MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cmpcmet Structured version   Visualization version   GIF version

Theorem cmpcmet 24388
Description: A compact metric space is complete. One half of heibor 35906. (Contributed by Mario Carneiro, 15-Oct-2015.)
Hypotheses
Ref Expression
relcmpcmet.1 𝐽 = (MetOpen‘𝐷)
relcmpcmet.2 (𝜑𝐷 ∈ (Met‘𝑋))
cmpcmet.3 (𝜑𝐽 ∈ Comp)
Assertion
Ref Expression
cmpcmet (𝜑𝐷 ∈ (CMet‘𝑋))

Proof of Theorem cmpcmet
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 relcmpcmet.1 . 2 𝐽 = (MetOpen‘𝐷)
2 relcmpcmet.2 . 2 (𝜑𝐷 ∈ (Met‘𝑋))
3 1rp 12663 . . 3 1 ∈ ℝ+
43a1i 11 . 2 (𝜑 → 1 ∈ ℝ+)
5 cmpcmet.3 . . . 4 (𝜑𝐽 ∈ Comp)
65adantr 480 . . 3 ((𝜑𝑥𝑋) → 𝐽 ∈ Comp)
7 metxmet 23395 . . . . . . 7 (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋))
82, 7syl 17 . . . . . 6 (𝜑𝐷 ∈ (∞Met‘𝑋))
98adantr 480 . . . . 5 ((𝜑𝑥𝑋) → 𝐷 ∈ (∞Met‘𝑋))
101mopntop 23501 . . . . 5 (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ Top)
119, 10syl 17 . . . 4 ((𝜑𝑥𝑋) → 𝐽 ∈ Top)
12 simpr 484 . . . . . 6 ((𝜑𝑥𝑋) → 𝑥𝑋)
13 rpxr 12668 . . . . . . 7 (1 ∈ ℝ+ → 1 ∈ ℝ*)
143, 13mp1i 13 . . . . . 6 ((𝜑𝑥𝑋) → 1 ∈ ℝ*)
15 blssm 23479 . . . . . 6 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋 ∧ 1 ∈ ℝ*) → (𝑥(ball‘𝐷)1) ⊆ 𝑋)
169, 12, 14, 15syl3anc 1369 . . . . 5 ((𝜑𝑥𝑋) → (𝑥(ball‘𝐷)1) ⊆ 𝑋)
171mopnuni 23502 . . . . . 6 (𝐷 ∈ (∞Met‘𝑋) → 𝑋 = 𝐽)
189, 17syl 17 . . . . 5 ((𝜑𝑥𝑋) → 𝑋 = 𝐽)
1916, 18sseqtrd 3957 . . . 4 ((𝜑𝑥𝑋) → (𝑥(ball‘𝐷)1) ⊆ 𝐽)
20 eqid 2738 . . . . 5 𝐽 = 𝐽
2120clscld 22106 . . . 4 ((𝐽 ∈ Top ∧ (𝑥(ball‘𝐷)1) ⊆ 𝐽) → ((cls‘𝐽)‘(𝑥(ball‘𝐷)1)) ∈ (Clsd‘𝐽))
2211, 19, 21syl2anc 583 . . 3 ((𝜑𝑥𝑋) → ((cls‘𝐽)‘(𝑥(ball‘𝐷)1)) ∈ (Clsd‘𝐽))
23 cmpcld 22461 . . 3 ((𝐽 ∈ Comp ∧ ((cls‘𝐽)‘(𝑥(ball‘𝐷)1)) ∈ (Clsd‘𝐽)) → (𝐽t ((cls‘𝐽)‘(𝑥(ball‘𝐷)1))) ∈ Comp)
246, 22, 23syl2anc 583 . 2 ((𝜑𝑥𝑋) → (𝐽t ((cls‘𝐽)‘(𝑥(ball‘𝐷)1))) ∈ Comp)
251, 2, 4, 24relcmpcmet 24387 1 (𝜑𝐷 ∈ (CMet‘𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  wss 3883   cuni 4836  cfv 6418  (class class class)co 7255  1c1 10803  *cxr 10939  +crp 12659  t crest 17048  ∞Metcxmet 20495  Metcmet 20496  ballcbl 20497  MetOpencmopn 20500  Topctop 21950  Clsdccld 22075  clsccl 22077  Compccmp 22445  CMetccmet 24323
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fi 9100  df-sup 9131  df-inf 9132  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-n0 12164  df-z 12250  df-uz 12512  df-q 12618  df-rp 12660  df-xneg 12777  df-xadd 12778  df-xmul 12779  df-ico 13014  df-rest 17050  df-topgen 17071  df-psmet 20502  df-xmet 20503  df-met 20504  df-bl 20505  df-mopn 20506  df-fbas 20507  df-fg 20508  df-top 21951  df-topon 21968  df-bases 22004  df-cld 22078  df-ntr 22079  df-cls 22080  df-nei 22157  df-cmp 22446  df-fil 22905  df-flim 22998  df-fcls 23000  df-cfil 24324  df-cmet 24326
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator