MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cmpcmet Structured version   Visualization version   GIF version

Theorem cmpcmet 25276
Description: A compact metric space is complete. One half of heibor 37850. (Contributed by Mario Carneiro, 15-Oct-2015.)
Hypotheses
Ref Expression
relcmpcmet.1 𝐽 = (MetOpen‘𝐷)
relcmpcmet.2 (𝜑𝐷 ∈ (Met‘𝑋))
cmpcmet.3 (𝜑𝐽 ∈ Comp)
Assertion
Ref Expression
cmpcmet (𝜑𝐷 ∈ (CMet‘𝑋))

Proof of Theorem cmpcmet
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 relcmpcmet.1 . 2 𝐽 = (MetOpen‘𝐷)
2 relcmpcmet.2 . 2 (𝜑𝐷 ∈ (Met‘𝑋))
3 1rp 13017 . . 3 1 ∈ ℝ+
43a1i 11 . 2 (𝜑 → 1 ∈ ℝ+)
5 cmpcmet.3 . . . 4 (𝜑𝐽 ∈ Comp)
65adantr 480 . . 3 ((𝜑𝑥𝑋) → 𝐽 ∈ Comp)
7 metxmet 24278 . . . . . . 7 (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋))
82, 7syl 17 . . . . . 6 (𝜑𝐷 ∈ (∞Met‘𝑋))
98adantr 480 . . . . 5 ((𝜑𝑥𝑋) → 𝐷 ∈ (∞Met‘𝑋))
101mopntop 24384 . . . . 5 (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ Top)
119, 10syl 17 . . . 4 ((𝜑𝑥𝑋) → 𝐽 ∈ Top)
12 simpr 484 . . . . . 6 ((𝜑𝑥𝑋) → 𝑥𝑋)
13 rpxr 13023 . . . . . . 7 (1 ∈ ℝ+ → 1 ∈ ℝ*)
143, 13mp1i 13 . . . . . 6 ((𝜑𝑥𝑋) → 1 ∈ ℝ*)
15 blssm 24362 . . . . . 6 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋 ∧ 1 ∈ ℝ*) → (𝑥(ball‘𝐷)1) ⊆ 𝑋)
169, 12, 14, 15syl3anc 1373 . . . . 5 ((𝜑𝑥𝑋) → (𝑥(ball‘𝐷)1) ⊆ 𝑋)
171mopnuni 24385 . . . . . 6 (𝐷 ∈ (∞Met‘𝑋) → 𝑋 = 𝐽)
189, 17syl 17 . . . . 5 ((𝜑𝑥𝑋) → 𝑋 = 𝐽)
1916, 18sseqtrd 4000 . . . 4 ((𝜑𝑥𝑋) → (𝑥(ball‘𝐷)1) ⊆ 𝐽)
20 eqid 2736 . . . . 5 𝐽 = 𝐽
2120clscld 22990 . . . 4 ((𝐽 ∈ Top ∧ (𝑥(ball‘𝐷)1) ⊆ 𝐽) → ((cls‘𝐽)‘(𝑥(ball‘𝐷)1)) ∈ (Clsd‘𝐽))
2211, 19, 21syl2anc 584 . . 3 ((𝜑𝑥𝑋) → ((cls‘𝐽)‘(𝑥(ball‘𝐷)1)) ∈ (Clsd‘𝐽))
23 cmpcld 23345 . . 3 ((𝐽 ∈ Comp ∧ ((cls‘𝐽)‘(𝑥(ball‘𝐷)1)) ∈ (Clsd‘𝐽)) → (𝐽t ((cls‘𝐽)‘(𝑥(ball‘𝐷)1))) ∈ Comp)
246, 22, 23syl2anc 584 . 2 ((𝜑𝑥𝑋) → (𝐽t ((cls‘𝐽)‘(𝑥(ball‘𝐷)1))) ∈ Comp)
251, 2, 4, 24relcmpcmet 25275 1 (𝜑𝐷 ∈ (CMet‘𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wss 3931   cuni 4888  cfv 6536  (class class class)co 7410  1c1 11135  *cxr 11273  +crp 13013  t crest 17439  ∞Metcxmet 21305  Metcmet 21306  ballcbl 21307  MetOpencmopn 21310  Topctop 22836  Clsdccld 22959  clsccl 22961  Compccmp 23329  CMetccmet 25211
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211  ax-pre-sup 11212
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-iin 4975  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-2o 8486  df-er 8724  df-map 8847  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-fi 9428  df-sup 9459  df-inf 9460  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-div 11900  df-nn 12246  df-2 12308  df-n0 12507  df-z 12594  df-uz 12858  df-q 12970  df-rp 13014  df-xneg 13133  df-xadd 13134  df-xmul 13135  df-ico 13373  df-rest 17441  df-topgen 17462  df-psmet 21312  df-xmet 21313  df-met 21314  df-bl 21315  df-mopn 21316  df-fbas 21317  df-fg 21318  df-top 22837  df-topon 22854  df-bases 22889  df-cld 22962  df-ntr 22963  df-cls 22964  df-nei 23041  df-cmp 23330  df-fil 23789  df-flim 23882  df-fcls 23884  df-cfil 25212  df-cmet 25214
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator