MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  div23d Structured version   Visualization version   GIF version

Theorem div23d 12077
Description: A commutative/associative law for division. (Contributed by Mario Carneiro, 27-May-2016.)
Hypotheses
Ref Expression
div1d.1 (𝜑𝐴 ∈ ℂ)
divcld.2 (𝜑𝐵 ∈ ℂ)
divmuld.3 (𝜑𝐶 ∈ ℂ)
divassd.4 (𝜑𝐶 ≠ 0)
Assertion
Ref Expression
div23d (𝜑 → ((𝐴 · 𝐵) / 𝐶) = ((𝐴 / 𝐶) · 𝐵))

Proof of Theorem div23d
StepHypRef Expression
1 div1d.1 . 2 (𝜑𝐴 ∈ ℂ)
2 divcld.2 . 2 (𝜑𝐵 ∈ ℂ)
3 divmuld.3 . 2 (𝜑𝐶 ∈ ℂ)
4 divassd.4 . 2 (𝜑𝐶 ≠ 0)
5 div23 11938 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → ((𝐴 · 𝐵) / 𝐶) = ((𝐴 / 𝐶) · 𝐵))
61, 2, 3, 4, 5syl112anc 1373 1 (𝜑 → ((𝐴 · 𝐵) / 𝐶) = ((𝐴 / 𝐶) · 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1536  wcel 2105  wne 2937  (class class class)co 7430  cc 11150  0cc0 11152   · cmul 11157   / cdiv 11917
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5582  df-po 5596  df-so 5597  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-er 8743  df-en 8984  df-dom 8985  df-sdom 8986  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-div 11918
This theorem is referenced by:  bcpasc  14356  abslem2  15374  geolim  15902  bpolydiflem  16086  efaddlem  16125  eftlub  16141  bitsinv1lem  16474  pjthlem1  25484  itg2monolem3  25801  dvmulbr  25989  dvmulbrOLD  25990  dvrecg  26025  dvmptdiv  26026  dvtaylp  26426  itgulm  26465  tanregt0  26595  logtayl2  26718  cxpeq  26814  heron  26895  dcubic2  26901  cubic2  26905  dquartlem1  26908  dquartlem2  26909  dquart  26910  quart1lem  26912  quart1  26913  dvatan  26992  atantayl  26994  jensenlem2  27045  lgamgulmlem2  27087  lgamgulmlem3  27088  ftalem2  27131  bclbnd  27338  bposlem9  27350  lgseisenlem4  27436  lgsquadlem1  27438  lgsquadlem2  27439  dchrvmasumlem1  27553  mulog2sumlem2  27593  2vmadivsumlem  27598  selberg3lem1  27615  selberg4lem1  27618  selberg4  27619  selberg3r  27627  pntrlog2bndlem4  27638  pntrlog2bndlem5  27639  pntibndlem2  27649  pntlemo  27665  brbtwn2  28934  colinearalg  28939  axsegconlem10  28955  axpaschlem  28969  axcontlem8  29000  pjhthlem1  31419  quad3d  32760  constrrtcclem  33739  sinccvglem  35656  knoppndvlem14  36507  bj-bary1lem  37292  dvtan  37656  lcmineqlem10  42019  aks4d1p1p7  42055  cxpi11d  42357  binomcxplemnotnn0  44351  dvnprodlem2  45902  itgsinexp  45910  stirlinglem3  46031  stirlinglem4  46032  dirkertrigeqlem3  46055  fourierdlem95  46156  eenglngeehlnmlem1  48586  eenglngeehlnmlem2  48587
  Copyright terms: Public domain W3C validator