![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > div23d | Structured version Visualization version GIF version |
Description: A commutative/associative law for division. (Contributed by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
div1d.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
divcld.2 | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
divmuld.3 | ⊢ (𝜑 → 𝐶 ∈ ℂ) |
divassd.4 | ⊢ (𝜑 → 𝐶 ≠ 0) |
Ref | Expression |
---|---|
div23d | ⊢ (𝜑 → ((𝐴 · 𝐵) / 𝐶) = ((𝐴 / 𝐶) · 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | div1d.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
2 | divcld.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
3 | divmuld.3 | . 2 ⊢ (𝜑 → 𝐶 ∈ ℂ) | |
4 | divassd.4 | . 2 ⊢ (𝜑 → 𝐶 ≠ 0) | |
5 | div23 11832 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → ((𝐴 · 𝐵) / 𝐶) = ((𝐴 / 𝐶) · 𝐵)) | |
6 | 1, 2, 3, 4, 5 | syl112anc 1374 | 1 ⊢ (𝜑 → ((𝐴 · 𝐵) / 𝐶) = ((𝐴 / 𝐶) · 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2106 ≠ wne 2943 (class class class)co 7357 ℂcc 11049 0cc0 11051 · cmul 11056 / cdiv 11812 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2707 ax-sep 5256 ax-nul 5263 ax-pow 5320 ax-pr 5384 ax-un 7672 ax-resscn 11108 ax-1cn 11109 ax-icn 11110 ax-addcl 11111 ax-addrcl 11112 ax-mulcl 11113 ax-mulrcl 11114 ax-mulcom 11115 ax-addass 11116 ax-mulass 11117 ax-distr 11118 ax-i2m1 11119 ax-1ne0 11120 ax-1rid 11121 ax-rnegex 11122 ax-rrecex 11123 ax-cnre 11124 ax-pre-lttri 11125 ax-pre-lttrn 11126 ax-pre-ltadd 11127 ax-pre-mulgt0 11128 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3065 df-rex 3074 df-rmo 3353 df-reu 3354 df-rab 3408 df-v 3447 df-sbc 3740 df-csb 3856 df-dif 3913 df-un 3915 df-in 3917 df-ss 3927 df-nul 4283 df-if 4487 df-pw 4562 df-sn 4587 df-pr 4589 df-op 4593 df-uni 4866 df-br 5106 df-opab 5168 df-mpt 5189 df-id 5531 df-po 5545 df-so 5546 df-xp 5639 df-rel 5640 df-cnv 5641 df-co 5642 df-dm 5643 df-rn 5644 df-res 5645 df-ima 5646 df-iota 6448 df-fun 6498 df-fn 6499 df-f 6500 df-f1 6501 df-fo 6502 df-f1o 6503 df-fv 6504 df-riota 7313 df-ov 7360 df-oprab 7361 df-mpo 7362 df-er 8648 df-en 8884 df-dom 8885 df-sdom 8886 df-pnf 11191 df-mnf 11192 df-xr 11193 df-ltxr 11194 df-le 11195 df-sub 11387 df-neg 11388 df-div 11813 |
This theorem is referenced by: bcpasc 14221 abslem2 15224 geolim 15755 bpolydiflem 15937 efaddlem 15975 eftlub 15991 bitsinv1lem 16321 pjthlem1 24801 itg2monolem3 25117 dvmulbr 25303 dvrecg 25337 dvmptdiv 25338 dvtaylp 25729 itgulm 25767 tanregt0 25895 logtayl2 26017 cxpeq 26110 heron 26188 dcubic2 26194 cubic2 26198 dquartlem1 26201 dquartlem2 26202 dquart 26203 quart1lem 26205 quart1 26206 dvatan 26285 atantayl 26287 jensenlem2 26337 lgamgulmlem2 26379 lgamgulmlem3 26380 ftalem2 26423 bclbnd 26628 bposlem9 26640 lgseisenlem4 26726 lgsquadlem1 26728 lgsquadlem2 26729 dchrvmasumlem1 26843 mulog2sumlem2 26883 2vmadivsumlem 26888 selberg3lem1 26905 selberg4lem1 26908 selberg4 26909 selberg3r 26917 pntrlog2bndlem4 26928 pntrlog2bndlem5 26929 pntibndlem2 26939 pntlemo 26955 brbtwn2 27854 colinearalg 27859 axsegconlem10 27875 axpaschlem 27889 axcontlem8 27920 pjhthlem1 30333 sinccvglem 34260 knoppndvlem14 34988 bj-bary1lem 35781 dvtan 36128 lcmineqlem10 40495 aks4d1p1p7 40531 binomcxplemnotnn0 42626 dvnprodlem2 44178 itgsinexp 44186 stirlinglem3 44307 stirlinglem4 44308 dirkertrigeqlem3 44331 fourierdlem95 44432 eenglngeehlnmlem1 46813 eenglngeehlnmlem2 46814 |
Copyright terms: Public domain | W3C validator |