| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > div23d | Structured version Visualization version GIF version | ||
| Description: A commutative/associative law for division. (Contributed by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| div1d.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| divcld.2 | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
| divmuld.3 | ⊢ (𝜑 → 𝐶 ∈ ℂ) |
| divassd.4 | ⊢ (𝜑 → 𝐶 ≠ 0) |
| Ref | Expression |
|---|---|
| div23d | ⊢ (𝜑 → ((𝐴 · 𝐵) / 𝐶) = ((𝐴 / 𝐶) · 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | div1d.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
| 2 | divcld.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
| 3 | divmuld.3 | . 2 ⊢ (𝜑 → 𝐶 ∈ ℂ) | |
| 4 | divassd.4 | . 2 ⊢ (𝜑 → 𝐶 ≠ 0) | |
| 5 | div23 11863 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → ((𝐴 · 𝐵) / 𝐶) = ((𝐴 / 𝐶) · 𝐵)) | |
| 6 | 1, 2, 3, 4, 5 | syl112anc 1376 | 1 ⊢ (𝜑 → ((𝐴 · 𝐵) / 𝐶) = ((𝐴 / 𝐶) · 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ≠ wne 2926 (class class class)co 7390 ℂcc 11073 0cc0 11075 · cmul 11080 / cdiv 11842 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-po 5549 df-so 5550 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-div 11843 |
| This theorem is referenced by: bcpasc 14293 abslem2 15313 geolim 15843 bpolydiflem 16027 efaddlem 16066 eftlub 16084 bitsinv1lem 16418 pjthlem1 25344 itg2monolem3 25660 dvmulbr 25848 dvmulbrOLD 25849 dvrecg 25884 dvmptdiv 25885 dvtaylp 26285 itgulm 26324 tanregt0 26455 logtayl2 26578 cxpeq 26674 heron 26755 dcubic2 26761 cubic2 26765 dquartlem1 26768 dquartlem2 26769 dquart 26770 quart1lem 26772 quart1 26773 dvatan 26852 atantayl 26854 jensenlem2 26905 lgamgulmlem2 26947 lgamgulmlem3 26948 ftalem2 26991 bclbnd 27198 bposlem9 27210 lgseisenlem4 27296 lgsquadlem1 27298 lgsquadlem2 27299 dchrvmasumlem1 27413 mulog2sumlem2 27453 2vmadivsumlem 27458 selberg3lem1 27475 selberg4lem1 27478 selberg4 27479 selberg3r 27487 pntrlog2bndlem4 27498 pntrlog2bndlem5 27499 pntibndlem2 27509 pntlemo 27525 brbtwn2 28839 colinearalg 28844 axsegconlem10 28860 axpaschlem 28874 axcontlem8 28905 pjhthlem1 31327 quad3d 32680 constrrtcclem 33731 sinccvglem 35666 knoppndvlem14 36520 bj-bary1lem 37305 dvtan 37671 lcmineqlem10 42033 aks4d1p1p7 42069 cxpi11d 42338 binomcxplemnotnn0 44352 dvnprodlem2 45952 itgsinexp 45960 stirlinglem3 46081 stirlinglem4 46082 dirkertrigeqlem3 46105 fourierdlem95 46206 eenglngeehlnmlem1 48730 eenglngeehlnmlem2 48731 |
| Copyright terms: Public domain | W3C validator |