Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > erngdv | Structured version Visualization version GIF version |
Description: An endomorphism ring is a division ring. TODO: fix comment. (Contributed by NM, 11-Aug-2013.) |
Ref | Expression |
---|---|
ernggrp.h | ⊢ 𝐻 = (LHyp‘𝐾) |
ernggrp.d | ⊢ 𝐷 = ((EDRing‘𝐾)‘𝑊) |
Ref | Expression |
---|---|
erngdv | ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝐷 ∈ DivRing) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2740 | . . 3 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
2 | ernggrp.h | . . 3 ⊢ 𝐻 = (LHyp‘𝐾) | |
3 | eqid 2740 | . . 3 ⊢ ((LTrn‘𝐾)‘𝑊) = ((LTrn‘𝐾)‘𝑊) | |
4 | 1, 2, 3 | cdlemftr0 38570 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ∃𝑓 ∈ ((LTrn‘𝐾)‘𝑊)𝑓 ≠ ( I ↾ (Base‘𝐾))) |
5 | ernggrp.d | . . 3 ⊢ 𝐷 = ((EDRing‘𝐾)‘𝑊) | |
6 | eqid 2740 | . . 3 ⊢ ((TEndo‘𝐾)‘𝑊) = ((TEndo‘𝐾)‘𝑊) | |
7 | eqid 2740 | . . 3 ⊢ (𝑎 ∈ ((TEndo‘𝐾)‘𝑊), 𝑏 ∈ ((TEndo‘𝐾)‘𝑊) ↦ (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ((𝑎‘𝑓) ∘ (𝑏‘𝑓)))) = (𝑎 ∈ ((TEndo‘𝐾)‘𝑊), 𝑏 ∈ ((TEndo‘𝐾)‘𝑊) ↦ (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ((𝑎‘𝑓) ∘ (𝑏‘𝑓)))) | |
8 | eqid 2740 | . . 3 ⊢ (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾))) = (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾))) | |
9 | eqid 2740 | . . 3 ⊢ (𝑎 ∈ ((TEndo‘𝐾)‘𝑊) ↦ (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ◡(𝑎‘𝑓))) = (𝑎 ∈ ((TEndo‘𝐾)‘𝑊) ↦ (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ◡(𝑎‘𝑓))) | |
10 | eqid 2740 | . . 3 ⊢ (𝑎 ∈ ((TEndo‘𝐾)‘𝑊), 𝑏 ∈ ((TEndo‘𝐾)‘𝑊) ↦ (𝑎 ∘ 𝑏)) = (𝑎 ∈ ((TEndo‘𝐾)‘𝑊), 𝑏 ∈ ((TEndo‘𝐾)‘𝑊) ↦ (𝑎 ∘ 𝑏)) | |
11 | eqid 2740 | . . 3 ⊢ (join‘𝐾) = (join‘𝐾) | |
12 | eqid 2740 | . . 3 ⊢ (meet‘𝐾) = (meet‘𝐾) | |
13 | eqid 2740 | . . 3 ⊢ ((trL‘𝐾)‘𝑊) = ((trL‘𝐾)‘𝑊) | |
14 | eqid 2740 | . . 3 ⊢ ((oc‘𝐾)‘𝑊) = ((oc‘𝐾)‘𝑊) | |
15 | eqid 2740 | . . 3 ⊢ ((((oc‘𝐾)‘𝑊)(join‘𝐾)(((trL‘𝐾)‘𝑊)‘𝑏))(meet‘𝐾)((𝑓‘((oc‘𝐾)‘𝑊))(join‘𝐾)(((trL‘𝐾)‘𝑊)‘(𝑏 ∘ ◡(𝑠‘𝑓))))) = ((((oc‘𝐾)‘𝑊)(join‘𝐾)(((trL‘𝐾)‘𝑊)‘𝑏))(meet‘𝐾)((𝑓‘((oc‘𝐾)‘𝑊))(join‘𝐾)(((trL‘𝐾)‘𝑊)‘(𝑏 ∘ ◡(𝑠‘𝑓))))) | |
16 | eqid 2740 | . . 3 ⊢ ((((oc‘𝐾)‘𝑊)(join‘𝐾)(((trL‘𝐾)‘𝑊)‘𝑔))(meet‘𝐾)(((((oc‘𝐾)‘𝑊)(join‘𝐾)(((trL‘𝐾)‘𝑊)‘𝑏))(meet‘𝐾)((𝑓‘((oc‘𝐾)‘𝑊))(join‘𝐾)(((trL‘𝐾)‘𝑊)‘(𝑏 ∘ ◡(𝑠‘𝑓)))))(join‘𝐾)(((trL‘𝐾)‘𝑊)‘(𝑔 ∘ ◡𝑏)))) = ((((oc‘𝐾)‘𝑊)(join‘𝐾)(((trL‘𝐾)‘𝑊)‘𝑔))(meet‘𝐾)(((((oc‘𝐾)‘𝑊)(join‘𝐾)(((trL‘𝐾)‘𝑊)‘𝑏))(meet‘𝐾)((𝑓‘((oc‘𝐾)‘𝑊))(join‘𝐾)(((trL‘𝐾)‘𝑊)‘(𝑏 ∘ ◡(𝑠‘𝑓)))))(join‘𝐾)(((trL‘𝐾)‘𝑊)‘(𝑔 ∘ ◡𝑏)))) | |
17 | eqid 2740 | . . 3 ⊢ (℩𝑧 ∈ ((LTrn‘𝐾)‘𝑊)∀𝑏 ∈ ((LTrn‘𝐾)‘𝑊)((𝑏 ≠ ( I ↾ (Base‘𝐾)) ∧ (((trL‘𝐾)‘𝑊)‘𝑏) ≠ (((trL‘𝐾)‘𝑊)‘(𝑠‘𝑓)) ∧ (((trL‘𝐾)‘𝑊)‘𝑏) ≠ (((trL‘𝐾)‘𝑊)‘𝑔)) → (𝑧‘((oc‘𝐾)‘𝑊)) = ((((oc‘𝐾)‘𝑊)(join‘𝐾)(((trL‘𝐾)‘𝑊)‘𝑔))(meet‘𝐾)(((((oc‘𝐾)‘𝑊)(join‘𝐾)(((trL‘𝐾)‘𝑊)‘𝑏))(meet‘𝐾)((𝑓‘((oc‘𝐾)‘𝑊))(join‘𝐾)(((trL‘𝐾)‘𝑊)‘(𝑏 ∘ ◡(𝑠‘𝑓)))))(join‘𝐾)(((trL‘𝐾)‘𝑊)‘(𝑔 ∘ ◡𝑏)))))) = (℩𝑧 ∈ ((LTrn‘𝐾)‘𝑊)∀𝑏 ∈ ((LTrn‘𝐾)‘𝑊)((𝑏 ≠ ( I ↾ (Base‘𝐾)) ∧ (((trL‘𝐾)‘𝑊)‘𝑏) ≠ (((trL‘𝐾)‘𝑊)‘(𝑠‘𝑓)) ∧ (((trL‘𝐾)‘𝑊)‘𝑏) ≠ (((trL‘𝐾)‘𝑊)‘𝑔)) → (𝑧‘((oc‘𝐾)‘𝑊)) = ((((oc‘𝐾)‘𝑊)(join‘𝐾)(((trL‘𝐾)‘𝑊)‘𝑔))(meet‘𝐾)(((((oc‘𝐾)‘𝑊)(join‘𝐾)(((trL‘𝐾)‘𝑊)‘𝑏))(meet‘𝐾)((𝑓‘((oc‘𝐾)‘𝑊))(join‘𝐾)(((trL‘𝐾)‘𝑊)‘(𝑏 ∘ ◡(𝑠‘𝑓)))))(join‘𝐾)(((trL‘𝐾)‘𝑊)‘(𝑔 ∘ ◡𝑏)))))) | |
18 | eqid 2740 | . . 3 ⊢ (𝑔 ∈ ((LTrn‘𝐾)‘𝑊) ↦ if((𝑠‘𝑓) = 𝑓, 𝑔, (℩𝑧 ∈ ((LTrn‘𝐾)‘𝑊)∀𝑏 ∈ ((LTrn‘𝐾)‘𝑊)((𝑏 ≠ ( I ↾ (Base‘𝐾)) ∧ (((trL‘𝐾)‘𝑊)‘𝑏) ≠ (((trL‘𝐾)‘𝑊)‘(𝑠‘𝑓)) ∧ (((trL‘𝐾)‘𝑊)‘𝑏) ≠ (((trL‘𝐾)‘𝑊)‘𝑔)) → (𝑧‘((oc‘𝐾)‘𝑊)) = ((((oc‘𝐾)‘𝑊)(join‘𝐾)(((trL‘𝐾)‘𝑊)‘𝑔))(meet‘𝐾)(((((oc‘𝐾)‘𝑊)(join‘𝐾)(((trL‘𝐾)‘𝑊)‘𝑏))(meet‘𝐾)((𝑓‘((oc‘𝐾)‘𝑊))(join‘𝐾)(((trL‘𝐾)‘𝑊)‘(𝑏 ∘ ◡(𝑠‘𝑓)))))(join‘𝐾)(((trL‘𝐾)‘𝑊)‘(𝑔 ∘ ◡𝑏)))))))) = (𝑔 ∈ ((LTrn‘𝐾)‘𝑊) ↦ if((𝑠‘𝑓) = 𝑓, 𝑔, (℩𝑧 ∈ ((LTrn‘𝐾)‘𝑊)∀𝑏 ∈ ((LTrn‘𝐾)‘𝑊)((𝑏 ≠ ( I ↾ (Base‘𝐾)) ∧ (((trL‘𝐾)‘𝑊)‘𝑏) ≠ (((trL‘𝐾)‘𝑊)‘(𝑠‘𝑓)) ∧ (((trL‘𝐾)‘𝑊)‘𝑏) ≠ (((trL‘𝐾)‘𝑊)‘𝑔)) → (𝑧‘((oc‘𝐾)‘𝑊)) = ((((oc‘𝐾)‘𝑊)(join‘𝐾)(((trL‘𝐾)‘𝑊)‘𝑔))(meet‘𝐾)(((((oc‘𝐾)‘𝑊)(join‘𝐾)(((trL‘𝐾)‘𝑊)‘𝑏))(meet‘𝐾)((𝑓‘((oc‘𝐾)‘𝑊))(join‘𝐾)(((trL‘𝐾)‘𝑊)‘(𝑏 ∘ ◡(𝑠‘𝑓)))))(join‘𝐾)(((trL‘𝐾)‘𝑊)‘(𝑔 ∘ ◡𝑏)))))))) | |
19 | 2, 5, 1, 3, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18 | erngdvlem4 38993 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∧ 𝑓 ≠ ( I ↾ (Base‘𝐾)))) → 𝐷 ∈ DivRing) |
20 | 4, 19 | rexlimddv 3222 | 1 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝐷 ∈ DivRing) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 = wceq 1542 ∈ wcel 2110 ≠ wne 2945 ∀wral 3066 ifcif 4465 ↦ cmpt 5162 I cid 5488 ◡ccnv 5588 ↾ cres 5591 ∘ ccom 5593 ‘cfv 6431 ℩crio 7225 (class class class)co 7269 ∈ cmpo 7271 Basecbs 16902 occoc 16960 joincjn 18019 meetcmee 18020 DivRingcdr 19981 HLchlt 37352 LHypclh 37986 LTrncltrn 38103 trLctrl 38160 TEndoctendo 38754 EDRingcedring 38755 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-rep 5214 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 ax-un 7580 ax-cnex 10920 ax-resscn 10921 ax-1cn 10922 ax-icn 10923 ax-addcl 10924 ax-addrcl 10925 ax-mulcl 10926 ax-mulrcl 10927 ax-mulcom 10928 ax-addass 10929 ax-mulass 10930 ax-distr 10931 ax-i2m1 10932 ax-1ne0 10933 ax-1rid 10934 ax-rnegex 10935 ax-rrecex 10936 ax-cnre 10937 ax-pre-lttri 10938 ax-pre-lttrn 10939 ax-pre-ltadd 10940 ax-pre-mulgt0 10941 ax-riotaBAD 36955 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-nel 3052 df-ral 3071 df-rex 3072 df-reu 3073 df-rmo 3074 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-tp 4572 df-op 4574 df-uni 4846 df-iun 4932 df-iin 4933 df-br 5080 df-opab 5142 df-mpt 5163 df-tr 5197 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6200 df-ord 6267 df-on 6268 df-lim 6269 df-suc 6270 df-iota 6389 df-fun 6433 df-fn 6434 df-f 6435 df-f1 6436 df-fo 6437 df-f1o 6438 df-fv 6439 df-riota 7226 df-ov 7272 df-oprab 7273 df-mpo 7274 df-om 7702 df-1st 7818 df-2nd 7819 df-tpos 8027 df-undef 8074 df-frecs 8082 df-wrecs 8113 df-recs 8187 df-rdg 8226 df-1o 8282 df-er 8473 df-map 8592 df-en 8709 df-dom 8710 df-sdom 8711 df-fin 8712 df-pnf 11004 df-mnf 11005 df-xr 11006 df-ltxr 11007 df-le 11008 df-sub 11199 df-neg 11200 df-nn 11966 df-2 12028 df-3 12029 df-n0 12226 df-z 12312 df-uz 12574 df-fz 13231 df-struct 16838 df-sets 16855 df-slot 16873 df-ndx 16885 df-base 16903 df-ress 16932 df-plusg 16965 df-mulr 16966 df-0g 17142 df-proset 18003 df-poset 18021 df-plt 18038 df-lub 18054 df-glb 18055 df-join 18056 df-meet 18057 df-p0 18133 df-p1 18134 df-lat 18140 df-clat 18207 df-mgm 18316 df-sgrp 18365 df-mnd 18376 df-grp 18570 df-minusg 18571 df-mgp 19711 df-ur 19728 df-ring 19775 df-oppr 19852 df-dvdsr 19873 df-unit 19874 df-invr 19904 df-dvr 19915 df-drng 19983 df-oposet 37178 df-ol 37180 df-oml 37181 df-covers 37268 df-ats 37269 df-atl 37300 df-cvlat 37324 df-hlat 37353 df-llines 37500 df-lplanes 37501 df-lvols 37502 df-lines 37503 df-psubsp 37505 df-pmap 37506 df-padd 37798 df-lhyp 37990 df-laut 37991 df-ldil 38106 df-ltrn 38107 df-trl 38161 df-tendo 38757 df-edring 38759 |
This theorem is referenced by: erng1r 38997 dvalveclem 39027 dvhvaddass 39099 tendoinvcl 39106 tendolinv 39107 tendorinv 39108 dvhgrp 39109 dvhlveclem 39110 cdlemn4 39200 hlhildrng 39958 |
Copyright terms: Public domain | W3C validator |