Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cmpcmet | Structured version Visualization version GIF version |
Description: A compact metric space is complete. One half of heibor 35979. (Contributed by Mario Carneiro, 15-Oct-2015.) |
Ref | Expression |
---|---|
relcmpcmet.1 | ⊢ 𝐽 = (MetOpen‘𝐷) |
relcmpcmet.2 | ⊢ (𝜑 → 𝐷 ∈ (Met‘𝑋)) |
cmpcmet.3 | ⊢ (𝜑 → 𝐽 ∈ Comp) |
Ref | Expression |
---|---|
cmpcmet | ⊢ (𝜑 → 𝐷 ∈ (CMet‘𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relcmpcmet.1 | . 2 ⊢ 𝐽 = (MetOpen‘𝐷) | |
2 | relcmpcmet.2 | . 2 ⊢ (𝜑 → 𝐷 ∈ (Met‘𝑋)) | |
3 | 1rp 12734 | . . 3 ⊢ 1 ∈ ℝ+ | |
4 | 3 | a1i 11 | . 2 ⊢ (𝜑 → 1 ∈ ℝ+) |
5 | cmpcmet.3 | . . . 4 ⊢ (𝜑 → 𝐽 ∈ Comp) | |
6 | 5 | adantr 481 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐽 ∈ Comp) |
7 | metxmet 23487 | . . . . . . 7 ⊢ (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋)) | |
8 | 2, 7 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝐷 ∈ (∞Met‘𝑋)) |
9 | 8 | adantr 481 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐷 ∈ (∞Met‘𝑋)) |
10 | 1 | mopntop 23593 | . . . . 5 ⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ Top) |
11 | 9, 10 | syl 17 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐽 ∈ Top) |
12 | simpr 485 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝑥 ∈ 𝑋) | |
13 | rpxr 12739 | . . . . . . 7 ⊢ (1 ∈ ℝ+ → 1 ∈ ℝ*) | |
14 | 3, 13 | mp1i 13 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 1 ∈ ℝ*) |
15 | blssm 23571 | . . . . . 6 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥 ∈ 𝑋 ∧ 1 ∈ ℝ*) → (𝑥(ball‘𝐷)1) ⊆ 𝑋) | |
16 | 9, 12, 14, 15 | syl3anc 1370 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝑥(ball‘𝐷)1) ⊆ 𝑋) |
17 | 1 | mopnuni 23594 | . . . . . 6 ⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝑋 = ∪ 𝐽) |
18 | 9, 17 | syl 17 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝑋 = ∪ 𝐽) |
19 | 16, 18 | sseqtrd 3961 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝑥(ball‘𝐷)1) ⊆ ∪ 𝐽) |
20 | eqid 2738 | . . . . 5 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
21 | 20 | clscld 22198 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ (𝑥(ball‘𝐷)1) ⊆ ∪ 𝐽) → ((cls‘𝐽)‘(𝑥(ball‘𝐷)1)) ∈ (Clsd‘𝐽)) |
22 | 11, 19, 21 | syl2anc 584 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ((cls‘𝐽)‘(𝑥(ball‘𝐷)1)) ∈ (Clsd‘𝐽)) |
23 | cmpcld 22553 | . . 3 ⊢ ((𝐽 ∈ Comp ∧ ((cls‘𝐽)‘(𝑥(ball‘𝐷)1)) ∈ (Clsd‘𝐽)) → (𝐽 ↾t ((cls‘𝐽)‘(𝑥(ball‘𝐷)1))) ∈ Comp) | |
24 | 6, 22, 23 | syl2anc 584 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝐽 ↾t ((cls‘𝐽)‘(𝑥(ball‘𝐷)1))) ∈ Comp) |
25 | 1, 2, 4, 24 | relcmpcmet 24482 | 1 ⊢ (𝜑 → 𝐷 ∈ (CMet‘𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ⊆ wss 3887 ∪ cuni 4839 ‘cfv 6433 (class class class)co 7275 1c1 10872 ℝ*cxr 11008 ℝ+crp 12730 ↾t crest 17131 ∞Metcxmet 20582 Metcmet 20583 ballcbl 20584 MetOpencmopn 20587 Topctop 22042 Clsdccld 22167 clsccl 22169 Compccmp 22537 CMetccmet 24418 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 ax-pre-sup 10949 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-iin 4927 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-er 8498 df-map 8617 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-fi 9170 df-sup 9201 df-inf 9202 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-div 11633 df-nn 11974 df-2 12036 df-n0 12234 df-z 12320 df-uz 12583 df-q 12689 df-rp 12731 df-xneg 12848 df-xadd 12849 df-xmul 12850 df-ico 13085 df-rest 17133 df-topgen 17154 df-psmet 20589 df-xmet 20590 df-met 20591 df-bl 20592 df-mopn 20593 df-fbas 20594 df-fg 20595 df-top 22043 df-topon 22060 df-bases 22096 df-cld 22170 df-ntr 22171 df-cls 22172 df-nei 22249 df-cmp 22538 df-fil 22997 df-flim 23090 df-fcls 23092 df-cfil 24419 df-cmet 24421 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |