| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > div23d | Structured version Visualization version GIF version | ||
| Description: A commutative/associative law for division. (Contributed by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| div1d.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| divcld.2 | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
| divmuld.3 | ⊢ (𝜑 → 𝐶 ∈ ℂ) |
| divassd.4 | ⊢ (𝜑 → 𝐶 ≠ 0) |
| Ref | Expression |
|---|---|
| div23d | ⊢ (𝜑 → ((𝐴 · 𝐵) / 𝐶) = ((𝐴 / 𝐶) · 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | div1d.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
| 2 | divcld.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
| 3 | divmuld.3 | . 2 ⊢ (𝜑 → 𝐶 ∈ ℂ) | |
| 4 | divassd.4 | . 2 ⊢ (𝜑 → 𝐶 ≠ 0) | |
| 5 | div23 11856 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → ((𝐴 · 𝐵) / 𝐶) = ((𝐴 / 𝐶) · 𝐵)) | |
| 6 | 1, 2, 3, 4, 5 | syl112anc 1376 | 1 ⊢ (𝜑 → ((𝐴 · 𝐵) / 𝐶) = ((𝐴 / 𝐶) · 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 (class class class)co 7387 ℂcc 11066 0cc0 11068 · cmul 11073 / cdiv 11835 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-po 5546 df-so 5547 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 |
| This theorem is referenced by: bcpasc 14286 abslem2 15306 geolim 15836 bpolydiflem 16020 efaddlem 16059 eftlub 16077 bitsinv1lem 16411 pjthlem1 25337 itg2monolem3 25653 dvmulbr 25841 dvmulbrOLD 25842 dvrecg 25877 dvmptdiv 25878 dvtaylp 26278 itgulm 26317 tanregt0 26448 logtayl2 26571 cxpeq 26667 heron 26748 dcubic2 26754 cubic2 26758 dquartlem1 26761 dquartlem2 26762 dquart 26763 quart1lem 26765 quart1 26766 dvatan 26845 atantayl 26847 jensenlem2 26898 lgamgulmlem2 26940 lgamgulmlem3 26941 ftalem2 26984 bclbnd 27191 bposlem9 27203 lgseisenlem4 27289 lgsquadlem1 27291 lgsquadlem2 27292 dchrvmasumlem1 27406 mulog2sumlem2 27446 2vmadivsumlem 27451 selberg3lem1 27468 selberg4lem1 27471 selberg4 27472 selberg3r 27480 pntrlog2bndlem4 27491 pntrlog2bndlem5 27492 pntibndlem2 27502 pntlemo 27518 brbtwn2 28832 colinearalg 28837 axsegconlem10 28853 axpaschlem 28867 axcontlem8 28898 pjhthlem1 31320 quad3d 32673 constrrtcclem 33724 sinccvglem 35659 knoppndvlem14 36513 bj-bary1lem 37298 dvtan 37664 lcmineqlem10 42026 aks4d1p1p7 42062 cxpi11d 42331 binomcxplemnotnn0 44345 dvnprodlem2 45945 itgsinexp 45953 stirlinglem3 46074 stirlinglem4 46075 dirkertrigeqlem3 46098 fourierdlem95 46199 eenglngeehlnmlem1 48726 eenglngeehlnmlem2 48727 |
| Copyright terms: Public domain | W3C validator |