MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnfcom3c Structured version   Visualization version   GIF version

Theorem cnfcom3c 9591
Description: Wrap the construction of cnfcom3 9589 into an existential quantifier. For any ω ⊆ 𝑏, there is a bijection from 𝑏 to some power of ω. Furthermore, this bijection is canonical , which means that we can find a single function 𝑔 which will give such bijections for every 𝑏 less than some arbitrarily large bound 𝐴. (Contributed by Mario Carneiro, 30-May-2015.)
Assertion
Ref Expression
cnfcom3c (𝐴 ∈ On → ∃𝑔𝑏𝐴 (ω ⊆ 𝑏 → ∃𝑤 ∈ (On ∖ 1o)(𝑔𝑏):𝑏1-1-onto→(ω ↑o 𝑤)))
Distinct variable group:   𝑔,𝑏,𝑤,𝐴

Proof of Theorem cnfcom3c
Dummy variables 𝑓 𝑘 𝑢 𝑣 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2731 . 2 dom (ω CNF 𝐴) = dom (ω CNF 𝐴)
2 eqid 2731 . 2 ((ω CNF 𝐴)‘𝑏) = ((ω CNF 𝐴)‘𝑏)
3 eqid 2731 . 2 OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅)) = OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))
4 eqid 2731 . 2 seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((ω ↑o (OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘𝑘)) ·o (((ω CNF 𝐴)‘𝑏)‘(OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘𝑘))) +o 𝑧)), ∅) = seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((ω ↑o (OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘𝑘)) ·o (((ω CNF 𝐴)‘𝑏)‘(OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘𝑘))) +o 𝑧)), ∅)
5 eqid 2731 . 2 seqω((𝑘 ∈ V, 𝑓 ∈ V ↦ ((𝑥 ∈ ((ω ↑o (OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘𝑘)) ·o (((ω CNF 𝐴)‘𝑏)‘(OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘𝑘))) ↦ (dom 𝑓 +o 𝑥)) ∪ (𝑥 ∈ dom 𝑓 ↦ (((ω ↑o (OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘𝑘)) ·o (((ω CNF 𝐴)‘𝑏)‘(OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘𝑘))) +o 𝑥)))), ∅) = seqω((𝑘 ∈ V, 𝑓 ∈ V ↦ ((𝑥 ∈ ((ω ↑o (OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘𝑘)) ·o (((ω CNF 𝐴)‘𝑏)‘(OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘𝑘))) ↦ (dom 𝑓 +o 𝑥)) ∪ (𝑥 ∈ dom 𝑓 ↦ (((ω ↑o (OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘𝑘)) ·o (((ω CNF 𝐴)‘𝑏)‘(OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘𝑘))) +o 𝑥)))), ∅)
6 eqid 2731 . 2 ((ω ↑o (OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘𝑘)) ·o (((ω CNF 𝐴)‘𝑏)‘(OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘𝑘))) = ((ω ↑o (OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘𝑘)) ·o (((ω CNF 𝐴)‘𝑏)‘(OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘𝑘)))
7 eqid 2731 . 2 ((𝑥 ∈ ((ω ↑o (OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘𝑘)) ·o (((ω CNF 𝐴)‘𝑏)‘(OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘𝑘))) ↦ (dom 𝑓 +o 𝑥)) ∪ (𝑥 ∈ dom 𝑓 ↦ (((ω ↑o (OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘𝑘)) ·o (((ω CNF 𝐴)‘𝑏)‘(OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘𝑘))) +o 𝑥))) = ((𝑥 ∈ ((ω ↑o (OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘𝑘)) ·o (((ω CNF 𝐴)‘𝑏)‘(OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘𝑘))) ↦ (dom 𝑓 +o 𝑥)) ∪ (𝑥 ∈ dom 𝑓 ↦ (((ω ↑o (OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘𝑘)) ·o (((ω CNF 𝐴)‘𝑏)‘(OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘𝑘))) +o 𝑥)))
8 eqid 2731 . 2 (OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘ dom OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))) = (OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘ dom OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅)))
9 eqid 2731 . 2 (𝑢 ∈ (((ω CNF 𝐴)‘𝑏)‘(OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘ dom OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅)))), 𝑣 ∈ (ω ↑o (OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘ dom OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅)))) ↦ (((((ω CNF 𝐴)‘𝑏)‘(OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘ dom OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅)))) ·o 𝑣) +o 𝑢)) = (𝑢 ∈ (((ω CNF 𝐴)‘𝑏)‘(OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘ dom OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅)))), 𝑣 ∈ (ω ↑o (OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘ dom OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅)))) ↦ (((((ω CNF 𝐴)‘𝑏)‘(OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘ dom OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅)))) ·o 𝑣) +o 𝑢))
10 eqid 2731 . 2 (𝑢 ∈ (((ω CNF 𝐴)‘𝑏)‘(OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘ dom OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅)))), 𝑣 ∈ (ω ↑o (OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘ dom OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅)))) ↦ (((ω ↑o (OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘ dom OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅)))) ·o 𝑢) +o 𝑣)) = (𝑢 ∈ (((ω CNF 𝐴)‘𝑏)‘(OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘ dom OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅)))), 𝑣 ∈ (ω ↑o (OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘ dom OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅)))) ↦ (((ω ↑o (OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘ dom OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅)))) ·o 𝑢) +o 𝑣))
11 eqid 2731 . 2 (((𝑢 ∈ (((ω CNF 𝐴)‘𝑏)‘(OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘ dom OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅)))), 𝑣 ∈ (ω ↑o (OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘ dom OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅)))) ↦ (((((ω CNF 𝐴)‘𝑏)‘(OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘ dom OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅)))) ·o 𝑣) +o 𝑢)) ∘ (𝑢 ∈ (((ω CNF 𝐴)‘𝑏)‘(OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘ dom OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅)))), 𝑣 ∈ (ω ↑o (OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘ dom OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅)))) ↦ (((ω ↑o (OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘ dom OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅)))) ·o 𝑢) +o 𝑣))) ∘ (seqω((𝑘 ∈ V, 𝑓 ∈ V ↦ ((𝑥 ∈ ((ω ↑o (OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘𝑘)) ·o (((ω CNF 𝐴)‘𝑏)‘(OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘𝑘))) ↦ (dom 𝑓 +o 𝑥)) ∪ (𝑥 ∈ dom 𝑓 ↦ (((ω ↑o (OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘𝑘)) ·o (((ω CNF 𝐴)‘𝑏)‘(OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘𝑘))) +o 𝑥)))), ∅)‘dom OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅)))) = (((𝑢 ∈ (((ω CNF 𝐴)‘𝑏)‘(OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘ dom OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅)))), 𝑣 ∈ (ω ↑o (OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘ dom OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅)))) ↦ (((((ω CNF 𝐴)‘𝑏)‘(OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘ dom OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅)))) ·o 𝑣) +o 𝑢)) ∘ (𝑢 ∈ (((ω CNF 𝐴)‘𝑏)‘(OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘ dom OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅)))), 𝑣 ∈ (ω ↑o (OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘ dom OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅)))) ↦ (((ω ↑o (OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘ dom OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅)))) ·o 𝑢) +o 𝑣))) ∘ (seqω((𝑘 ∈ V, 𝑓 ∈ V ↦ ((𝑥 ∈ ((ω ↑o (OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘𝑘)) ·o (((ω CNF 𝐴)‘𝑏)‘(OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘𝑘))) ↦ (dom 𝑓 +o 𝑥)) ∪ (𝑥 ∈ dom 𝑓 ↦ (((ω ↑o (OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘𝑘)) ·o (((ω CNF 𝐴)‘𝑏)‘(OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘𝑘))) +o 𝑥)))), ∅)‘dom OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))))
12 eqid 2731 . 2 (𝑏 ∈ (ω ↑o 𝐴) ↦ (((𝑢 ∈ (((ω CNF 𝐴)‘𝑏)‘(OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘ dom OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅)))), 𝑣 ∈ (ω ↑o (OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘ dom OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅)))) ↦ (((((ω CNF 𝐴)‘𝑏)‘(OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘ dom OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅)))) ·o 𝑣) +o 𝑢)) ∘ (𝑢 ∈ (((ω CNF 𝐴)‘𝑏)‘(OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘ dom OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅)))), 𝑣 ∈ (ω ↑o (OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘ dom OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅)))) ↦ (((ω ↑o (OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘ dom OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅)))) ·o 𝑢) +o 𝑣))) ∘ (seqω((𝑘 ∈ V, 𝑓 ∈ V ↦ ((𝑥 ∈ ((ω ↑o (OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘𝑘)) ·o (((ω CNF 𝐴)‘𝑏)‘(OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘𝑘))) ↦ (dom 𝑓 +o 𝑥)) ∪ (𝑥 ∈ dom 𝑓 ↦ (((ω ↑o (OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘𝑘)) ·o (((ω CNF 𝐴)‘𝑏)‘(OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘𝑘))) +o 𝑥)))), ∅)‘dom OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))))) = (𝑏 ∈ (ω ↑o 𝐴) ↦ (((𝑢 ∈ (((ω CNF 𝐴)‘𝑏)‘(OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘ dom OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅)))), 𝑣 ∈ (ω ↑o (OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘ dom OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅)))) ↦ (((((ω CNF 𝐴)‘𝑏)‘(OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘ dom OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅)))) ·o 𝑣) +o 𝑢)) ∘ (𝑢 ∈ (((ω CNF 𝐴)‘𝑏)‘(OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘ dom OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅)))), 𝑣 ∈ (ω ↑o (OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘ dom OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅)))) ↦ (((ω ↑o (OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘ dom OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅)))) ·o 𝑢) +o 𝑣))) ∘ (seqω((𝑘 ∈ V, 𝑓 ∈ V ↦ ((𝑥 ∈ ((ω ↑o (OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘𝑘)) ·o (((ω CNF 𝐴)‘𝑏)‘(OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘𝑘))) ↦ (dom 𝑓 +o 𝑥)) ∪ (𝑥 ∈ dom 𝑓 ↦ (((ω ↑o (OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘𝑘)) ·o (((ω CNF 𝐴)‘𝑏)‘(OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘𝑘))) +o 𝑥)))), ∅)‘dom OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅)))))
131, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12cnfcom3clem 9590 1 (𝐴 ∈ On → ∃𝑔𝑏𝐴 (ω ⊆ 𝑏 → ∃𝑤 ∈ (On ∖ 1o)(𝑔𝑏):𝑏1-1-onto→(ω ↑o 𝑤)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wex 1780  wcel 2111  wral 3047  wrex 3056  Vcvv 3436  cdif 3894  cun 3895  wss 3897  c0 4278   cuni 4854  cmpt 5167   E cep 5510  ccnv 5610  dom cdm 5611  ccom 5615  Oncon0 6301  1-1-ontowf1o 6475  cfv 6476  (class class class)co 7341  cmpo 7343  ωcom 7791   supp csupp 8085  seqωcseqom 8361  1oc1o 8373   +o coa 8377   ·o comu 8378  o coe 8379  OrdIsocoi 9390   CNF ccnf 9546
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5212  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663  ax-inf2 9526
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-int 4893  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-tr 5194  df-id 5506  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-se 5565  df-we 5566  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-pred 6243  df-ord 6304  df-on 6305  df-lim 6306  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-isom 6485  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-1st 7916  df-2nd 7917  df-supp 8086  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-seqom 8362  df-1o 8380  df-2o 8381  df-oadd 8384  df-omul 8385  df-oexp 8386  df-er 8617  df-map 8747  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-fsupp 9241  df-oi 9391  df-cnf 9547
This theorem is referenced by:  infxpenc2  9908
  Copyright terms: Public domain W3C validator