Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  erngdv-rN Structured version   Visualization version   GIF version

Theorem erngdv-rN 39514
Description: An endomorphism ring is a division ring. TODO: fix comment. (Contributed by NM, 11-Aug-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
ernggrp.h-r 𝐻 = (LHypβ€˜πΎ)
ernggrp.d-r 𝐷 = ((EDRingRβ€˜πΎ)β€˜π‘Š)
Assertion
Ref Expression
erngdv-rN ((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) β†’ 𝐷 ∈ DivRing)

Proof of Theorem erngdv-rN
Dummy variables 𝑓 𝑠 π‘Ž 𝑏 𝑔 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2733 . . 3 (Baseβ€˜πΎ) = (Baseβ€˜πΎ)
2 ernggrp.h-r . . 3 𝐻 = (LHypβ€˜πΎ)
3 eqid 2733 . . 3 ((LTrnβ€˜πΎ)β€˜π‘Š) = ((LTrnβ€˜πΎ)β€˜π‘Š)
41, 2, 3cdlemftr0 39081 . 2 ((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) β†’ βˆƒπ‘“ ∈ ((LTrnβ€˜πΎ)β€˜π‘Š)𝑓 β‰  ( I β†Ύ (Baseβ€˜πΎ)))
5 ernggrp.d-r . . 3 𝐷 = ((EDRingRβ€˜πΎ)β€˜π‘Š)
6 eqid 2733 . . 3 ((TEndoβ€˜πΎ)β€˜π‘Š) = ((TEndoβ€˜πΎ)β€˜π‘Š)
7 eqid 2733 . . 3 (π‘Ž ∈ ((TEndoβ€˜πΎ)β€˜π‘Š), 𝑏 ∈ ((TEndoβ€˜πΎ)β€˜π‘Š) ↦ (𝑓 ∈ ((LTrnβ€˜πΎ)β€˜π‘Š) ↦ ((π‘Žβ€˜π‘“) ∘ (π‘β€˜π‘“)))) = (π‘Ž ∈ ((TEndoβ€˜πΎ)β€˜π‘Š), 𝑏 ∈ ((TEndoβ€˜πΎ)β€˜π‘Š) ↦ (𝑓 ∈ ((LTrnβ€˜πΎ)β€˜π‘Š) ↦ ((π‘Žβ€˜π‘“) ∘ (π‘β€˜π‘“))))
8 eqid 2733 . . 3 (𝑓 ∈ ((LTrnβ€˜πΎ)β€˜π‘Š) ↦ ( I β†Ύ (Baseβ€˜πΎ))) = (𝑓 ∈ ((LTrnβ€˜πΎ)β€˜π‘Š) ↦ ( I β†Ύ (Baseβ€˜πΎ)))
9 eqid 2733 . . 3 (π‘Ž ∈ ((TEndoβ€˜πΎ)β€˜π‘Š) ↦ (𝑓 ∈ ((LTrnβ€˜πΎ)β€˜π‘Š) ↦ β—‘(π‘Žβ€˜π‘“))) = (π‘Ž ∈ ((TEndoβ€˜πΎ)β€˜π‘Š) ↦ (𝑓 ∈ ((LTrnβ€˜πΎ)β€˜π‘Š) ↦ β—‘(π‘Žβ€˜π‘“)))
10 eqid 2733 . . 3 (π‘Ž ∈ ((TEndoβ€˜πΎ)β€˜π‘Š), 𝑏 ∈ ((TEndoβ€˜πΎ)β€˜π‘Š) ↦ (𝑏 ∘ π‘Ž)) = (π‘Ž ∈ ((TEndoβ€˜πΎ)β€˜π‘Š), 𝑏 ∈ ((TEndoβ€˜πΎ)β€˜π‘Š) ↦ (𝑏 ∘ π‘Ž))
11 eqid 2733 . . 3 (joinβ€˜πΎ) = (joinβ€˜πΎ)
12 eqid 2733 . . 3 (meetβ€˜πΎ) = (meetβ€˜πΎ)
13 eqid 2733 . . 3 ((trLβ€˜πΎ)β€˜π‘Š) = ((trLβ€˜πΎ)β€˜π‘Š)
14 eqid 2733 . . 3 ((ocβ€˜πΎ)β€˜π‘Š) = ((ocβ€˜πΎ)β€˜π‘Š)
15 eqid 2733 . . 3 ((((ocβ€˜πΎ)β€˜π‘Š)(joinβ€˜πΎ)(((trLβ€˜πΎ)β€˜π‘Š)β€˜π‘))(meetβ€˜πΎ)((π‘“β€˜((ocβ€˜πΎ)β€˜π‘Š))(joinβ€˜πΎ)(((trLβ€˜πΎ)β€˜π‘Š)β€˜(𝑏 ∘ β—‘(π‘ β€˜π‘“))))) = ((((ocβ€˜πΎ)β€˜π‘Š)(joinβ€˜πΎ)(((trLβ€˜πΎ)β€˜π‘Š)β€˜π‘))(meetβ€˜πΎ)((π‘“β€˜((ocβ€˜πΎ)β€˜π‘Š))(joinβ€˜πΎ)(((trLβ€˜πΎ)β€˜π‘Š)β€˜(𝑏 ∘ β—‘(π‘ β€˜π‘“)))))
16 eqid 2733 . . 3 ((((ocβ€˜πΎ)β€˜π‘Š)(joinβ€˜πΎ)(((trLβ€˜πΎ)β€˜π‘Š)β€˜π‘”))(meetβ€˜πΎ)(((((ocβ€˜πΎ)β€˜π‘Š)(joinβ€˜πΎ)(((trLβ€˜πΎ)β€˜π‘Š)β€˜π‘))(meetβ€˜πΎ)((π‘“β€˜((ocβ€˜πΎ)β€˜π‘Š))(joinβ€˜πΎ)(((trLβ€˜πΎ)β€˜π‘Š)β€˜(𝑏 ∘ β—‘(π‘ β€˜π‘“)))))(joinβ€˜πΎ)(((trLβ€˜πΎ)β€˜π‘Š)β€˜(𝑔 ∘ ◑𝑏)))) = ((((ocβ€˜πΎ)β€˜π‘Š)(joinβ€˜πΎ)(((trLβ€˜πΎ)β€˜π‘Š)β€˜π‘”))(meetβ€˜πΎ)(((((ocβ€˜πΎ)β€˜π‘Š)(joinβ€˜πΎ)(((trLβ€˜πΎ)β€˜π‘Š)β€˜π‘))(meetβ€˜πΎ)((π‘“β€˜((ocβ€˜πΎ)β€˜π‘Š))(joinβ€˜πΎ)(((trLβ€˜πΎ)β€˜π‘Š)β€˜(𝑏 ∘ β—‘(π‘ β€˜π‘“)))))(joinβ€˜πΎ)(((trLβ€˜πΎ)β€˜π‘Š)β€˜(𝑔 ∘ ◑𝑏))))
17 eqid 2733 . . 3 (℩𝑧 ∈ ((LTrnβ€˜πΎ)β€˜π‘Š)βˆ€π‘ ∈ ((LTrnβ€˜πΎ)β€˜π‘Š)((𝑏 β‰  ( I β†Ύ (Baseβ€˜πΎ)) ∧ (((trLβ€˜πΎ)β€˜π‘Š)β€˜π‘) β‰  (((trLβ€˜πΎ)β€˜π‘Š)β€˜(π‘ β€˜π‘“)) ∧ (((trLβ€˜πΎ)β€˜π‘Š)β€˜π‘) β‰  (((trLβ€˜πΎ)β€˜π‘Š)β€˜π‘”)) β†’ (π‘§β€˜((ocβ€˜πΎ)β€˜π‘Š)) = ((((ocβ€˜πΎ)β€˜π‘Š)(joinβ€˜πΎ)(((trLβ€˜πΎ)β€˜π‘Š)β€˜π‘”))(meetβ€˜πΎ)(((((ocβ€˜πΎ)β€˜π‘Š)(joinβ€˜πΎ)(((trLβ€˜πΎ)β€˜π‘Š)β€˜π‘))(meetβ€˜πΎ)((π‘“β€˜((ocβ€˜πΎ)β€˜π‘Š))(joinβ€˜πΎ)(((trLβ€˜πΎ)β€˜π‘Š)β€˜(𝑏 ∘ β—‘(π‘ β€˜π‘“)))))(joinβ€˜πΎ)(((trLβ€˜πΎ)β€˜π‘Š)β€˜(𝑔 ∘ ◑𝑏)))))) = (℩𝑧 ∈ ((LTrnβ€˜πΎ)β€˜π‘Š)βˆ€π‘ ∈ ((LTrnβ€˜πΎ)β€˜π‘Š)((𝑏 β‰  ( I β†Ύ (Baseβ€˜πΎ)) ∧ (((trLβ€˜πΎ)β€˜π‘Š)β€˜π‘) β‰  (((trLβ€˜πΎ)β€˜π‘Š)β€˜(π‘ β€˜π‘“)) ∧ (((trLβ€˜πΎ)β€˜π‘Š)β€˜π‘) β‰  (((trLβ€˜πΎ)β€˜π‘Š)β€˜π‘”)) β†’ (π‘§β€˜((ocβ€˜πΎ)β€˜π‘Š)) = ((((ocβ€˜πΎ)β€˜π‘Š)(joinβ€˜πΎ)(((trLβ€˜πΎ)β€˜π‘Š)β€˜π‘”))(meetβ€˜πΎ)(((((ocβ€˜πΎ)β€˜π‘Š)(joinβ€˜πΎ)(((trLβ€˜πΎ)β€˜π‘Š)β€˜π‘))(meetβ€˜πΎ)((π‘“β€˜((ocβ€˜πΎ)β€˜π‘Š))(joinβ€˜πΎ)(((trLβ€˜πΎ)β€˜π‘Š)β€˜(𝑏 ∘ β—‘(π‘ β€˜π‘“)))))(joinβ€˜πΎ)(((trLβ€˜πΎ)β€˜π‘Š)β€˜(𝑔 ∘ ◑𝑏))))))
18 eqid 2733 . . 3 (𝑔 ∈ ((LTrnβ€˜πΎ)β€˜π‘Š) ↦ if((π‘ β€˜π‘“) = 𝑓, 𝑔, (℩𝑧 ∈ ((LTrnβ€˜πΎ)β€˜π‘Š)βˆ€π‘ ∈ ((LTrnβ€˜πΎ)β€˜π‘Š)((𝑏 β‰  ( I β†Ύ (Baseβ€˜πΎ)) ∧ (((trLβ€˜πΎ)β€˜π‘Š)β€˜π‘) β‰  (((trLβ€˜πΎ)β€˜π‘Š)β€˜(π‘ β€˜π‘“)) ∧ (((trLβ€˜πΎ)β€˜π‘Š)β€˜π‘) β‰  (((trLβ€˜πΎ)β€˜π‘Š)β€˜π‘”)) β†’ (π‘§β€˜((ocβ€˜πΎ)β€˜π‘Š)) = ((((ocβ€˜πΎ)β€˜π‘Š)(joinβ€˜πΎ)(((trLβ€˜πΎ)β€˜π‘Š)β€˜π‘”))(meetβ€˜πΎ)(((((ocβ€˜πΎ)β€˜π‘Š)(joinβ€˜πΎ)(((trLβ€˜πΎ)β€˜π‘Š)β€˜π‘))(meetβ€˜πΎ)((π‘“β€˜((ocβ€˜πΎ)β€˜π‘Š))(joinβ€˜πΎ)(((trLβ€˜πΎ)β€˜π‘Š)β€˜(𝑏 ∘ β—‘(π‘ β€˜π‘“)))))(joinβ€˜πΎ)(((trLβ€˜πΎ)β€˜π‘Š)β€˜(𝑔 ∘ ◑𝑏)))))))) = (𝑔 ∈ ((LTrnβ€˜πΎ)β€˜π‘Š) ↦ if((π‘ β€˜π‘“) = 𝑓, 𝑔, (℩𝑧 ∈ ((LTrnβ€˜πΎ)β€˜π‘Š)βˆ€π‘ ∈ ((LTrnβ€˜πΎ)β€˜π‘Š)((𝑏 β‰  ( I β†Ύ (Baseβ€˜πΎ)) ∧ (((trLβ€˜πΎ)β€˜π‘Š)β€˜π‘) β‰  (((trLβ€˜πΎ)β€˜π‘Š)β€˜(π‘ β€˜π‘“)) ∧ (((trLβ€˜πΎ)β€˜π‘Š)β€˜π‘) β‰  (((trLβ€˜πΎ)β€˜π‘Š)β€˜π‘”)) β†’ (π‘§β€˜((ocβ€˜πΎ)β€˜π‘Š)) = ((((ocβ€˜πΎ)β€˜π‘Š)(joinβ€˜πΎ)(((trLβ€˜πΎ)β€˜π‘Š)β€˜π‘”))(meetβ€˜πΎ)(((((ocβ€˜πΎ)β€˜π‘Š)(joinβ€˜πΎ)(((trLβ€˜πΎ)β€˜π‘Š)β€˜π‘))(meetβ€˜πΎ)((π‘“β€˜((ocβ€˜πΎ)β€˜π‘Š))(joinβ€˜πΎ)(((trLβ€˜πΎ)β€˜π‘Š)β€˜(𝑏 ∘ β—‘(π‘ β€˜π‘“)))))(joinβ€˜πΎ)(((trLβ€˜πΎ)β€˜π‘Š)β€˜(𝑔 ∘ ◑𝑏))))))))
192, 5, 1, 3, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18erngdvlem4-rN 39512 . 2 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑓 ∈ ((LTrnβ€˜πΎ)β€˜π‘Š) ∧ 𝑓 β‰  ( I β†Ύ (Baseβ€˜πΎ)))) β†’ 𝐷 ∈ DivRing)
204, 19rexlimddv 3155 1 ((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) β†’ 𝐷 ∈ DivRing)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 397   ∧ w3a 1088   = wceq 1542   ∈ wcel 2107   β‰  wne 2940  βˆ€wral 3061  ifcif 4490   ↦ cmpt 5192   I cid 5534  β—‘ccnv 5636   β†Ύ cres 5639   ∘ ccom 5641  β€˜cfv 6500  β„©crio 7316  (class class class)co 7361   ∈ cmpo 7363  Basecbs 17091  occoc 17149  joincjn 18208  meetcmee 18209  DivRingcdr 20219  HLchlt 37862  LHypclh 38497  LTrncltrn 38614  trLctrl 38671  TEndoctendo 39265  EDRingRcedring-rN 39267
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5246  ax-sep 5260  ax-nul 5267  ax-pow 5324  ax-pr 5388  ax-un 7676  ax-cnex 11115  ax-resscn 11116  ax-1cn 11117  ax-icn 11118  ax-addcl 11119  ax-addrcl 11120  ax-mulcl 11121  ax-mulrcl 11122  ax-mulcom 11123  ax-addass 11124  ax-mulass 11125  ax-distr 11126  ax-i2m1 11127  ax-1ne0 11128  ax-1rid 11129  ax-rnegex 11130  ax-rrecex 11131  ax-cnre 11132  ax-pre-lttri 11133  ax-pre-lttrn 11134  ax-pre-ltadd 11135  ax-pre-mulgt0 11136  ax-riotaBAD 37465
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3352  df-reu 3353  df-rab 3407  df-v 3449  df-sbc 3744  df-csb 3860  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3933  df-nul 4287  df-if 4491  df-pw 4566  df-sn 4591  df-pr 4593  df-tp 4595  df-op 4597  df-uni 4870  df-iun 4960  df-iin 4961  df-br 5110  df-opab 5172  df-mpt 5193  df-tr 5227  df-id 5535  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5592  df-we 5594  df-xp 5643  df-rel 5644  df-cnv 5645  df-co 5646  df-dm 5647  df-rn 5648  df-res 5649  df-ima 5650  df-pred 6257  df-ord 6324  df-on 6325  df-lim 6326  df-suc 6327  df-iota 6452  df-fun 6502  df-fn 6503  df-f 6504  df-f1 6505  df-fo 6506  df-f1o 6507  df-fv 6508  df-riota 7317  df-ov 7364  df-oprab 7365  df-mpo 7366  df-om 7807  df-1st 7925  df-2nd 7926  df-tpos 8161  df-undef 8208  df-frecs 8216  df-wrecs 8247  df-recs 8321  df-rdg 8360  df-1o 8416  df-er 8654  df-map 8773  df-en 8890  df-dom 8891  df-sdom 8892  df-fin 8893  df-pnf 11199  df-mnf 11200  df-xr 11201  df-ltxr 11202  df-le 11203  df-sub 11395  df-neg 11396  df-nn 12162  df-2 12224  df-3 12225  df-n0 12422  df-z 12508  df-uz 12772  df-fz 13434  df-struct 17027  df-sets 17044  df-slot 17062  df-ndx 17074  df-base 17092  df-ress 17121  df-plusg 17154  df-mulr 17155  df-0g 17331  df-proset 18192  df-poset 18210  df-plt 18227  df-lub 18243  df-glb 18244  df-join 18245  df-meet 18246  df-p0 18322  df-p1 18323  df-lat 18329  df-clat 18396  df-mgm 18505  df-sgrp 18554  df-mnd 18565  df-grp 18759  df-minusg 18760  df-mgp 19905  df-ur 19922  df-ring 19974  df-oppr 20057  df-dvdsr 20078  df-unit 20079  df-invr 20109  df-dvr 20120  df-drng 20221  df-oposet 37688  df-ol 37690  df-oml 37691  df-covers 37778  df-ats 37779  df-atl 37810  df-cvlat 37834  df-hlat 37863  df-llines 38011  df-lplanes 38012  df-lvols 38013  df-lines 38014  df-psubsp 38016  df-pmap 38017  df-padd 38309  df-lhyp 38501  df-laut 38502  df-ldil 38617  df-ltrn 38618  df-trl 38672  df-tendo 39268  df-edring-rN 39269
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator