| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cmpcmet | Structured version Visualization version GIF version | ||
| Description: A compact metric space is complete. One half of heibor 37810. (Contributed by Mario Carneiro, 15-Oct-2015.) |
| Ref | Expression |
|---|---|
| relcmpcmet.1 | ⊢ 𝐽 = (MetOpen‘𝐷) |
| relcmpcmet.2 | ⊢ (𝜑 → 𝐷 ∈ (Met‘𝑋)) |
| cmpcmet.3 | ⊢ (𝜑 → 𝐽 ∈ Comp) |
| Ref | Expression |
|---|---|
| cmpcmet | ⊢ (𝜑 → 𝐷 ∈ (CMet‘𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relcmpcmet.1 | . 2 ⊢ 𝐽 = (MetOpen‘𝐷) | |
| 2 | relcmpcmet.2 | . 2 ⊢ (𝜑 → 𝐷 ∈ (Met‘𝑋)) | |
| 3 | 1rp 12961 | . . 3 ⊢ 1 ∈ ℝ+ | |
| 4 | 3 | a1i 11 | . 2 ⊢ (𝜑 → 1 ∈ ℝ+) |
| 5 | cmpcmet.3 | . . . 4 ⊢ (𝜑 → 𝐽 ∈ Comp) | |
| 6 | 5 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐽 ∈ Comp) |
| 7 | metxmet 24228 | . . . . . . 7 ⊢ (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋)) | |
| 8 | 2, 7 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝐷 ∈ (∞Met‘𝑋)) |
| 9 | 8 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐷 ∈ (∞Met‘𝑋)) |
| 10 | 1 | mopntop 24334 | . . . . 5 ⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ Top) |
| 11 | 9, 10 | syl 17 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐽 ∈ Top) |
| 12 | simpr 484 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝑥 ∈ 𝑋) | |
| 13 | rpxr 12967 | . . . . . . 7 ⊢ (1 ∈ ℝ+ → 1 ∈ ℝ*) | |
| 14 | 3, 13 | mp1i 13 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 1 ∈ ℝ*) |
| 15 | blssm 24312 | . . . . . 6 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥 ∈ 𝑋 ∧ 1 ∈ ℝ*) → (𝑥(ball‘𝐷)1) ⊆ 𝑋) | |
| 16 | 9, 12, 14, 15 | syl3anc 1373 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝑥(ball‘𝐷)1) ⊆ 𝑋) |
| 17 | 1 | mopnuni 24335 | . . . . . 6 ⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝑋 = ∪ 𝐽) |
| 18 | 9, 17 | syl 17 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝑋 = ∪ 𝐽) |
| 19 | 16, 18 | sseqtrd 3985 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝑥(ball‘𝐷)1) ⊆ ∪ 𝐽) |
| 20 | eqid 2730 | . . . . 5 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 21 | 20 | clscld 22940 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ (𝑥(ball‘𝐷)1) ⊆ ∪ 𝐽) → ((cls‘𝐽)‘(𝑥(ball‘𝐷)1)) ∈ (Clsd‘𝐽)) |
| 22 | 11, 19, 21 | syl2anc 584 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ((cls‘𝐽)‘(𝑥(ball‘𝐷)1)) ∈ (Clsd‘𝐽)) |
| 23 | cmpcld 23295 | . . 3 ⊢ ((𝐽 ∈ Comp ∧ ((cls‘𝐽)‘(𝑥(ball‘𝐷)1)) ∈ (Clsd‘𝐽)) → (𝐽 ↾t ((cls‘𝐽)‘(𝑥(ball‘𝐷)1))) ∈ Comp) | |
| 24 | 6, 22, 23 | syl2anc 584 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝐽 ↾t ((cls‘𝐽)‘(𝑥(ball‘𝐷)1))) ∈ Comp) |
| 25 | 1, 2, 4, 24 | relcmpcmet 25224 | 1 ⊢ (𝜑 → 𝐷 ∈ (CMet‘𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ⊆ wss 3916 ∪ cuni 4873 ‘cfv 6513 (class class class)co 7389 1c1 11075 ℝ*cxr 11213 ℝ+crp 12957 ↾t crest 17389 ∞Metcxmet 21255 Metcmet 21256 ballcbl 21257 MetOpencmopn 21260 Topctop 22786 Clsdccld 22909 clsccl 22911 Compccmp 23279 CMetccmet 25160 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5236 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 ax-cnex 11130 ax-resscn 11131 ax-1cn 11132 ax-icn 11133 ax-addcl 11134 ax-addrcl 11135 ax-mulcl 11136 ax-mulrcl 11137 ax-mulcom 11138 ax-addass 11139 ax-mulass 11140 ax-distr 11141 ax-i2m1 11142 ax-1ne0 11143 ax-1rid 11144 ax-rnegex 11145 ax-rrecex 11146 ax-cnre 11147 ax-pre-lttri 11148 ax-pre-lttrn 11149 ax-pre-ltadd 11150 ax-pre-mulgt0 11151 ax-pre-sup 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-pss 3936 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-int 4913 df-iun 4959 df-iin 4960 df-br 5110 df-opab 5172 df-mpt 5191 df-tr 5217 df-id 5535 df-eprel 5540 df-po 5548 df-so 5549 df-fr 5593 df-we 5595 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-pred 6276 df-ord 6337 df-on 6338 df-lim 6339 df-suc 6340 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-fv 6521 df-riota 7346 df-ov 7392 df-oprab 7393 df-mpo 7394 df-om 7845 df-1st 7970 df-2nd 7971 df-frecs 8262 df-wrecs 8293 df-recs 8342 df-rdg 8380 df-1o 8436 df-2o 8437 df-er 8673 df-map 8803 df-en 8921 df-dom 8922 df-sdom 8923 df-fin 8924 df-fi 9368 df-sup 9399 df-inf 9400 df-pnf 11216 df-mnf 11217 df-xr 11218 df-ltxr 11219 df-le 11220 df-sub 11413 df-neg 11414 df-div 11842 df-nn 12188 df-2 12250 df-n0 12449 df-z 12536 df-uz 12800 df-q 12914 df-rp 12958 df-xneg 13078 df-xadd 13079 df-xmul 13080 df-ico 13318 df-rest 17391 df-topgen 17412 df-psmet 21262 df-xmet 21263 df-met 21264 df-bl 21265 df-mopn 21266 df-fbas 21267 df-fg 21268 df-top 22787 df-topon 22804 df-bases 22839 df-cld 22912 df-ntr 22913 df-cls 22914 df-nei 22991 df-cmp 23280 df-fil 23739 df-flim 23832 df-fcls 23834 df-cfil 25161 df-cmet 25163 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |