Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  jm2.19lem3 Structured version   Visualization version   GIF version

Theorem jm2.19lem3 39588
Description: Lemma for jm2.19 39590. (Contributed by Stefan O'Rear, 26-Sep-2014.)
Assertion
Ref Expression
jm2.19lem3 ((𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐼 ∈ ℕ0) → ((𝐴 Yrm 𝑀) ∥ (𝐴 Yrm 𝑁) ↔ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 + (𝐼 · 𝑀)))))

Proof of Theorem jm2.19lem3
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 7162 . . . . . . . . 9 (𝑎 = 0 → (𝑎 · 𝑀) = (0 · 𝑀))
21oveq2d 7171 . . . . . . . 8 (𝑎 = 0 → (𝑁 + (𝑎 · 𝑀)) = (𝑁 + (0 · 𝑀)))
32oveq2d 7171 . . . . . . 7 (𝑎 = 0 → (𝐴 Yrm (𝑁 + (𝑎 · 𝑀))) = (𝐴 Yrm (𝑁 + (0 · 𝑀))))
43breq2d 5077 . . . . . 6 (𝑎 = 0 → ((𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 + (𝑎 · 𝑀))) ↔ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 + (0 · 𝑀)))))
54bibi2d 345 . . . . 5 (𝑎 = 0 → (((𝐴 Yrm 𝑀) ∥ (𝐴 Yrm 𝑁) ↔ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 + (𝑎 · 𝑀)))) ↔ ((𝐴 Yrm 𝑀) ∥ (𝐴 Yrm 𝑁) ↔ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 + (0 · 𝑀))))))
65imbi2d 343 . . . 4 (𝑎 = 0 → (((𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((𝐴 Yrm 𝑀) ∥ (𝐴 Yrm 𝑁) ↔ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 + (𝑎 · 𝑀))))) ↔ ((𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((𝐴 Yrm 𝑀) ∥ (𝐴 Yrm 𝑁) ↔ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 + (0 · 𝑀)))))))
7 oveq1 7162 . . . . . . . . 9 (𝑎 = 𝑏 → (𝑎 · 𝑀) = (𝑏 · 𝑀))
87oveq2d 7171 . . . . . . . 8 (𝑎 = 𝑏 → (𝑁 + (𝑎 · 𝑀)) = (𝑁 + (𝑏 · 𝑀)))
98oveq2d 7171 . . . . . . 7 (𝑎 = 𝑏 → (𝐴 Yrm (𝑁 + (𝑎 · 𝑀))) = (𝐴 Yrm (𝑁 + (𝑏 · 𝑀))))
109breq2d 5077 . . . . . 6 (𝑎 = 𝑏 → ((𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 + (𝑎 · 𝑀))) ↔ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 + (𝑏 · 𝑀)))))
1110bibi2d 345 . . . . 5 (𝑎 = 𝑏 → (((𝐴 Yrm 𝑀) ∥ (𝐴 Yrm 𝑁) ↔ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 + (𝑎 · 𝑀)))) ↔ ((𝐴 Yrm 𝑀) ∥ (𝐴 Yrm 𝑁) ↔ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 + (𝑏 · 𝑀))))))
1211imbi2d 343 . . . 4 (𝑎 = 𝑏 → (((𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((𝐴 Yrm 𝑀) ∥ (𝐴 Yrm 𝑁) ↔ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 + (𝑎 · 𝑀))))) ↔ ((𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((𝐴 Yrm 𝑀) ∥ (𝐴 Yrm 𝑁) ↔ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 + (𝑏 · 𝑀)))))))
13 oveq1 7162 . . . . . . . . 9 (𝑎 = (𝑏 + 1) → (𝑎 · 𝑀) = ((𝑏 + 1) · 𝑀))
1413oveq2d 7171 . . . . . . . 8 (𝑎 = (𝑏 + 1) → (𝑁 + (𝑎 · 𝑀)) = (𝑁 + ((𝑏 + 1) · 𝑀)))
1514oveq2d 7171 . . . . . . 7 (𝑎 = (𝑏 + 1) → (𝐴 Yrm (𝑁 + (𝑎 · 𝑀))) = (𝐴 Yrm (𝑁 + ((𝑏 + 1) · 𝑀))))
1615breq2d 5077 . . . . . 6 (𝑎 = (𝑏 + 1) → ((𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 + (𝑎 · 𝑀))) ↔ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 + ((𝑏 + 1) · 𝑀)))))
1716bibi2d 345 . . . . 5 (𝑎 = (𝑏 + 1) → (((𝐴 Yrm 𝑀) ∥ (𝐴 Yrm 𝑁) ↔ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 + (𝑎 · 𝑀)))) ↔ ((𝐴 Yrm 𝑀) ∥ (𝐴 Yrm 𝑁) ↔ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 + ((𝑏 + 1) · 𝑀))))))
1817imbi2d 343 . . . 4 (𝑎 = (𝑏 + 1) → (((𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((𝐴 Yrm 𝑀) ∥ (𝐴 Yrm 𝑁) ↔ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 + (𝑎 · 𝑀))))) ↔ ((𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((𝐴 Yrm 𝑀) ∥ (𝐴 Yrm 𝑁) ↔ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 + ((𝑏 + 1) · 𝑀)))))))
19 oveq1 7162 . . . . . . . . 9 (𝑎 = 𝐼 → (𝑎 · 𝑀) = (𝐼 · 𝑀))
2019oveq2d 7171 . . . . . . . 8 (𝑎 = 𝐼 → (𝑁 + (𝑎 · 𝑀)) = (𝑁 + (𝐼 · 𝑀)))
2120oveq2d 7171 . . . . . . 7 (𝑎 = 𝐼 → (𝐴 Yrm (𝑁 + (𝑎 · 𝑀))) = (𝐴 Yrm (𝑁 + (𝐼 · 𝑀))))
2221breq2d 5077 . . . . . 6 (𝑎 = 𝐼 → ((𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 + (𝑎 · 𝑀))) ↔ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 + (𝐼 · 𝑀)))))
2322bibi2d 345 . . . . 5 (𝑎 = 𝐼 → (((𝐴 Yrm 𝑀) ∥ (𝐴 Yrm 𝑁) ↔ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 + (𝑎 · 𝑀)))) ↔ ((𝐴 Yrm 𝑀) ∥ (𝐴 Yrm 𝑁) ↔ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 + (𝐼 · 𝑀))))))
2423imbi2d 343 . . . 4 (𝑎 = 𝐼 → (((𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((𝐴 Yrm 𝑀) ∥ (𝐴 Yrm 𝑁) ↔ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 + (𝑎 · 𝑀))))) ↔ ((𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((𝐴 Yrm 𝑀) ∥ (𝐴 Yrm 𝑁) ↔ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 + (𝐼 · 𝑀)))))))
25 zcn 11985 . . . . . . . . . 10 (𝑀 ∈ ℤ → 𝑀 ∈ ℂ)
2625ad2antrl 726 . . . . . . . . 9 ((𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → 𝑀 ∈ ℂ)
2726mul02d 10837 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (0 · 𝑀) = 0)
2827oveq2d 7171 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (𝑁 + (0 · 𝑀)) = (𝑁 + 0))
29 zcn 11985 . . . . . . . . 9 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
3029ad2antll 727 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → 𝑁 ∈ ℂ)
3130addid1d 10839 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (𝑁 + 0) = 𝑁)
3228, 31eqtr2d 2857 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → 𝑁 = (𝑁 + (0 · 𝑀)))
3332oveq2d 7171 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (𝐴 Yrm 𝑁) = (𝐴 Yrm (𝑁 + (0 · 𝑀))))
3433breq2d 5077 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((𝐴 Yrm 𝑀) ∥ (𝐴 Yrm 𝑁) ↔ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 + (0 · 𝑀)))))
35 simp3 1134 . . . . . . 7 ((𝑏 ∈ ℕ0 ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) ∧ ((𝐴 Yrm 𝑀) ∥ (𝐴 Yrm 𝑁) ↔ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 + (𝑏 · 𝑀))))) → ((𝐴 Yrm 𝑀) ∥ (𝐴 Yrm 𝑁) ↔ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 + (𝑏 · 𝑀)))))
36 simprl 769 . . . . . . . . . 10 ((𝑏 ∈ ℕ0 ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → 𝐴 ∈ (ℤ‘2))
37 simprrl 779 . . . . . . . . . 10 ((𝑏 ∈ ℕ0 ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → 𝑀 ∈ ℤ)
38 simprrr 780 . . . . . . . . . . 11 ((𝑏 ∈ ℕ0 ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → 𝑁 ∈ ℤ)
39 nn0z 12004 . . . . . . . . . . . . 13 (𝑏 ∈ ℕ0𝑏 ∈ ℤ)
4039adantr 483 . . . . . . . . . . . 12 ((𝑏 ∈ ℕ0 ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → 𝑏 ∈ ℤ)
4140, 37zmulcld 12092 . . . . . . . . . . 11 ((𝑏 ∈ ℕ0 ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → (𝑏 · 𝑀) ∈ ℤ)
4238, 41zaddcld 12090 . . . . . . . . . 10 ((𝑏 ∈ ℕ0 ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → (𝑁 + (𝑏 · 𝑀)) ∈ ℤ)
43 jm2.19lem2 39587 . . . . . . . . . 10 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ (𝑁 + (𝑏 · 𝑀)) ∈ ℤ) → ((𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 + (𝑏 · 𝑀))) ↔ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm ((𝑁 + (𝑏 · 𝑀)) + 𝑀))))
4436, 37, 42, 43syl3anc 1367 . . . . . . . . 9 ((𝑏 ∈ ℕ0 ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → ((𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 + (𝑏 · 𝑀))) ↔ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm ((𝑁 + (𝑏 · 𝑀)) + 𝑀))))
4538zcnd 12087 . . . . . . . . . . . . 13 ((𝑏 ∈ ℕ0 ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → 𝑁 ∈ ℂ)
4641zcnd 12087 . . . . . . . . . . . . 13 ((𝑏 ∈ ℕ0 ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → (𝑏 · 𝑀) ∈ ℂ)
4737zcnd 12087 . . . . . . . . . . . . 13 ((𝑏 ∈ ℕ0 ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → 𝑀 ∈ ℂ)
4845, 46, 47addassd 10662 . . . . . . . . . . . 12 ((𝑏 ∈ ℕ0 ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → ((𝑁 + (𝑏 · 𝑀)) + 𝑀) = (𝑁 + ((𝑏 · 𝑀) + 𝑀)))
49 nn0cn 11906 . . . . . . . . . . . . . . . 16 (𝑏 ∈ ℕ0𝑏 ∈ ℂ)
5049adantr 483 . . . . . . . . . . . . . . 15 ((𝑏 ∈ ℕ0 ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → 𝑏 ∈ ℂ)
51 1cnd 10635 . . . . . . . . . . . . . . 15 ((𝑏 ∈ ℕ0 ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → 1 ∈ ℂ)
5250, 51, 47adddird 10665 . . . . . . . . . . . . . 14 ((𝑏 ∈ ℕ0 ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → ((𝑏 + 1) · 𝑀) = ((𝑏 · 𝑀) + (1 · 𝑀)))
5347mulid2d 10658 . . . . . . . . . . . . . . 15 ((𝑏 ∈ ℕ0 ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → (1 · 𝑀) = 𝑀)
5453oveq2d 7171 . . . . . . . . . . . . . 14 ((𝑏 ∈ ℕ0 ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → ((𝑏 · 𝑀) + (1 · 𝑀)) = ((𝑏 · 𝑀) + 𝑀))
5552, 54eqtr2d 2857 . . . . . . . . . . . . 13 ((𝑏 ∈ ℕ0 ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → ((𝑏 · 𝑀) + 𝑀) = ((𝑏 + 1) · 𝑀))
5655oveq2d 7171 . . . . . . . . . . . 12 ((𝑏 ∈ ℕ0 ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → (𝑁 + ((𝑏 · 𝑀) + 𝑀)) = (𝑁 + ((𝑏 + 1) · 𝑀)))
5748, 56eqtrd 2856 . . . . . . . . . . 11 ((𝑏 ∈ ℕ0 ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → ((𝑁 + (𝑏 · 𝑀)) + 𝑀) = (𝑁 + ((𝑏 + 1) · 𝑀)))
5857oveq2d 7171 . . . . . . . . . 10 ((𝑏 ∈ ℕ0 ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → (𝐴 Yrm ((𝑁 + (𝑏 · 𝑀)) + 𝑀)) = (𝐴 Yrm (𝑁 + ((𝑏 + 1) · 𝑀))))
5958breq2d 5077 . . . . . . . . 9 ((𝑏 ∈ ℕ0 ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → ((𝐴 Yrm 𝑀) ∥ (𝐴 Yrm ((𝑁 + (𝑏 · 𝑀)) + 𝑀)) ↔ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 + ((𝑏 + 1) · 𝑀)))))
6044, 59bitrd 281 . . . . . . . 8 ((𝑏 ∈ ℕ0 ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → ((𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 + (𝑏 · 𝑀))) ↔ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 + ((𝑏 + 1) · 𝑀)))))
61603adant3 1128 . . . . . . 7 ((𝑏 ∈ ℕ0 ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) ∧ ((𝐴 Yrm 𝑀) ∥ (𝐴 Yrm 𝑁) ↔ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 + (𝑏 · 𝑀))))) → ((𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 + (𝑏 · 𝑀))) ↔ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 + ((𝑏 + 1) · 𝑀)))))
6235, 61bitrd 281 . . . . . 6 ((𝑏 ∈ ℕ0 ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) ∧ ((𝐴 Yrm 𝑀) ∥ (𝐴 Yrm 𝑁) ↔ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 + (𝑏 · 𝑀))))) → ((𝐴 Yrm 𝑀) ∥ (𝐴 Yrm 𝑁) ↔ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 + ((𝑏 + 1) · 𝑀)))))
63623exp 1115 . . . . 5 (𝑏 ∈ ℕ0 → ((𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (((𝐴 Yrm 𝑀) ∥ (𝐴 Yrm 𝑁) ↔ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 + (𝑏 · 𝑀)))) → ((𝐴 Yrm 𝑀) ∥ (𝐴 Yrm 𝑁) ↔ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 + ((𝑏 + 1) · 𝑀)))))))
6463a2d 29 . . . 4 (𝑏 ∈ ℕ0 → (((𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((𝐴 Yrm 𝑀) ∥ (𝐴 Yrm 𝑁) ↔ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 + (𝑏 · 𝑀))))) → ((𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((𝐴 Yrm 𝑀) ∥ (𝐴 Yrm 𝑁) ↔ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 + ((𝑏 + 1) · 𝑀)))))))
656, 12, 18, 24, 34, 64nn0ind 12076 . . 3 (𝐼 ∈ ℕ0 → ((𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((𝐴 Yrm 𝑀) ∥ (𝐴 Yrm 𝑁) ↔ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 + (𝐼 · 𝑀))))))
6665com12 32 . 2 ((𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (𝐼 ∈ ℕ0 → ((𝐴 Yrm 𝑀) ∥ (𝐴 Yrm 𝑁) ↔ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 + (𝐼 · 𝑀))))))
67663impia 1113 1 ((𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐼 ∈ ℕ0) → ((𝐴 Yrm 𝑀) ∥ (𝐴 Yrm 𝑁) ↔ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 + (𝐼 · 𝑀)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1533  wcel 2110   class class class wbr 5065  cfv 6354  (class class class)co 7155  cc 10534  0cc0 10536  1c1 10537   + caddc 10539   · cmul 10541  2c2 11691  0cn0 11896  cz 11980  cuz 12242  cdvds 15606   Yrm crmy 39498
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5189  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460  ax-inf2 9103  ax-cnex 10592  ax-resscn 10593  ax-1cn 10594  ax-icn 10595  ax-addcl 10596  ax-addrcl 10597  ax-mulcl 10598  ax-mulrcl 10599  ax-mulcom 10600  ax-addass 10601  ax-mulass 10602  ax-distr 10603  ax-i2m1 10604  ax-1ne0 10605  ax-1rid 10606  ax-rnegex 10607  ax-rrecex 10608  ax-cnre 10609  ax-pre-lttri 10610  ax-pre-lttrn 10611  ax-pre-ltadd 10612  ax-pre-mulgt0 10613  ax-pre-sup 10614  ax-addf 10615  ax-mulf 10616
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-fal 1546  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4838  df-int 4876  df-iun 4920  df-iin 4921  df-br 5066  df-opab 5128  df-mpt 5146  df-tr 5172  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-se 5514  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6147  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-isom 6363  df-riota 7113  df-ov 7158  df-oprab 7159  df-mpo 7160  df-of 7408  df-om 7580  df-1st 7688  df-2nd 7689  df-supp 7830  df-wrecs 7946  df-recs 8007  df-rdg 8045  df-1o 8101  df-2o 8102  df-oadd 8105  df-omul 8106  df-er 8288  df-map 8407  df-pm 8408  df-ixp 8461  df-en 8509  df-dom 8510  df-sdom 8511  df-fin 8512  df-fsupp 8833  df-fi 8874  df-sup 8905  df-inf 8906  df-oi 8973  df-card 9367  df-acn 9370  df-pnf 10676  df-mnf 10677  df-xr 10678  df-ltxr 10679  df-le 10680  df-sub 10871  df-neg 10872  df-div 11297  df-nn 11638  df-2 11699  df-3 11700  df-4 11701  df-5 11702  df-6 11703  df-7 11704  df-8 11705  df-9 11706  df-n0 11897  df-xnn0 11967  df-z 11981  df-dec 12098  df-uz 12243  df-q 12348  df-rp 12389  df-xneg 12506  df-xadd 12507  df-xmul 12508  df-ioo 12741  df-ioc 12742  df-ico 12743  df-icc 12744  df-fz 12892  df-fzo 13033  df-fl 13161  df-mod 13237  df-seq 13369  df-exp 13429  df-fac 13633  df-bc 13662  df-hash 13690  df-shft 14425  df-cj 14457  df-re 14458  df-im 14459  df-sqrt 14593  df-abs 14594  df-limsup 14827  df-clim 14844  df-rlim 14845  df-sum 15042  df-ef 15420  df-sin 15422  df-cos 15423  df-pi 15425  df-dvds 15607  df-gcd 15843  df-numer 16074  df-denom 16075  df-struct 16484  df-ndx 16485  df-slot 16486  df-base 16488  df-sets 16489  df-ress 16490  df-plusg 16577  df-mulr 16578  df-starv 16579  df-sca 16580  df-vsca 16581  df-ip 16582  df-tset 16583  df-ple 16584  df-ds 16586  df-unif 16587  df-hom 16588  df-cco 16589  df-rest 16695  df-topn 16696  df-0g 16714  df-gsum 16715  df-topgen 16716  df-pt 16717  df-prds 16720  df-xrs 16774  df-qtop 16779  df-imas 16780  df-xps 16782  df-mre 16856  df-mrc 16857  df-acs 16859  df-mgm 17851  df-sgrp 17900  df-mnd 17911  df-submnd 17956  df-mulg 18224  df-cntz 18446  df-cmn 18907  df-psmet 20536  df-xmet 20537  df-met 20538  df-bl 20539  df-mopn 20540  df-fbas 20541  df-fg 20542  df-cnfld 20545  df-top 21501  df-topon 21518  df-topsp 21540  df-bases 21553  df-cld 21626  df-ntr 21627  df-cls 21628  df-nei 21705  df-lp 21743  df-perf 21744  df-cn 21834  df-cnp 21835  df-haus 21922  df-tx 22169  df-hmeo 22362  df-fil 22453  df-fm 22545  df-flim 22546  df-flf 22547  df-xms 22929  df-ms 22930  df-tms 22931  df-cncf 23485  df-limc 24463  df-dv 24464  df-log 25139  df-squarenn 39438  df-pell1qr 39439  df-pell14qr 39440  df-pell1234qr 39441  df-pellfund 39442  df-rmx 39499  df-rmy 39500
This theorem is referenced by:  jm2.19lem4  39589
  Copyright terms: Public domain W3C validator