MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  div23d Structured version   Visualization version   GIF version

Theorem div23d 11995
Description: A commutative/associative law for division. (Contributed by Mario Carneiro, 27-May-2016.)
Hypotheses
Ref Expression
div1d.1 (𝜑𝐴 ∈ ℂ)
divcld.2 (𝜑𝐵 ∈ ℂ)
divmuld.3 (𝜑𝐶 ∈ ℂ)
divassd.4 (𝜑𝐶 ≠ 0)
Assertion
Ref Expression
div23d (𝜑 → ((𝐴 · 𝐵) / 𝐶) = ((𝐴 / 𝐶) · 𝐵))

Proof of Theorem div23d
StepHypRef Expression
1 div1d.1 . 2 (𝜑𝐴 ∈ ℂ)
2 divcld.2 . 2 (𝜑𝐵 ∈ ℂ)
3 divmuld.3 . 2 (𝜑𝐶 ∈ ℂ)
4 divassd.4 . 2 (𝜑𝐶 ≠ 0)
5 div23 11856 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → ((𝐴 · 𝐵) / 𝐶) = ((𝐴 / 𝐶) · 𝐵))
61, 2, 3, 4, 5syl112anc 1376 1 (𝜑 → ((𝐴 · 𝐵) / 𝐶) = ((𝐴 / 𝐶) · 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  wne 2925  (class class class)co 7387  cc 11066  0cc0 11068   · cmul 11073   / cdiv 11835
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-po 5546  df-so 5547  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836
This theorem is referenced by:  bcpasc  14286  abslem2  15306  geolim  15836  bpolydiflem  16020  efaddlem  16059  eftlub  16077  bitsinv1lem  16411  pjthlem1  25337  itg2monolem3  25653  dvmulbr  25841  dvmulbrOLD  25842  dvrecg  25877  dvmptdiv  25878  dvtaylp  26278  itgulm  26317  tanregt0  26448  logtayl2  26571  cxpeq  26667  heron  26748  dcubic2  26754  cubic2  26758  dquartlem1  26761  dquartlem2  26762  dquart  26763  quart1lem  26765  quart1  26766  dvatan  26845  atantayl  26847  jensenlem2  26898  lgamgulmlem2  26940  lgamgulmlem3  26941  ftalem2  26984  bclbnd  27191  bposlem9  27203  lgseisenlem4  27289  lgsquadlem1  27291  lgsquadlem2  27292  dchrvmasumlem1  27406  mulog2sumlem2  27446  2vmadivsumlem  27451  selberg3lem1  27468  selberg4lem1  27471  selberg4  27472  selberg3r  27480  pntrlog2bndlem4  27491  pntrlog2bndlem5  27492  pntibndlem2  27502  pntlemo  27518  brbtwn2  28832  colinearalg  28837  axsegconlem10  28853  axpaschlem  28867  axcontlem8  28898  pjhthlem1  31320  quad3d  32673  constrrtcclem  33724  sinccvglem  35659  knoppndvlem14  36513  bj-bary1lem  37298  dvtan  37664  lcmineqlem10  42026  aks4d1p1p7  42062  cxpi11d  42331  binomcxplemnotnn0  44345  dvnprodlem2  45945  itgsinexp  45953  stirlinglem3  46074  stirlinglem4  46075  dirkertrigeqlem3  46098  fourierdlem95  46199  eenglngeehlnmlem1  48726  eenglngeehlnmlem2  48727
  Copyright terms: Public domain W3C validator