Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > div23d | Structured version Visualization version GIF version |
Description: A commutative/associative law for division. (Contributed by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
div1d.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
divcld.2 | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
divmuld.3 | ⊢ (𝜑 → 𝐶 ∈ ℂ) |
divassd.4 | ⊢ (𝜑 → 𝐶 ≠ 0) |
Ref | Expression |
---|---|
div23d | ⊢ (𝜑 → ((𝐴 · 𝐵) / 𝐶) = ((𝐴 / 𝐶) · 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | div1d.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
2 | divcld.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
3 | divmuld.3 | . 2 ⊢ (𝜑 → 𝐶 ∈ ℂ) | |
4 | divassd.4 | . 2 ⊢ (𝜑 → 𝐶 ≠ 0) | |
5 | div23 11766 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → ((𝐴 · 𝐵) / 𝐶) = ((𝐴 / 𝐶) · 𝐵)) | |
6 | 1, 2, 3, 4, 5 | syl112anc 1375 | 1 ⊢ (𝜑 → ((𝐴 · 𝐵) / 𝐶) = ((𝐴 / 𝐶) · 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1542 ∈ wcel 2107 ≠ wne 2942 (class class class)co 7350 ℂcc 10983 0cc0 10985 · cmul 10990 / cdiv 11746 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2709 ax-sep 5255 ax-nul 5262 ax-pow 5319 ax-pr 5383 ax-un 7663 ax-resscn 11042 ax-1cn 11043 ax-icn 11044 ax-addcl 11045 ax-addrcl 11046 ax-mulcl 11047 ax-mulrcl 11048 ax-mulcom 11049 ax-addass 11050 ax-mulass 11051 ax-distr 11052 ax-i2m1 11053 ax-1ne0 11054 ax-1rid 11055 ax-rnegex 11056 ax-rrecex 11057 ax-cnre 11058 ax-pre-lttri 11059 ax-pre-lttrn 11060 ax-pre-ltadd 11061 ax-pre-mulgt0 11062 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3064 df-rex 3073 df-rmo 3352 df-reu 3353 df-rab 3407 df-v 3446 df-sbc 3739 df-csb 3855 df-dif 3912 df-un 3914 df-in 3916 df-ss 3926 df-nul 4282 df-if 4486 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4865 df-br 5105 df-opab 5167 df-mpt 5188 df-id 5529 df-po 5543 df-so 5544 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6444 df-fun 6494 df-fn 6495 df-f 6496 df-f1 6497 df-fo 6498 df-f1o 6499 df-fv 6500 df-riota 7306 df-ov 7353 df-oprab 7354 df-mpo 7355 df-er 8582 df-en 8818 df-dom 8819 df-sdom 8820 df-pnf 11125 df-mnf 11126 df-xr 11127 df-ltxr 11128 df-le 11129 df-sub 11321 df-neg 11322 df-div 11747 |
This theorem is referenced by: bcpasc 14149 abslem2 15159 geolim 15690 bpolydiflem 15872 efaddlem 15910 eftlub 15926 bitsinv1lem 16256 pjthlem1 24723 itg2monolem3 25039 dvmulbr 25225 dvrecg 25259 dvmptdiv 25260 dvtaylp 25651 itgulm 25689 tanregt0 25817 logtayl2 25939 cxpeq 26032 heron 26110 dcubic2 26116 cubic2 26120 dquartlem1 26123 dquartlem2 26124 dquart 26125 quart1lem 26127 quart1 26128 dvatan 26207 atantayl 26209 jensenlem2 26259 lgamgulmlem2 26301 lgamgulmlem3 26302 ftalem2 26345 bclbnd 26550 bposlem9 26562 lgseisenlem4 26648 lgsquadlem1 26650 lgsquadlem2 26651 dchrvmasumlem1 26765 mulog2sumlem2 26805 2vmadivsumlem 26810 selberg3lem1 26827 selberg4lem1 26830 selberg4 26831 selberg3r 26839 pntrlog2bndlem4 26850 pntrlog2bndlem5 26851 pntibndlem2 26861 pntlemo 26877 brbtwn2 27640 colinearalg 27645 axsegconlem10 27661 axpaschlem 27675 axcontlem8 27706 pjhthlem1 30119 sinccvglem 34023 knoppndvlem14 34874 bj-bary1lem 35667 dvtan 36014 lcmineqlem10 40381 aks4d1p1p7 40417 binomcxplemnotnn0 42369 dvnprodlem2 43910 itgsinexp 43918 stirlinglem3 44039 stirlinglem4 44040 dirkertrigeqlem3 44063 fourierdlem95 44164 eenglngeehlnmlem1 46541 eenglngeehlnmlem2 46542 |
Copyright terms: Public domain | W3C validator |