Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  jm2.19lem3 Structured version   Visualization version   GIF version

Theorem jm2.19lem3 42948
Description: Lemma for jm2.19 42950. (Contributed by Stefan O'Rear, 26-Sep-2014.)
Assertion
Ref Expression
jm2.19lem3 ((𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐼 ∈ ℕ0) → ((𝐴 Yrm 𝑀) ∥ (𝐴 Yrm 𝑁) ↔ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 + (𝐼 · 𝑀)))))

Proof of Theorem jm2.19lem3
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 7455 . . . . . . . . 9 (𝑎 = 0 → (𝑎 · 𝑀) = (0 · 𝑀))
21oveq2d 7464 . . . . . . . 8 (𝑎 = 0 → (𝑁 + (𝑎 · 𝑀)) = (𝑁 + (0 · 𝑀)))
32oveq2d 7464 . . . . . . 7 (𝑎 = 0 → (𝐴 Yrm (𝑁 + (𝑎 · 𝑀))) = (𝐴 Yrm (𝑁 + (0 · 𝑀))))
43breq2d 5178 . . . . . 6 (𝑎 = 0 → ((𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 + (𝑎 · 𝑀))) ↔ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 + (0 · 𝑀)))))
54bibi2d 342 . . . . 5 (𝑎 = 0 → (((𝐴 Yrm 𝑀) ∥ (𝐴 Yrm 𝑁) ↔ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 + (𝑎 · 𝑀)))) ↔ ((𝐴 Yrm 𝑀) ∥ (𝐴 Yrm 𝑁) ↔ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 + (0 · 𝑀))))))
65imbi2d 340 . . . 4 (𝑎 = 0 → (((𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((𝐴 Yrm 𝑀) ∥ (𝐴 Yrm 𝑁) ↔ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 + (𝑎 · 𝑀))))) ↔ ((𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((𝐴 Yrm 𝑀) ∥ (𝐴 Yrm 𝑁) ↔ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 + (0 · 𝑀)))))))
7 oveq1 7455 . . . . . . . . 9 (𝑎 = 𝑏 → (𝑎 · 𝑀) = (𝑏 · 𝑀))
87oveq2d 7464 . . . . . . . 8 (𝑎 = 𝑏 → (𝑁 + (𝑎 · 𝑀)) = (𝑁 + (𝑏 · 𝑀)))
98oveq2d 7464 . . . . . . 7 (𝑎 = 𝑏 → (𝐴 Yrm (𝑁 + (𝑎 · 𝑀))) = (𝐴 Yrm (𝑁 + (𝑏 · 𝑀))))
109breq2d 5178 . . . . . 6 (𝑎 = 𝑏 → ((𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 + (𝑎 · 𝑀))) ↔ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 + (𝑏 · 𝑀)))))
1110bibi2d 342 . . . . 5 (𝑎 = 𝑏 → (((𝐴 Yrm 𝑀) ∥ (𝐴 Yrm 𝑁) ↔ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 + (𝑎 · 𝑀)))) ↔ ((𝐴 Yrm 𝑀) ∥ (𝐴 Yrm 𝑁) ↔ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 + (𝑏 · 𝑀))))))
1211imbi2d 340 . . . 4 (𝑎 = 𝑏 → (((𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((𝐴 Yrm 𝑀) ∥ (𝐴 Yrm 𝑁) ↔ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 + (𝑎 · 𝑀))))) ↔ ((𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((𝐴 Yrm 𝑀) ∥ (𝐴 Yrm 𝑁) ↔ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 + (𝑏 · 𝑀)))))))
13 oveq1 7455 . . . . . . . . 9 (𝑎 = (𝑏 + 1) → (𝑎 · 𝑀) = ((𝑏 + 1) · 𝑀))
1413oveq2d 7464 . . . . . . . 8 (𝑎 = (𝑏 + 1) → (𝑁 + (𝑎 · 𝑀)) = (𝑁 + ((𝑏 + 1) · 𝑀)))
1514oveq2d 7464 . . . . . . 7 (𝑎 = (𝑏 + 1) → (𝐴 Yrm (𝑁 + (𝑎 · 𝑀))) = (𝐴 Yrm (𝑁 + ((𝑏 + 1) · 𝑀))))
1615breq2d 5178 . . . . . 6 (𝑎 = (𝑏 + 1) → ((𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 + (𝑎 · 𝑀))) ↔ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 + ((𝑏 + 1) · 𝑀)))))
1716bibi2d 342 . . . . 5 (𝑎 = (𝑏 + 1) → (((𝐴 Yrm 𝑀) ∥ (𝐴 Yrm 𝑁) ↔ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 + (𝑎 · 𝑀)))) ↔ ((𝐴 Yrm 𝑀) ∥ (𝐴 Yrm 𝑁) ↔ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 + ((𝑏 + 1) · 𝑀))))))
1817imbi2d 340 . . . 4 (𝑎 = (𝑏 + 1) → (((𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((𝐴 Yrm 𝑀) ∥ (𝐴 Yrm 𝑁) ↔ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 + (𝑎 · 𝑀))))) ↔ ((𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((𝐴 Yrm 𝑀) ∥ (𝐴 Yrm 𝑁) ↔ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 + ((𝑏 + 1) · 𝑀)))))))
19 oveq1 7455 . . . . . . . . 9 (𝑎 = 𝐼 → (𝑎 · 𝑀) = (𝐼 · 𝑀))
2019oveq2d 7464 . . . . . . . 8 (𝑎 = 𝐼 → (𝑁 + (𝑎 · 𝑀)) = (𝑁 + (𝐼 · 𝑀)))
2120oveq2d 7464 . . . . . . 7 (𝑎 = 𝐼 → (𝐴 Yrm (𝑁 + (𝑎 · 𝑀))) = (𝐴 Yrm (𝑁 + (𝐼 · 𝑀))))
2221breq2d 5178 . . . . . 6 (𝑎 = 𝐼 → ((𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 + (𝑎 · 𝑀))) ↔ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 + (𝐼 · 𝑀)))))
2322bibi2d 342 . . . . 5 (𝑎 = 𝐼 → (((𝐴 Yrm 𝑀) ∥ (𝐴 Yrm 𝑁) ↔ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 + (𝑎 · 𝑀)))) ↔ ((𝐴 Yrm 𝑀) ∥ (𝐴 Yrm 𝑁) ↔ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 + (𝐼 · 𝑀))))))
2423imbi2d 340 . . . 4 (𝑎 = 𝐼 → (((𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((𝐴 Yrm 𝑀) ∥ (𝐴 Yrm 𝑁) ↔ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 + (𝑎 · 𝑀))))) ↔ ((𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((𝐴 Yrm 𝑀) ∥ (𝐴 Yrm 𝑁) ↔ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 + (𝐼 · 𝑀)))))))
25 zcn 12644 . . . . . . . . . 10 (𝑀 ∈ ℤ → 𝑀 ∈ ℂ)
2625ad2antrl 727 . . . . . . . . 9 ((𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → 𝑀 ∈ ℂ)
2726mul02d 11488 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (0 · 𝑀) = 0)
2827oveq2d 7464 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (𝑁 + (0 · 𝑀)) = (𝑁 + 0))
29 zcn 12644 . . . . . . . . 9 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
3029ad2antll 728 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → 𝑁 ∈ ℂ)
3130addridd 11490 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (𝑁 + 0) = 𝑁)
3228, 31eqtr2d 2781 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → 𝑁 = (𝑁 + (0 · 𝑀)))
3332oveq2d 7464 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (𝐴 Yrm 𝑁) = (𝐴 Yrm (𝑁 + (0 · 𝑀))))
3433breq2d 5178 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((𝐴 Yrm 𝑀) ∥ (𝐴 Yrm 𝑁) ↔ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 + (0 · 𝑀)))))
35 simp3 1138 . . . . . . 7 ((𝑏 ∈ ℕ0 ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) ∧ ((𝐴 Yrm 𝑀) ∥ (𝐴 Yrm 𝑁) ↔ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 + (𝑏 · 𝑀))))) → ((𝐴 Yrm 𝑀) ∥ (𝐴 Yrm 𝑁) ↔ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 + (𝑏 · 𝑀)))))
36 simprl 770 . . . . . . . . . 10 ((𝑏 ∈ ℕ0 ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → 𝐴 ∈ (ℤ‘2))
37 simprrl 780 . . . . . . . . . 10 ((𝑏 ∈ ℕ0 ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → 𝑀 ∈ ℤ)
38 simprrr 781 . . . . . . . . . . 11 ((𝑏 ∈ ℕ0 ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → 𝑁 ∈ ℤ)
39 nn0z 12664 . . . . . . . . . . . . 13 (𝑏 ∈ ℕ0𝑏 ∈ ℤ)
4039adantr 480 . . . . . . . . . . . 12 ((𝑏 ∈ ℕ0 ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → 𝑏 ∈ ℤ)
4140, 37zmulcld 12753 . . . . . . . . . . 11 ((𝑏 ∈ ℕ0 ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → (𝑏 · 𝑀) ∈ ℤ)
4238, 41zaddcld 12751 . . . . . . . . . 10 ((𝑏 ∈ ℕ0 ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → (𝑁 + (𝑏 · 𝑀)) ∈ ℤ)
43 jm2.19lem2 42947 . . . . . . . . . 10 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ (𝑁 + (𝑏 · 𝑀)) ∈ ℤ) → ((𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 + (𝑏 · 𝑀))) ↔ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm ((𝑁 + (𝑏 · 𝑀)) + 𝑀))))
4436, 37, 42, 43syl3anc 1371 . . . . . . . . 9 ((𝑏 ∈ ℕ0 ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → ((𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 + (𝑏 · 𝑀))) ↔ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm ((𝑁 + (𝑏 · 𝑀)) + 𝑀))))
4538zcnd 12748 . . . . . . . . . . . . 13 ((𝑏 ∈ ℕ0 ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → 𝑁 ∈ ℂ)
4641zcnd 12748 . . . . . . . . . . . . 13 ((𝑏 ∈ ℕ0 ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → (𝑏 · 𝑀) ∈ ℂ)
4737zcnd 12748 . . . . . . . . . . . . 13 ((𝑏 ∈ ℕ0 ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → 𝑀 ∈ ℂ)
4845, 46, 47addassd 11312 . . . . . . . . . . . 12 ((𝑏 ∈ ℕ0 ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → ((𝑁 + (𝑏 · 𝑀)) + 𝑀) = (𝑁 + ((𝑏 · 𝑀) + 𝑀)))
49 nn0cn 12563 . . . . . . . . . . . . . . . 16 (𝑏 ∈ ℕ0𝑏 ∈ ℂ)
5049adantr 480 . . . . . . . . . . . . . . 15 ((𝑏 ∈ ℕ0 ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → 𝑏 ∈ ℂ)
51 1cnd 11285 . . . . . . . . . . . . . . 15 ((𝑏 ∈ ℕ0 ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → 1 ∈ ℂ)
5250, 51, 47adddird 11315 . . . . . . . . . . . . . 14 ((𝑏 ∈ ℕ0 ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → ((𝑏 + 1) · 𝑀) = ((𝑏 · 𝑀) + (1 · 𝑀)))
5347mullidd 11308 . . . . . . . . . . . . . . 15 ((𝑏 ∈ ℕ0 ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → (1 · 𝑀) = 𝑀)
5453oveq2d 7464 . . . . . . . . . . . . . 14 ((𝑏 ∈ ℕ0 ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → ((𝑏 · 𝑀) + (1 · 𝑀)) = ((𝑏 · 𝑀) + 𝑀))
5552, 54eqtr2d 2781 . . . . . . . . . . . . 13 ((𝑏 ∈ ℕ0 ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → ((𝑏 · 𝑀) + 𝑀) = ((𝑏 + 1) · 𝑀))
5655oveq2d 7464 . . . . . . . . . . . 12 ((𝑏 ∈ ℕ0 ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → (𝑁 + ((𝑏 · 𝑀) + 𝑀)) = (𝑁 + ((𝑏 + 1) · 𝑀)))
5748, 56eqtrd 2780 . . . . . . . . . . 11 ((𝑏 ∈ ℕ0 ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → ((𝑁 + (𝑏 · 𝑀)) + 𝑀) = (𝑁 + ((𝑏 + 1) · 𝑀)))
5857oveq2d 7464 . . . . . . . . . 10 ((𝑏 ∈ ℕ0 ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → (𝐴 Yrm ((𝑁 + (𝑏 · 𝑀)) + 𝑀)) = (𝐴 Yrm (𝑁 + ((𝑏 + 1) · 𝑀))))
5958breq2d 5178 . . . . . . . . 9 ((𝑏 ∈ ℕ0 ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → ((𝐴 Yrm 𝑀) ∥ (𝐴 Yrm ((𝑁 + (𝑏 · 𝑀)) + 𝑀)) ↔ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 + ((𝑏 + 1) · 𝑀)))))
6044, 59bitrd 279 . . . . . . . 8 ((𝑏 ∈ ℕ0 ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → ((𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 + (𝑏 · 𝑀))) ↔ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 + ((𝑏 + 1) · 𝑀)))))
61603adant3 1132 . . . . . . 7 ((𝑏 ∈ ℕ0 ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) ∧ ((𝐴 Yrm 𝑀) ∥ (𝐴 Yrm 𝑁) ↔ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 + (𝑏 · 𝑀))))) → ((𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 + (𝑏 · 𝑀))) ↔ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 + ((𝑏 + 1) · 𝑀)))))
6235, 61bitrd 279 . . . . . 6 ((𝑏 ∈ ℕ0 ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) ∧ ((𝐴 Yrm 𝑀) ∥ (𝐴 Yrm 𝑁) ↔ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 + (𝑏 · 𝑀))))) → ((𝐴 Yrm 𝑀) ∥ (𝐴 Yrm 𝑁) ↔ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 + ((𝑏 + 1) · 𝑀)))))
63623exp 1119 . . . . 5 (𝑏 ∈ ℕ0 → ((𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (((𝐴 Yrm 𝑀) ∥ (𝐴 Yrm 𝑁) ↔ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 + (𝑏 · 𝑀)))) → ((𝐴 Yrm 𝑀) ∥ (𝐴 Yrm 𝑁) ↔ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 + ((𝑏 + 1) · 𝑀)))))))
6463a2d 29 . . . 4 (𝑏 ∈ ℕ0 → (((𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((𝐴 Yrm 𝑀) ∥ (𝐴 Yrm 𝑁) ↔ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 + (𝑏 · 𝑀))))) → ((𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((𝐴 Yrm 𝑀) ∥ (𝐴 Yrm 𝑁) ↔ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 + ((𝑏 + 1) · 𝑀)))))))
656, 12, 18, 24, 34, 64nn0ind 12738 . . 3 (𝐼 ∈ ℕ0 → ((𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((𝐴 Yrm 𝑀) ∥ (𝐴 Yrm 𝑁) ↔ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 + (𝐼 · 𝑀))))))
6665com12 32 . 2 ((𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (𝐼 ∈ ℕ0 → ((𝐴 Yrm 𝑀) ∥ (𝐴 Yrm 𝑁) ↔ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 + (𝐼 · 𝑀))))))
67663impia 1117 1 ((𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐼 ∈ ℕ0) → ((𝐴 Yrm 𝑀) ∥ (𝐴 Yrm 𝑁) ↔ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 + (𝐼 · 𝑀)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108   class class class wbr 5166  cfv 6573  (class class class)co 7448  cc 11182  0cc0 11184  1c1 11185   + caddc 11187   · cmul 11189  2c2 12348  0cn0 12553  cz 12639  cuz 12903  cdvds 16302   Yrm crmy 42857
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262  ax-addf 11263
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-oadd 8526  df-omul 8527  df-er 8763  df-map 8886  df-pm 8887  df-ixp 8956  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fsupp 9432  df-fi 9480  df-sup 9511  df-inf 9512  df-oi 9579  df-card 10008  df-acn 10011  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-xnn0 12626  df-z 12640  df-dec 12759  df-uz 12904  df-q 13014  df-rp 13058  df-xneg 13175  df-xadd 13176  df-xmul 13177  df-ioo 13411  df-ioc 13412  df-ico 13413  df-icc 13414  df-fz 13568  df-fzo 13712  df-fl 13843  df-mod 13921  df-seq 14053  df-exp 14113  df-fac 14323  df-bc 14352  df-hash 14380  df-shft 15116  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-limsup 15517  df-clim 15534  df-rlim 15535  df-sum 15735  df-ef 16115  df-sin 16117  df-cos 16118  df-pi 16120  df-dvds 16303  df-gcd 16541  df-numer 16782  df-denom 16783  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-starv 17326  df-sca 17327  df-vsca 17328  df-ip 17329  df-tset 17330  df-ple 17331  df-ds 17333  df-unif 17334  df-hom 17335  df-cco 17336  df-rest 17482  df-topn 17483  df-0g 17501  df-gsum 17502  df-topgen 17503  df-pt 17504  df-prds 17507  df-xrs 17562  df-qtop 17567  df-imas 17568  df-xps 17570  df-mre 17644  df-mrc 17645  df-acs 17647  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-submnd 18819  df-mulg 19108  df-cntz 19357  df-cmn 19824  df-psmet 21379  df-xmet 21380  df-met 21381  df-bl 21382  df-mopn 21383  df-fbas 21384  df-fg 21385  df-cnfld 21388  df-top 22921  df-topon 22938  df-topsp 22960  df-bases 22974  df-cld 23048  df-ntr 23049  df-cls 23050  df-nei 23127  df-lp 23165  df-perf 23166  df-cn 23256  df-cnp 23257  df-haus 23344  df-tx 23591  df-hmeo 23784  df-fil 23875  df-fm 23967  df-flim 23968  df-flf 23969  df-xms 24351  df-ms 24352  df-tms 24353  df-cncf 24923  df-limc 25921  df-dv 25922  df-log 26616  df-squarenn 42797  df-pell1qr 42798  df-pell14qr 42799  df-pell1234qr 42800  df-pellfund 42801  df-rmx 42858  df-rmy 42859
This theorem is referenced by:  jm2.19lem4  42949
  Copyright terms: Public domain W3C validator