𝑁 + (𝑏 · 𝑀)) + 𝑀) = (𝑁 + ((𝑏 · 𝑀) + 𝑀)))
49 nn0cn 12516 . . . . . . . . . . . . . . . 16 (𝑏 ∈ ℕ0𝑏 ∈ ℂ)
5049adantr 480 . . . . . . . . . . . . . . 15 ((𝑏 ∈ ℕ0 ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → 𝑏 ∈ ℂ)
51 1cnd 11235 . . . . . . . . . . . . . . 15 ((𝑏 ∈ ℕ0 ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → 1 ∈ ℂ)
5250, 51, 47adddird 11265 . . . . . . . . . . . . . 14 ((𝑏 ∈ ℕ0 ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → ((𝑏 + 1) · 𝑀) = ((𝑏 · 𝑀) + (1 · 𝑀)))
5347mullidd 11258 . . . . . . . . . . . . . . 15 ((𝑏 ∈ ℕ0 ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → (1 · 𝑀) = 𝑀)
5453oveq2d 7426 . . . . . . . . . . . . . 14 ((𝑏 ∈ ℕ0 ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → ((𝑏 · 𝑀) + (1 · 𝑀)) = ((𝑏 · 𝑀) + 𝑀))
5552, 54eqtr2d 2772 . . . . . . . . . . . . 13 ((𝑏 ∈ ℕ0 ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → ((𝑏 · 𝑀) + 𝑀) = ((𝑏 + 1) · 𝑀))
5655oveq2d 7426 . . . . . . . . . . . 12 ((𝑏 ∈ ℕ0 ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → (𝑁 + ((𝑏 · 𝑀) + 𝑀)) = (𝑁 + ((𝑏 + 1) · 𝑀)))
5748, 56eqtrd 2771 . . . . . . . . . . 11 ((𝑏 ∈ ℕ0 ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → ((𝑁 + (𝑏 · 𝑀)) + 𝑀) = (𝑁 + ((𝑏 + 1) · 𝑀)))
5857oveq2d 7426 . . . . . . . . . 10 ((𝑏 ∈ ℕ0 ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → (𝐴 Yrm ((𝑁 + (𝑏 · 𝑀)) + 𝑀)) = (𝐴 Yrm (𝑁 + ((𝑏 + 1) · 𝑀))))
5958breq2d 5136 . . . . . . . . 9 ((𝑏 ∈ ℕ0 ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → ((𝐴 Yrm 𝑀) ∥ (𝐴 Yrm ((𝑁 + (𝑏 · 𝑀)) + 𝑀)) ↔ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 + ((𝑏 + 1) · 𝑀)))))
6044, 59bitrd 279 . . . . . . . 8 ((𝑏 ∈ ℕ0 ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → ((𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 + (𝑏 · 𝑀))) ↔ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 + ((𝑏 + 1) · 𝑀)))))
61603adant3 1132 . . . . . . 7 ((𝑏 ∈ ℕ0 ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) ∧ ((𝐴 Yrm 𝑀) ∥ (𝐴 Yrm 𝑁) ↔ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 + (𝑏 · 𝑀))))) → ((𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 + (𝑏 · 𝑀))) ↔ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 + ((𝑏 + 1) · 𝑀)))))
6235, 61bitrd 279 . . . . . 6 ((𝑏 ∈ ℕ0 ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) ∧ ((𝐴 Yrm 𝑀) ∥ (𝐴 Yrm 𝑁) ↔ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 + (𝑏 · 𝑀))))) → ((𝐴 Yrm 𝑀) ∥ (𝐴 Yrm 𝑁) ↔ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 + ((𝑏 + 1) · 𝑀)))))
63623exp 1119 . . . . 5 (𝑏 ∈ ℕ0 → ((𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (((𝐴 Yrm 𝑀) ∥ (𝐴 Yrm 𝑁) ↔ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 + (𝑏 · 𝑀)))) → ((𝐴 Yrm 𝑀) ∥ (𝐴 Yrm 𝑁) ↔ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 + ((𝑏 + 1) · 𝑀)))))))
6463a2d 29 . . . 4 (𝑏 ∈ ℕ0 → (((𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((𝐴 Yrm 𝑀) ∥ (𝐴 Yrm 𝑁) ↔ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 + (𝑏 · 𝑀))))) → ((𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((𝐴 Yrm 𝑀) ∥ (𝐴 Yrm 𝑁) ↔ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 + ((𝑏 + 1) · 𝑀)))))))
656, 12, 18, 24, 34, 64nn0ind 12693 . . 3 (𝐼 ∈ ℕ0 → ((𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((𝐴 Yrm 𝑀) ∥ (𝐴 Yrm 𝑁) ↔ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 + (𝐼 · 𝑀))))))
6665com12 32 . 2 ((𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (𝐼 ∈ ℕ0 → ((𝐴 Yrm 𝑀) ∥ (𝐴 Yrm 𝑁) ↔ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 + (𝐼 · 𝑀))))))
67663impia 1117 1 ((𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐼 ∈ ℕ0) → ((𝐴 Yrm 𝑀) ∥ (𝐴 Yrm 𝑁) ↔ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 + (𝐼 · 𝑀)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109   class class class wbr 5124  cfv 6536  (class class class)co 7410  cc 11132  0cc0 11134  1c1 11135   + caddc 11137   · cmul 11139  2c2 12300  0cn0 12506  cz 12593  cuz 12857  cdvds 16277   Yrm crmy 42899
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-inf2 9660  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211  ax-pre-sup 11212  ax-addf 11213
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-iin 4975  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-se 5612  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-isom 6545  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-of 7676  df-om 7867  df-1st 7993  df-2nd 7994  df-supp 8165  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-2o 8486  df-oadd 8489  df-omul 8490  df-er 8724  df-map 8847  df-pm 8848  df-ixp 8917  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-fsupp 9379  df-fi 9428  df-sup 9459  df-inf 9460  df-oi 9529  df-card 9958  df-acn 9961  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-div 11900  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-7 12313  df-8 12314  df-9 12315  df-n0 12507  df-xnn0 12580  df-z 12594  df-dec 12714  df-uz 12858  df-q 12970  df-rp 13014  df-xneg 13133  df-xadd 13134  df-xmul 13135  df-ioo 13371  df-ioc 13372  df-ico 13373  df-icc 13374  df-fz 13530  df-fzo 13677  df-fl 13814  df-mod 13892  df-seq 14025  df-exp 14085  df-fac 14297  df-bc 14326  df-hash 14354  df-shft 15091  df-cj 15123  df-re 15124  df-im 15125  df-sqrt 15259  df-abs 15260  df-limsup 15492  df-clim 15509  df-rlim 15510  df-sum 15708  df-ef 16088  df-sin 16090  df-cos 16091  df-pi 16093  df-dvds 16278  df-gcd 16519  df-numer 16759  df-denom 16760  df-struct 17171  df-sets 17188  df-slot 17206  df-ndx 17218  df-base 17234  df-ress 17257  df-plusg 17289  df-mulr 17290  df-starv 17291  df-sca 17292  df-vsca 17293  df-ip 17294  df-tset 17295  df-ple 17296  df-ds 17298  df-unif 17299  df-hom 17300  df-cco 17301  df-rest 17441  df-topn 17442  df-0g 17460  df-gsum 17461  df-topgen 17462  df-pt 17463  df-prds 17466  df-xrs 17521  df-qtop 17526  df-imas 17527  df-xps 17529  df-mre 17603  df-mrc 17604  df-acs 17606  df-mgm 18623  df-sgrp 18702  df-mnd 18718  df-submnd 18767  df-mulg 19056  df-cntz 19305  df-cmn 19768  df-psmet 21312  df-xmet 21313  df-met 21314  df-bl 21315  df-mopn 21316  df-fbas 21317  df-fg 21318  df-cnfld 21321  df-top 22837  df-topon 22854  df-topsp 22876  df-bases 22889  df-cld 22962  df-ntr 22963  df-cls 22964  df-nei 23041  df-lp 23079  df-perf 23080  df-cn 23170  df-cnp 23171  df-haus 23258  df-tx 23505  df-hmeo 23698  df-fil 23789  df-fm 23881  df-flim 23882  df-flf 23883  df-xms 24264  df-ms 24265  df-tms 24266  df-cncf 24827  df-limc 25824  df-dv 25825  df-log 26522  df-squarenn 42839  df-pell1qr 42840  df-pell14qr 42841  df-pell1234qr 42842  df-pellfund 42843  df-rmx 42900  df-rmy 42901
This theorem is referenced by:  jm2.19lem4  42991
  Copyright terms: Public domain W3C validator