Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  jm2.19lem3 Structured version   Visualization version   GIF version

Theorem jm2.19lem3 43024
Description: Lemma for jm2.19 43026. (Contributed by Stefan O'Rear, 26-Sep-2014.)
Assertion
Ref Expression
jm2.19lem3 ((𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐼 ∈ ℕ0) → ((𝐴 Yrm 𝑀) ∥ (𝐴 Yrm 𝑁) ↔ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 + (𝐼 · 𝑀)))))

Proof of Theorem jm2.19lem3
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 7348 . . . . . . . . 9 (𝑎 = 0 → (𝑎 · 𝑀) = (0 · 𝑀))
21oveq2d 7357 . . . . . . . 8 (𝑎 = 0 → (𝑁 + (𝑎 · 𝑀)) = (𝑁 + (0 · 𝑀)))
32oveq2d 7357 . . . . . . 7 (𝑎 = 0 → (𝐴 Yrm (𝑁 + (𝑎 · 𝑀))) = (𝐴 Yrm (𝑁 + (0 · 𝑀))))
43breq2d 5098 . . . . . 6 (𝑎 = 0 → ((𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 + (𝑎 · 𝑀))) ↔ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 + (0 · 𝑀)))))
54bibi2d 342 . . . . 5 (𝑎 = 0 → (((𝐴 Yrm 𝑀) ∥ (𝐴 Yrm 𝑁) ↔ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 + (𝑎 · 𝑀)))) ↔ ((𝐴 Yrm 𝑀) ∥ (𝐴 Yrm 𝑁) ↔ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 + (0 · 𝑀))))))
65imbi2d 340 . . . 4 (𝑎 = 0 → (((𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((𝐴 Yrm 𝑀) ∥ (𝐴 Yrm 𝑁) ↔ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 + (𝑎 · 𝑀))))) ↔ ((𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((𝐴 Yrm 𝑀) ∥ (𝐴 Yrm 𝑁) ↔ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 + (0 · 𝑀)))))))
7 oveq1 7348 . . . . . . . . 9 (𝑎 = 𝑏 → (𝑎 · 𝑀) = (𝑏 · 𝑀))
87oveq2d 7357 . . . . . . . 8 (𝑎 = 𝑏 → (𝑁 + (𝑎 · 𝑀)) = (𝑁 + (𝑏 · 𝑀)))
98oveq2d 7357 . . . . . . 7 (𝑎 = 𝑏 → (𝐴 Yrm (𝑁 + (𝑎 · 𝑀))) = (𝐴 Yrm (𝑁 + (𝑏 · 𝑀))))
109breq2d 5098 . . . . . 6 (𝑎 = 𝑏 → ((𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 + (𝑎 · 𝑀))) ↔ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 + (𝑏 · 𝑀)))))
1110bibi2d 342 . . . . 5 (𝑎 = 𝑏 → (((𝐴 Yrm 𝑀) ∥ (𝐴 Yrm 𝑁) ↔ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 + (𝑎 · 𝑀)))) ↔ ((𝐴 Yrm 𝑀) ∥ (𝐴 Yrm 𝑁) ↔ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 + (𝑏 · 𝑀))))))
1211imbi2d 340 . . . 4 (𝑎 = 𝑏 → (((𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((𝐴 Yrm 𝑀) ∥ (𝐴 Yrm 𝑁) ↔ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 + (𝑎 · 𝑀))))) ↔ ((𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((𝐴 Yrm 𝑀) ∥ (𝐴 Yrm 𝑁) ↔ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 + (𝑏 · 𝑀)))))))
13 oveq1 7348 . . . . . . . . 9 (𝑎 = (𝑏 + 1) → (𝑎 · 𝑀) = ((𝑏 + 1) · 𝑀))
1413oveq2d 7357 . . . . . . . 8 (𝑎 = (𝑏 + 1) → (𝑁 + (𝑎 · 𝑀)) = (𝑁 + ((𝑏 + 1) · 𝑀)))
1514oveq2d 7357 . . . . . . 7 (𝑎 = (𝑏 + 1) → (𝐴 Yrm (𝑁 + (𝑎 · 𝑀))) = (𝐴 Yrm (𝑁 + ((𝑏 + 1) · 𝑀))))
1615breq2d 5098 . . . . . 6 (𝑎 = (𝑏 + 1) → ((𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 + (𝑎 · 𝑀))) ↔ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 + ((𝑏 + 1) · 𝑀)))))
1716bibi2d 342 . . . . 5 (𝑎 = (𝑏 + 1) → (((𝐴 Yrm 𝑀) ∥ (𝐴 Yrm 𝑁) ↔ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 + (𝑎 · 𝑀)))) ↔ ((𝐴 Yrm 𝑀) ∥ (𝐴 Yrm 𝑁) ↔ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 + ((𝑏 + 1) · 𝑀))))))
1817imbi2d 340 . . . 4 (𝑎 = (𝑏 + 1) → (((𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((𝐴 Yrm 𝑀) ∥ (𝐴 Yrm 𝑁) ↔ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 + (𝑎 · 𝑀))))) ↔ ((𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((𝐴 Yrm 𝑀) ∥ (𝐴 Yrm 𝑁) ↔ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 + ((𝑏 + 1) · 𝑀)))))))
19 oveq1 7348 . . . . . . . . 9 (𝑎 = 𝐼 → (𝑎 · 𝑀) = (𝐼 · 𝑀))
2019oveq2d 7357 . . . . . . . 8 (𝑎 = 𝐼 → (𝑁 + (𝑎 · 𝑀)) = (𝑁 + (𝐼 · 𝑀)))
2120oveq2d 7357 . . . . . . 7 (𝑎 = 𝐼 → (𝐴 Yrm (𝑁 + (𝑎 · 𝑀))) = (𝐴 Yrm (𝑁 + (𝐼 · 𝑀))))
2221breq2d 5098 . . . . . 6 (𝑎 = 𝐼 → ((𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 + (𝑎 · 𝑀))) ↔ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 + (𝐼 · 𝑀)))))
2322bibi2d 342 . . . . 5 (𝑎 = 𝐼 → (((𝐴 Yrm 𝑀) ∥ (𝐴 Yrm 𝑁) ↔ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 + (𝑎 · 𝑀)))) ↔ ((𝐴 Yrm 𝑀) ∥ (𝐴 Yrm 𝑁) ↔ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 + (𝐼 · 𝑀))))))
2423imbi2d 340 . . . 4 (𝑎 = 𝐼 → (((𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((𝐴 Yrm 𝑀) ∥ (𝐴 Yrm 𝑁) ↔ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 + (𝑎 · 𝑀))))) ↔ ((𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((𝐴 Yrm 𝑀) ∥ (𝐴 Yrm 𝑁) ↔ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 + (𝐼 · 𝑀)))))))
25 zcn 12468 . . . . . . . . . 10 (𝑀 ∈ ℤ → 𝑀 ∈ ℂ)
2625ad2antrl 728 . . . . . . . . 9 ((𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → 𝑀 ∈ ℂ)
2726mul02d 11306 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (0 · 𝑀) = 0)
2827oveq2d 7357 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (𝑁 + (0 · 𝑀)) = (𝑁 + 0))
29 zcn 12468 . . . . . . . . 9 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
3029ad2antll 729 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → 𝑁 ∈ ℂ)
3130addridd 11308 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (𝑁 + 0) = 𝑁)
3228, 31eqtr2d 2767 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → 𝑁 = (𝑁 + (0 · 𝑀)))
3332oveq2d 7357 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (𝐴 Yrm 𝑁) = (𝐴 Yrm (𝑁 + (0 · 𝑀))))
3433breq2d 5098 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((𝐴 Yrm 𝑀) ∥ (𝐴 Yrm 𝑁) ↔ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 + (0 · 𝑀)))))
35 simp3 1138 . . . . . . 7 ((𝑏 ∈ ℕ0 ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) ∧ ((𝐴 Yrm 𝑀) ∥ (𝐴 Yrm 𝑁) ↔ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 + (𝑏 · 𝑀))))) → ((𝐴 Yrm 𝑀) ∥ (𝐴 Yrm 𝑁) ↔ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 + (𝑏 · 𝑀)))))
36 simprl 770 . . . . . . . . . 10 ((𝑏 ∈ ℕ0 ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → 𝐴 ∈ (ℤ‘2))
37 simprrl 780 . . . . . . . . . 10 ((𝑏 ∈ ℕ0 ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → 𝑀 ∈ ℤ)
38 simprrr 781 . . . . . . . . . . 11 ((𝑏 ∈ ℕ0 ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → 𝑁 ∈ ℤ)
39 nn0z 12488 . . . . . . . . . . . . 13 (𝑏 ∈ ℕ0𝑏 ∈ ℤ)
4039adantr 480 . . . . . . . . . . . 12 ((𝑏 ∈ ℕ0 ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → 𝑏 ∈ ℤ)
4140, 37zmulcld 12578 . . . . . . . . . . 11 ((𝑏 ∈ ℕ0 ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → (𝑏 · 𝑀) ∈ ℤ)
4238, 41zaddcld 12576 . . . . . . . . . 10 ((𝑏 ∈ ℕ0 ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → (𝑁 + (𝑏 · 𝑀)) ∈ ℤ)
43 jm2.19lem2 43023 . . . . . . . . . 10 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ (𝑁 + (𝑏 · 𝑀)) ∈ ℤ) → ((𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 + (𝑏 · 𝑀))) ↔ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm ((𝑁 + (𝑏 · 𝑀)) + 𝑀))))
4436, 37, 42, 43syl3anc 1373 . . . . . . . . 9 ((𝑏 ∈ ℕ0 ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → ((𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 + (𝑏 · 𝑀))) ↔ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm ((𝑁 + (𝑏 · 𝑀)) + 𝑀))))
4538zcnd 12573 . . . . . . . . . . . . 13 ((𝑏 ∈ ℕ0 ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → 𝑁 ∈ ℂ)
4641zcnd 12573 . . . . . . . . . . . . 13 ((𝑏 ∈ ℕ0 ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → (𝑏 · 𝑀) ∈ ℂ)
4737zcnd 12573 . . . . . . . . . . . . 13 ((𝑏 ∈ ℕ0 ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → 𝑀 ∈ ℂ)
4845, 46, 47addassd 11129 . . . . . . . . . . . 12 ((𝑏 ∈ ℕ0 ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → ((𝑁 + (𝑏 · 𝑀)) + 𝑀) = (𝑁 + ((𝑏 · 𝑀) + 𝑀)))
49 nn0cn 12386 . . . . . . . . . . . . . . . 16 (𝑏 ∈ ℕ0𝑏 ∈ ℂ)
5049adantr 480 . . . . . . . . . . . . . . 15 ((𝑏 ∈ ℕ0 ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → 𝑏 ∈ ℂ)
51 1cnd 11102 . . . . . . . . . . . . . . 15 ((𝑏 ∈ ℕ0 ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → 1 ∈ ℂ)
5250, 51, 47adddird 11132 . . . . . . . . . . . . . 14 ((𝑏 ∈ ℕ0 ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → ((𝑏 + 1) · 𝑀) = ((𝑏 · 𝑀) + (1 · 𝑀)))
5347mullidd 11125 . . . . . . . . . . . . . . 15 ((𝑏 ∈ ℕ0 ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → (1 · 𝑀) = 𝑀)
5453oveq2d 7357 . . . . . . . . . . . . . 14 ((𝑏 ∈ ℕ0 ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → ((𝑏 · 𝑀) + (1 · 𝑀)) = ((𝑏 · 𝑀) + 𝑀))
5552, 54eqtr2d 2767 . . . . . . . . . . . . 13 ((𝑏 ∈ ℕ0 ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → ((𝑏 · 𝑀) + 𝑀) = ((𝑏 + 1) · 𝑀))
5655oveq2d 7357 . . . . . . . . . . . 12 ((𝑏 ∈ ℕ0 ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → (𝑁 + ((𝑏 · 𝑀) + 𝑀)) = (𝑁 + ((𝑏 + 1) · 𝑀)))
5748, 56eqtrd 2766 . . . . . . . . . . 11 ((𝑏 ∈ ℕ0 ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → ((𝑁 + (𝑏 · 𝑀)) + 𝑀) = (𝑁 + ((𝑏 + 1) · 𝑀)))
5857oveq2d 7357 . . . . . . . . . 10 ((𝑏 ∈ ℕ0 ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → (𝐴 Yrm ((𝑁 + (𝑏 · 𝑀)) + 𝑀)) = (𝐴 Yrm (𝑁 + ((𝑏 + 1) · 𝑀))))
5958breq2d 5098 . . . . . . . . 9 ((𝑏 ∈ ℕ0 ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → ((𝐴 Yrm 𝑀) ∥ (𝐴 Yrm ((𝑁 + (𝑏 · 𝑀)) + 𝑀)) ↔ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 + ((𝑏 + 1) · 𝑀)))))
6044, 59bitrd 279 . . . . . . . 8 ((𝑏 ∈ ℕ0 ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → ((𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 + (𝑏 · 𝑀))) ↔ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 + ((𝑏 + 1) · 𝑀)))))
61603adant3 1132 . . . . . . 7 ((𝑏 ∈ ℕ0 ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) ∧ ((𝐴 Yrm 𝑀) ∥ (𝐴 Yrm 𝑁) ↔ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 + (𝑏 · 𝑀))))) → ((𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 + (𝑏 · 𝑀))) ↔ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 + ((𝑏 + 1) · 𝑀)))))
6235, 61bitrd 279 . . . . . 6 ((𝑏 ∈ ℕ0 ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) ∧ ((𝐴 Yrm 𝑀) ∥ (𝐴 Yrm 𝑁) ↔ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 + (𝑏 · 𝑀))))) → ((𝐴 Yrm 𝑀) ∥ (𝐴 Yrm 𝑁) ↔ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 + ((𝑏 + 1) · 𝑀)))))
63623exp 1119 . . . . 5 (𝑏 ∈ ℕ0 → ((𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (((𝐴 Yrm 𝑀) ∥ (𝐴 Yrm 𝑁) ↔ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 + (𝑏 · 𝑀)))) → ((𝐴 Yrm 𝑀) ∥ (𝐴 Yrm 𝑁) ↔ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 + ((𝑏 + 1) · 𝑀)))))))
6463a2d 29 . . . 4 (𝑏 ∈ ℕ0 → (((𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((𝐴 Yrm 𝑀) ∥ (𝐴 Yrm 𝑁) ↔ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 + (𝑏 · 𝑀))))) → ((𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((𝐴 Yrm 𝑀) ∥ (𝐴 Yrm 𝑁) ↔ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 + ((𝑏 + 1) · 𝑀)))))))
656, 12, 18, 24, 34, 64nn0ind 12563 . . 3 (𝐼 ∈ ℕ0 → ((𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((𝐴 Yrm 𝑀) ∥ (𝐴 Yrm 𝑁) ↔ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 + (𝐼 · 𝑀))))))
6665com12 32 . 2 ((𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (𝐼 ∈ ℕ0 → ((𝐴 Yrm 𝑀) ∥ (𝐴 Yrm 𝑁) ↔ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 + (𝐼 · 𝑀))))))
67663impia 1117 1 ((𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐼 ∈ ℕ0) → ((𝐴 Yrm 𝑀) ∥ (𝐴 Yrm 𝑁) ↔ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 + (𝐼 · 𝑀)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111   class class class wbr 5086  cfv 6476  (class class class)co 7341  cc 10999  0cc0 11001  1c1 11002   + caddc 11004   · cmul 11006  2c2 12175  0cn0 12376  cz 12463  cuz 12727  cdvds 16158   Yrm crmy 42934
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5212  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663  ax-inf2 9526  ax-cnex 11057  ax-resscn 11058  ax-1cn 11059  ax-icn 11060  ax-addcl 11061  ax-addrcl 11062  ax-mulcl 11063  ax-mulrcl 11064  ax-mulcom 11065  ax-addass 11066  ax-mulass 11067  ax-distr 11068  ax-i2m1 11069  ax-1ne0 11070  ax-1rid 11071  ax-rnegex 11072  ax-rrecex 11073  ax-cnre 11074  ax-pre-lttri 11075  ax-pre-lttrn 11076  ax-pre-ltadd 11077  ax-pre-mulgt0 11078  ax-pre-sup 11079  ax-addf 11080
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-tp 4576  df-op 4578  df-uni 4855  df-int 4893  df-iun 4938  df-iin 4939  df-br 5087  df-opab 5149  df-mpt 5168  df-tr 5194  df-id 5506  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-se 5565  df-we 5566  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-pred 6243  df-ord 6304  df-on 6305  df-lim 6306  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-isom 6485  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-of 7605  df-om 7792  df-1st 7916  df-2nd 7917  df-supp 8086  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-2o 8381  df-oadd 8384  df-omul 8385  df-er 8617  df-map 8747  df-pm 8748  df-ixp 8817  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-fsupp 9241  df-fi 9290  df-sup 9321  df-inf 9322  df-oi 9391  df-card 9827  df-acn 9830  df-pnf 11143  df-mnf 11144  df-xr 11145  df-ltxr 11146  df-le 11147  df-sub 11341  df-neg 11342  df-div 11770  df-nn 12121  df-2 12183  df-3 12184  df-4 12185  df-5 12186  df-6 12187  df-7 12188  df-8 12189  df-9 12190  df-n0 12377  df-xnn0 12450  df-z 12464  df-dec 12584  df-uz 12728  df-q 12842  df-rp 12886  df-xneg 13006  df-xadd 13007  df-xmul 13008  df-ioo 13244  df-ioc 13245  df-ico 13246  df-icc 13247  df-fz 13403  df-fzo 13550  df-fl 13691  df-mod 13769  df-seq 13904  df-exp 13964  df-fac 14176  df-bc 14205  df-hash 14233  df-shft 14969  df-cj 15001  df-re 15002  df-im 15003  df-sqrt 15137  df-abs 15138  df-limsup 15373  df-clim 15390  df-rlim 15391  df-sum 15589  df-ef 15969  df-sin 15971  df-cos 15972  df-pi 15974  df-dvds 16159  df-gcd 16401  df-numer 16641  df-denom 16642  df-struct 17053  df-sets 17070  df-slot 17088  df-ndx 17100  df-base 17116  df-ress 17137  df-plusg 17169  df-mulr 17170  df-starv 17171  df-sca 17172  df-vsca 17173  df-ip 17174  df-tset 17175  df-ple 17176  df-ds 17178  df-unif 17179  df-hom 17180  df-cco 17181  df-rest 17321  df-topn 17322  df-0g 17340  df-gsum 17341  df-topgen 17342  df-pt 17343  df-prds 17346  df-xrs 17401  df-qtop 17406  df-imas 17407  df-xps 17409  df-mre 17483  df-mrc 17484  df-acs 17486  df-mgm 18543  df-sgrp 18622  df-mnd 18638  df-submnd 18687  df-mulg 18976  df-cntz 19224  df-cmn 19689  df-psmet 21278  df-xmet 21279  df-met 21280  df-bl 21281  df-mopn 21282  df-fbas 21283  df-fg 21284  df-cnfld 21287  df-top 22804  df-topon 22821  df-topsp 22843  df-bases 22856  df-cld 22929  df-ntr 22930  df-cls 22931  df-nei 23008  df-lp 23046  df-perf 23047  df-cn 23137  df-cnp 23138  df-haus 23225  df-tx 23472  df-hmeo 23665  df-fil 23756  df-fm 23848  df-flim 23849  df-flf 23850  df-xms 24230  df-ms 24231  df-tms 24232  df-cncf 24793  df-limc 25789  df-dv 25790  df-log 26487  df-squarenn 42874  df-pell1qr 42875  df-pell14qr 42876  df-pell1234qr 42877  df-pellfund 42878  df-rmx 42935  df-rmy 42936
This theorem is referenced by:  jm2.19lem4  43025
  Copyright terms: Public domain W3C validator