![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > div23d | Structured version Visualization version GIF version |
Description: A commutative/associative law for division. (Contributed by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
div1d.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
divcld.2 | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
divmuld.3 | ⊢ (𝜑 → 𝐶 ∈ ℂ) |
divassd.4 | ⊢ (𝜑 → 𝐶 ≠ 0) |
Ref | Expression |
---|---|
div23d | ⊢ (𝜑 → ((𝐴 · 𝐵) / 𝐶) = ((𝐴 / 𝐶) · 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | div1d.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
2 | divcld.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
3 | divmuld.3 | . 2 ⊢ (𝜑 → 𝐶 ∈ ℂ) | |
4 | divassd.4 | . 2 ⊢ (𝜑 → 𝐶 ≠ 0) | |
5 | div23 11938 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → ((𝐴 · 𝐵) / 𝐶) = ((𝐴 / 𝐶) · 𝐵)) | |
6 | 1, 2, 3, 4, 5 | syl112anc 1373 | 1 ⊢ (𝜑 → ((𝐴 · 𝐵) / 𝐶) = ((𝐴 / 𝐶) · 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1536 ∈ wcel 2105 ≠ wne 2937 (class class class)co 7430 ℂcc 11150 0cc0 11152 · cmul 11157 / cdiv 11917 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pow 5370 ax-pr 5437 ax-un 7753 ax-resscn 11209 ax-1cn 11210 ax-icn 11211 ax-addcl 11212 ax-addrcl 11213 ax-mulcl 11214 ax-mulrcl 11215 ax-mulcom 11216 ax-addass 11217 ax-mulass 11218 ax-distr 11219 ax-i2m1 11220 ax-1ne0 11221 ax-1rid 11222 ax-rnegex 11223 ax-rrecex 11224 ax-cnre 11225 ax-pre-lttri 11226 ax-pre-lttrn 11227 ax-pre-ltadd 11228 ax-pre-mulgt0 11229 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3377 df-reu 3378 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5582 df-po 5596 df-so 5597 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-f1 6567 df-fo 6568 df-f1o 6569 df-fv 6570 df-riota 7387 df-ov 7433 df-oprab 7434 df-mpo 7435 df-er 8743 df-en 8984 df-dom 8985 df-sdom 8986 df-pnf 11294 df-mnf 11295 df-xr 11296 df-ltxr 11297 df-le 11298 df-sub 11491 df-neg 11492 df-div 11918 |
This theorem is referenced by: bcpasc 14356 abslem2 15374 geolim 15902 bpolydiflem 16086 efaddlem 16125 eftlub 16141 bitsinv1lem 16474 pjthlem1 25484 itg2monolem3 25801 dvmulbr 25989 dvmulbrOLD 25990 dvrecg 26025 dvmptdiv 26026 dvtaylp 26426 itgulm 26465 tanregt0 26595 logtayl2 26718 cxpeq 26814 heron 26895 dcubic2 26901 cubic2 26905 dquartlem1 26908 dquartlem2 26909 dquart 26910 quart1lem 26912 quart1 26913 dvatan 26992 atantayl 26994 jensenlem2 27045 lgamgulmlem2 27087 lgamgulmlem3 27088 ftalem2 27131 bclbnd 27338 bposlem9 27350 lgseisenlem4 27436 lgsquadlem1 27438 lgsquadlem2 27439 dchrvmasumlem1 27553 mulog2sumlem2 27593 2vmadivsumlem 27598 selberg3lem1 27615 selberg4lem1 27618 selberg4 27619 selberg3r 27627 pntrlog2bndlem4 27638 pntrlog2bndlem5 27639 pntibndlem2 27649 pntlemo 27665 brbtwn2 28934 colinearalg 28939 axsegconlem10 28955 axpaschlem 28969 axcontlem8 29000 pjhthlem1 31419 quad3d 32760 constrrtcclem 33739 sinccvglem 35656 knoppndvlem14 36507 bj-bary1lem 37292 dvtan 37656 lcmineqlem10 42019 aks4d1p1p7 42055 cxpi11d 42357 binomcxplemnotnn0 44351 dvnprodlem2 45902 itgsinexp 45910 stirlinglem3 46031 stirlinglem4 46032 dirkertrigeqlem3 46055 fourierdlem95 46156 eenglngeehlnmlem1 48586 eenglngeehlnmlem2 48587 |
Copyright terms: Public domain | W3C validator |