MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnfcom3c Structured version   Visualization version   GIF version

Theorem cnfcom3c 9394
Description: Wrap the construction of cnfcom3 9392 into an existential quantifier. For any ω ⊆ 𝑏, there is a bijection from 𝑏 to some power of ω. Furthermore, this bijection is canonical , which means that we can find a single function 𝑔 which will give such bijections for every 𝑏 less than some arbitrarily large bound 𝐴. (Contributed by Mario Carneiro, 30-May-2015.)
Assertion
Ref Expression
cnfcom3c (𝐴 ∈ On → ∃𝑔𝑏𝐴 (ω ⊆ 𝑏 → ∃𝑤 ∈ (On ∖ 1o)(𝑔𝑏):𝑏1-1-onto→(ω ↑o 𝑤)))
Distinct variable group:   𝑔,𝑏,𝑤,𝐴

Proof of Theorem cnfcom3c
Dummy variables 𝑓 𝑘 𝑢 𝑣 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2738 . 2 dom (ω CNF 𝐴) = dom (ω CNF 𝐴)
2 eqid 2738 . 2 ((ω CNF 𝐴)‘𝑏) = ((ω CNF 𝐴)‘𝑏)
3 eqid 2738 . 2 OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅)) = OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))
4 eqid 2738 . 2 seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((ω ↑o (OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘𝑘)) ·o (((ω CNF 𝐴)‘𝑏)‘(OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘𝑘))) +o 𝑧)), ∅) = seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((ω ↑o (OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘𝑘)) ·o (((ω CNF 𝐴)‘𝑏)‘(OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘𝑘))) +o 𝑧)), ∅)
5 eqid 2738 . 2 seqω((𝑘 ∈ V, 𝑓 ∈ V ↦ ((𝑥 ∈ ((ω ↑o (OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘𝑘)) ·o (((ω CNF 𝐴)‘𝑏)‘(OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘𝑘))) ↦ (dom 𝑓 +o 𝑥)) ∪ (𝑥 ∈ dom 𝑓 ↦ (((ω ↑o (OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘𝑘)) ·o (((ω CNF 𝐴)‘𝑏)‘(OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘𝑘))) +o 𝑥)))), ∅) = seqω((𝑘 ∈ V, 𝑓 ∈ V ↦ ((𝑥 ∈ ((ω ↑o (OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘𝑘)) ·o (((ω CNF 𝐴)‘𝑏)‘(OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘𝑘))) ↦ (dom 𝑓 +o 𝑥)) ∪ (𝑥 ∈ dom 𝑓 ↦ (((ω ↑o (OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘𝑘)) ·o (((ω CNF 𝐴)‘𝑏)‘(OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘𝑘))) +o 𝑥)))), ∅)
6 eqid 2738 . 2 ((ω ↑o (OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘𝑘)) ·o (((ω CNF 𝐴)‘𝑏)‘(OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘𝑘))) = ((ω ↑o (OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘𝑘)) ·o (((ω CNF 𝐴)‘𝑏)‘(OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘𝑘)))
7 eqid 2738 . 2 ((𝑥 ∈ ((ω ↑o (OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘𝑘)) ·o (((ω CNF 𝐴)‘𝑏)‘(OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘𝑘))) ↦ (dom 𝑓 +o 𝑥)) ∪ (𝑥 ∈ dom 𝑓 ↦ (((ω ↑o (OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘𝑘)) ·o (((ω CNF 𝐴)‘𝑏)‘(OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘𝑘))) +o 𝑥))) = ((𝑥 ∈ ((ω ↑o (OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘𝑘)) ·o (((ω CNF 𝐴)‘𝑏)‘(OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘𝑘))) ↦ (dom 𝑓 +o 𝑥)) ∪ (𝑥 ∈ dom 𝑓 ↦ (((ω ↑o (OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘𝑘)) ·o (((ω CNF 𝐴)‘𝑏)‘(OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘𝑘))) +o 𝑥)))
8 eqid 2738 . 2 (OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘ dom OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))) = (OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘ dom OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅)))
9 eqid 2738 . 2 (𝑢 ∈ (((ω CNF 𝐴)‘𝑏)‘(OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘ dom OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅)))), 𝑣 ∈ (ω ↑o (OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘ dom OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅)))) ↦ (((((ω CNF 𝐴)‘𝑏)‘(OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘ dom OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅)))) ·o 𝑣) +o 𝑢)) = (𝑢 ∈ (((ω CNF 𝐴)‘𝑏)‘(OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘ dom OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅)))), 𝑣 ∈ (ω ↑o (OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘ dom OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅)))) ↦ (((((ω CNF 𝐴)‘𝑏)‘(OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘ dom OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅)))) ·o 𝑣) +o 𝑢))
10 eqid 2738 . 2 (𝑢 ∈ (((ω CNF 𝐴)‘𝑏)‘(OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘ dom OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅)))), 𝑣 ∈ (ω ↑o (OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘ dom OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅)))) ↦ (((ω ↑o (OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘ dom OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅)))) ·o 𝑢) +o 𝑣)) = (𝑢 ∈ (((ω CNF 𝐴)‘𝑏)‘(OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘ dom OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅)))), 𝑣 ∈ (ω ↑o (OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘ dom OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅)))) ↦ (((ω ↑o (OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘ dom OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅)))) ·o 𝑢) +o 𝑣))
11 eqid 2738 . 2 (((𝑢 ∈ (((ω CNF 𝐴)‘𝑏)‘(OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘ dom OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅)))), 𝑣 ∈ (ω ↑o (OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘ dom OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅)))) ↦ (((((ω CNF 𝐴)‘𝑏)‘(OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘ dom OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅)))) ·o 𝑣) +o 𝑢)) ∘ (𝑢 ∈ (((ω CNF 𝐴)‘𝑏)‘(OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘ dom OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅)))), 𝑣 ∈ (ω ↑o (OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘ dom OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅)))) ↦ (((ω ↑o (OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘ dom OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅)))) ·o 𝑢) +o 𝑣))) ∘ (seqω((𝑘 ∈ V, 𝑓 ∈ V ↦ ((𝑥 ∈ ((ω ↑o (OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘𝑘)) ·o (((ω CNF 𝐴)‘𝑏)‘(OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘𝑘))) ↦ (dom 𝑓 +o 𝑥)) ∪ (𝑥 ∈ dom 𝑓 ↦ (((ω ↑o (OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘𝑘)) ·o (((ω CNF 𝐴)‘𝑏)‘(OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘𝑘))) +o 𝑥)))), ∅)‘dom OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅)))) = (((𝑢 ∈ (((ω CNF 𝐴)‘𝑏)‘(OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘ dom OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅)))), 𝑣 ∈ (ω ↑o (OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘ dom OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅)))) ↦ (((((ω CNF 𝐴)‘𝑏)‘(OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘ dom OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅)))) ·o 𝑣) +o 𝑢)) ∘ (𝑢 ∈ (((ω CNF 𝐴)‘𝑏)‘(OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘ dom OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅)))), 𝑣 ∈ (ω ↑o (OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘ dom OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅)))) ↦ (((ω ↑o (OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘ dom OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅)))) ·o 𝑢) +o 𝑣))) ∘ (seqω((𝑘 ∈ V, 𝑓 ∈ V ↦ ((𝑥 ∈ ((ω ↑o (OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘𝑘)) ·o (((ω CNF 𝐴)‘𝑏)‘(OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘𝑘))) ↦ (dom 𝑓 +o 𝑥)) ∪ (𝑥 ∈ dom 𝑓 ↦ (((ω ↑o (OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘𝑘)) ·o (((ω CNF 𝐴)‘𝑏)‘(OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘𝑘))) +o 𝑥)))), ∅)‘dom OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))))
12 eqid 2738 . 2 (𝑏 ∈ (ω ↑o 𝐴) ↦ (((𝑢 ∈ (((ω CNF 𝐴)‘𝑏)‘(OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘ dom OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅)))), 𝑣 ∈ (ω ↑o (OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘ dom OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅)))) ↦ (((((ω CNF 𝐴)‘𝑏)‘(OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘ dom OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅)))) ·o 𝑣) +o 𝑢)) ∘ (𝑢 ∈ (((ω CNF 𝐴)‘𝑏)‘(OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘ dom OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅)))), 𝑣 ∈ (ω ↑o (OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘ dom OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅)))) ↦ (((ω ↑o (OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘ dom OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅)))) ·o 𝑢) +o 𝑣))) ∘ (seqω((𝑘 ∈ V, 𝑓 ∈ V ↦ ((𝑥 ∈ ((ω ↑o (OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘𝑘)) ·o (((ω CNF 𝐴)‘𝑏)‘(OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘𝑘))) ↦ (dom 𝑓 +o 𝑥)) ∪ (𝑥 ∈ dom 𝑓 ↦ (((ω ↑o (OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘𝑘)) ·o (((ω CNF 𝐴)‘𝑏)‘(OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘𝑘))) +o 𝑥)))), ∅)‘dom OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))))) = (𝑏 ∈ (ω ↑o 𝐴) ↦ (((𝑢 ∈ (((ω CNF 𝐴)‘𝑏)‘(OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘ dom OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅)))), 𝑣 ∈ (ω ↑o (OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘ dom OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅)))) ↦ (((((ω CNF 𝐴)‘𝑏)‘(OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘ dom OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅)))) ·o 𝑣) +o 𝑢)) ∘ (𝑢 ∈ (((ω CNF 𝐴)‘𝑏)‘(OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘ dom OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅)))), 𝑣 ∈ (ω ↑o (OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘ dom OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅)))) ↦ (((ω ↑o (OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘ dom OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅)))) ·o 𝑢) +o 𝑣))) ∘ (seqω((𝑘 ∈ V, 𝑓 ∈ V ↦ ((𝑥 ∈ ((ω ↑o (OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘𝑘)) ·o (((ω CNF 𝐴)‘𝑏)‘(OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘𝑘))) ↦ (dom 𝑓 +o 𝑥)) ∪ (𝑥 ∈ dom 𝑓 ↦ (((ω ↑o (OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘𝑘)) ·o (((ω CNF 𝐴)‘𝑏)‘(OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘𝑘))) +o 𝑥)))), ∅)‘dom OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅)))))
131, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12cnfcom3clem 9393 1 (𝐴 ∈ On → ∃𝑔𝑏𝐴 (ω ⊆ 𝑏 → ∃𝑤 ∈ (On ∖ 1o)(𝑔𝑏):𝑏1-1-onto→(ω ↑o 𝑤)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wex 1783  wcel 2108  wral 3063  wrex 3064  Vcvv 3422  cdif 3880  cun 3881  wss 3883  c0 4253   cuni 4836  cmpt 5153   E cep 5485  ccnv 5579  dom cdm 5580  ccom 5584  Oncon0 6251  1-1-ontowf1o 6417  cfv 6418  (class class class)co 7255  cmpo 7257  ωcom 7687   supp csupp 7948  seqωcseqom 8248  1oc1o 8260   +o coa 8264   ·o comu 8265  o coe 8266  OrdIsocoi 9198   CNF ccnf 9349
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-supp 7949  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-seqom 8249  df-1o 8267  df-2o 8268  df-oadd 8271  df-omul 8272  df-oexp 8273  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fsupp 9059  df-oi 9199  df-cnf 9350
This theorem is referenced by:  infxpenc2  9709
  Copyright terms: Public domain W3C validator