![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > erngdv-rN | Structured version Visualization version GIF version |
Description: An endomorphism ring is a division ring. TODO: fix comment. (Contributed by NM, 11-Aug-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ernggrp.h-r | ⊢ 𝐻 = (LHyp‘𝐾) |
ernggrp.d-r | ⊢ 𝐷 = ((EDRingR‘𝐾)‘𝑊) |
Ref | Expression |
---|---|
erngdv-rN | ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝐷 ∈ DivRing) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2740 | . . 3 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
2 | ernggrp.h-r | . . 3 ⊢ 𝐻 = (LHyp‘𝐾) | |
3 | eqid 2740 | . . 3 ⊢ ((LTrn‘𝐾)‘𝑊) = ((LTrn‘𝐾)‘𝑊) | |
4 | 1, 2, 3 | cdlemftr0 40527 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ∃𝑓 ∈ ((LTrn‘𝐾)‘𝑊)𝑓 ≠ ( I ↾ (Base‘𝐾))) |
5 | ernggrp.d-r | . . 3 ⊢ 𝐷 = ((EDRingR‘𝐾)‘𝑊) | |
6 | eqid 2740 | . . 3 ⊢ ((TEndo‘𝐾)‘𝑊) = ((TEndo‘𝐾)‘𝑊) | |
7 | eqid 2740 | . . 3 ⊢ (𝑎 ∈ ((TEndo‘𝐾)‘𝑊), 𝑏 ∈ ((TEndo‘𝐾)‘𝑊) ↦ (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ((𝑎‘𝑓) ∘ (𝑏‘𝑓)))) = (𝑎 ∈ ((TEndo‘𝐾)‘𝑊), 𝑏 ∈ ((TEndo‘𝐾)‘𝑊) ↦ (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ((𝑎‘𝑓) ∘ (𝑏‘𝑓)))) | |
8 | eqid 2740 | . . 3 ⊢ (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾))) = (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾))) | |
9 | eqid 2740 | . . 3 ⊢ (𝑎 ∈ ((TEndo‘𝐾)‘𝑊) ↦ (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ◡(𝑎‘𝑓))) = (𝑎 ∈ ((TEndo‘𝐾)‘𝑊) ↦ (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ◡(𝑎‘𝑓))) | |
10 | eqid 2740 | . . 3 ⊢ (𝑎 ∈ ((TEndo‘𝐾)‘𝑊), 𝑏 ∈ ((TEndo‘𝐾)‘𝑊) ↦ (𝑏 ∘ 𝑎)) = (𝑎 ∈ ((TEndo‘𝐾)‘𝑊), 𝑏 ∈ ((TEndo‘𝐾)‘𝑊) ↦ (𝑏 ∘ 𝑎)) | |
11 | eqid 2740 | . . 3 ⊢ (join‘𝐾) = (join‘𝐾) | |
12 | eqid 2740 | . . 3 ⊢ (meet‘𝐾) = (meet‘𝐾) | |
13 | eqid 2740 | . . 3 ⊢ ((trL‘𝐾)‘𝑊) = ((trL‘𝐾)‘𝑊) | |
14 | eqid 2740 | . . 3 ⊢ ((oc‘𝐾)‘𝑊) = ((oc‘𝐾)‘𝑊) | |
15 | eqid 2740 | . . 3 ⊢ ((((oc‘𝐾)‘𝑊)(join‘𝐾)(((trL‘𝐾)‘𝑊)‘𝑏))(meet‘𝐾)((𝑓‘((oc‘𝐾)‘𝑊))(join‘𝐾)(((trL‘𝐾)‘𝑊)‘(𝑏 ∘ ◡(𝑠‘𝑓))))) = ((((oc‘𝐾)‘𝑊)(join‘𝐾)(((trL‘𝐾)‘𝑊)‘𝑏))(meet‘𝐾)((𝑓‘((oc‘𝐾)‘𝑊))(join‘𝐾)(((trL‘𝐾)‘𝑊)‘(𝑏 ∘ ◡(𝑠‘𝑓))))) | |
16 | eqid 2740 | . . 3 ⊢ ((((oc‘𝐾)‘𝑊)(join‘𝐾)(((trL‘𝐾)‘𝑊)‘𝑔))(meet‘𝐾)(((((oc‘𝐾)‘𝑊)(join‘𝐾)(((trL‘𝐾)‘𝑊)‘𝑏))(meet‘𝐾)((𝑓‘((oc‘𝐾)‘𝑊))(join‘𝐾)(((trL‘𝐾)‘𝑊)‘(𝑏 ∘ ◡(𝑠‘𝑓)))))(join‘𝐾)(((trL‘𝐾)‘𝑊)‘(𝑔 ∘ ◡𝑏)))) = ((((oc‘𝐾)‘𝑊)(join‘𝐾)(((trL‘𝐾)‘𝑊)‘𝑔))(meet‘𝐾)(((((oc‘𝐾)‘𝑊)(join‘𝐾)(((trL‘𝐾)‘𝑊)‘𝑏))(meet‘𝐾)((𝑓‘((oc‘𝐾)‘𝑊))(join‘𝐾)(((trL‘𝐾)‘𝑊)‘(𝑏 ∘ ◡(𝑠‘𝑓)))))(join‘𝐾)(((trL‘𝐾)‘𝑊)‘(𝑔 ∘ ◡𝑏)))) | |
17 | eqid 2740 | . . 3 ⊢ (℩𝑧 ∈ ((LTrn‘𝐾)‘𝑊)∀𝑏 ∈ ((LTrn‘𝐾)‘𝑊)((𝑏 ≠ ( I ↾ (Base‘𝐾)) ∧ (((trL‘𝐾)‘𝑊)‘𝑏) ≠ (((trL‘𝐾)‘𝑊)‘(𝑠‘𝑓)) ∧ (((trL‘𝐾)‘𝑊)‘𝑏) ≠ (((trL‘𝐾)‘𝑊)‘𝑔)) → (𝑧‘((oc‘𝐾)‘𝑊)) = ((((oc‘𝐾)‘𝑊)(join‘𝐾)(((trL‘𝐾)‘𝑊)‘𝑔))(meet‘𝐾)(((((oc‘𝐾)‘𝑊)(join‘𝐾)(((trL‘𝐾)‘𝑊)‘𝑏))(meet‘𝐾)((𝑓‘((oc‘𝐾)‘𝑊))(join‘𝐾)(((trL‘𝐾)‘𝑊)‘(𝑏 ∘ ◡(𝑠‘𝑓)))))(join‘𝐾)(((trL‘𝐾)‘𝑊)‘(𝑔 ∘ ◡𝑏)))))) = (℩𝑧 ∈ ((LTrn‘𝐾)‘𝑊)∀𝑏 ∈ ((LTrn‘𝐾)‘𝑊)((𝑏 ≠ ( I ↾ (Base‘𝐾)) ∧ (((trL‘𝐾)‘𝑊)‘𝑏) ≠ (((trL‘𝐾)‘𝑊)‘(𝑠‘𝑓)) ∧ (((trL‘𝐾)‘𝑊)‘𝑏) ≠ (((trL‘𝐾)‘𝑊)‘𝑔)) → (𝑧‘((oc‘𝐾)‘𝑊)) = ((((oc‘𝐾)‘𝑊)(join‘𝐾)(((trL‘𝐾)‘𝑊)‘𝑔))(meet‘𝐾)(((((oc‘𝐾)‘𝑊)(join‘𝐾)(((trL‘𝐾)‘𝑊)‘𝑏))(meet‘𝐾)((𝑓‘((oc‘𝐾)‘𝑊))(join‘𝐾)(((trL‘𝐾)‘𝑊)‘(𝑏 ∘ ◡(𝑠‘𝑓)))))(join‘𝐾)(((trL‘𝐾)‘𝑊)‘(𝑔 ∘ ◡𝑏)))))) | |
18 | eqid 2740 | . . 3 ⊢ (𝑔 ∈ ((LTrn‘𝐾)‘𝑊) ↦ if((𝑠‘𝑓) = 𝑓, 𝑔, (℩𝑧 ∈ ((LTrn‘𝐾)‘𝑊)∀𝑏 ∈ ((LTrn‘𝐾)‘𝑊)((𝑏 ≠ ( I ↾ (Base‘𝐾)) ∧ (((trL‘𝐾)‘𝑊)‘𝑏) ≠ (((trL‘𝐾)‘𝑊)‘(𝑠‘𝑓)) ∧ (((trL‘𝐾)‘𝑊)‘𝑏) ≠ (((trL‘𝐾)‘𝑊)‘𝑔)) → (𝑧‘((oc‘𝐾)‘𝑊)) = ((((oc‘𝐾)‘𝑊)(join‘𝐾)(((trL‘𝐾)‘𝑊)‘𝑔))(meet‘𝐾)(((((oc‘𝐾)‘𝑊)(join‘𝐾)(((trL‘𝐾)‘𝑊)‘𝑏))(meet‘𝐾)((𝑓‘((oc‘𝐾)‘𝑊))(join‘𝐾)(((trL‘𝐾)‘𝑊)‘(𝑏 ∘ ◡(𝑠‘𝑓)))))(join‘𝐾)(((trL‘𝐾)‘𝑊)‘(𝑔 ∘ ◡𝑏)))))))) = (𝑔 ∈ ((LTrn‘𝐾)‘𝑊) ↦ if((𝑠‘𝑓) = 𝑓, 𝑔, (℩𝑧 ∈ ((LTrn‘𝐾)‘𝑊)∀𝑏 ∈ ((LTrn‘𝐾)‘𝑊)((𝑏 ≠ ( I ↾ (Base‘𝐾)) ∧ (((trL‘𝐾)‘𝑊)‘𝑏) ≠ (((trL‘𝐾)‘𝑊)‘(𝑠‘𝑓)) ∧ (((trL‘𝐾)‘𝑊)‘𝑏) ≠ (((trL‘𝐾)‘𝑊)‘𝑔)) → (𝑧‘((oc‘𝐾)‘𝑊)) = ((((oc‘𝐾)‘𝑊)(join‘𝐾)(((trL‘𝐾)‘𝑊)‘𝑔))(meet‘𝐾)(((((oc‘𝐾)‘𝑊)(join‘𝐾)(((trL‘𝐾)‘𝑊)‘𝑏))(meet‘𝐾)((𝑓‘((oc‘𝐾)‘𝑊))(join‘𝐾)(((trL‘𝐾)‘𝑊)‘(𝑏 ∘ ◡(𝑠‘𝑓)))))(join‘𝐾)(((trL‘𝐾)‘𝑊)‘(𝑔 ∘ ◡𝑏)))))))) | |
19 | 2, 5, 1, 3, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18 | erngdvlem4-rN 40958 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∧ 𝑓 ≠ ( I ↾ (Base‘𝐾)))) → 𝐷 ∈ DivRing) |
20 | 4, 19 | rexlimddv 3167 | 1 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝐷 ∈ DivRing) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 ∀wral 3067 ifcif 4548 ↦ cmpt 5249 I cid 5592 ◡ccnv 5699 ↾ cres 5702 ∘ ccom 5704 ‘cfv 6575 ℩crio 7405 (class class class)co 7450 ∈ cmpo 7452 Basecbs 17260 occoc 17321 joincjn 18383 meetcmee 18384 DivRingcdr 20753 HLchlt 39308 LHypclh 39943 LTrncltrn 40060 trLctrl 40117 TEndoctendo 40711 EDRingRcedring-rN 40713 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7772 ax-cnex 11242 ax-resscn 11243 ax-1cn 11244 ax-icn 11245 ax-addcl 11246 ax-addrcl 11247 ax-mulcl 11248 ax-mulrcl 11249 ax-mulcom 11250 ax-addass 11251 ax-mulass 11252 ax-distr 11253 ax-i2m1 11254 ax-1ne0 11255 ax-1rid 11256 ax-rnegex 11257 ax-rrecex 11258 ax-cnre 11259 ax-pre-lttri 11260 ax-pre-lttrn 11261 ax-pre-ltadd 11262 ax-pre-mulgt0 11263 ax-riotaBAD 38911 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-tp 4653 df-op 4655 df-uni 4932 df-iun 5017 df-iin 5018 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6334 df-ord 6400 df-on 6401 df-lim 6402 df-suc 6403 df-iota 6527 df-fun 6577 df-fn 6578 df-f 6579 df-f1 6580 df-fo 6581 df-f1o 6582 df-fv 6583 df-riota 7406 df-ov 7453 df-oprab 7454 df-mpo 7455 df-om 7906 df-1st 8032 df-2nd 8033 df-tpos 8269 df-undef 8316 df-frecs 8324 df-wrecs 8355 df-recs 8429 df-rdg 8468 df-1o 8524 df-er 8765 df-map 8888 df-en 9006 df-dom 9007 df-sdom 9008 df-fin 9009 df-pnf 11328 df-mnf 11329 df-xr 11330 df-ltxr 11331 df-le 11332 df-sub 11524 df-neg 11525 df-nn 12296 df-2 12358 df-3 12359 df-n0 12556 df-z 12642 df-uz 12906 df-fz 13570 df-struct 17196 df-sets 17213 df-slot 17231 df-ndx 17243 df-base 17261 df-ress 17290 df-plusg 17326 df-mulr 17327 df-0g 17503 df-proset 18367 df-poset 18385 df-plt 18402 df-lub 18418 df-glb 18419 df-join 18420 df-meet 18421 df-p0 18497 df-p1 18498 df-lat 18504 df-clat 18571 df-mgm 18680 df-sgrp 18759 df-mnd 18775 df-grp 18978 df-minusg 18979 df-cmn 19826 df-abl 19827 df-mgp 20164 df-rng 20182 df-ur 20211 df-ring 20264 df-oppr 20362 df-dvdsr 20385 df-unit 20386 df-invr 20416 df-dvr 20429 df-drng 20755 df-oposet 39134 df-ol 39136 df-oml 39137 df-covers 39224 df-ats 39225 df-atl 39256 df-cvlat 39280 df-hlat 39309 df-llines 39457 df-lplanes 39458 df-lvols 39459 df-lines 39460 df-psubsp 39462 df-pmap 39463 df-padd 39755 df-lhyp 39947 df-laut 39948 df-ldil 40063 df-ltrn 40064 df-trl 40118 df-tendo 40714 df-edring-rN 40715 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |