MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  m1lgs Structured version   Visualization version   GIF version

Theorem m1lgs 25525
Description: The first supplement to the law of quadratic reciprocity. Negative one is a square mod an odd prime 𝑃 iff 𝑃≡1 (mod 4). See first case of theorem 9.4 in [ApostolNT] p. 181. (Contributed by Mario Carneiro, 19-Jun-2015.)
Assertion
Ref Expression
m1lgs (𝑃 ∈ (ℙ ∖ {2}) → ((-1 /L 𝑃) = 1 ↔ (𝑃 mod 4) = 1))

Proof of Theorem m1lgs
StepHypRef Expression
1 neg1z 11740 . . . . . . . . 9 -1 ∈ ℤ
2 oddprm 15885 . . . . . . . . . 10 (𝑃 ∈ (ℙ ∖ {2}) → ((𝑃 − 1) / 2) ∈ ℕ)
32nnnn0d 11677 . . . . . . . . 9 (𝑃 ∈ (ℙ ∖ {2}) → ((𝑃 − 1) / 2) ∈ ℕ0)
4 zexpcl 13168 . . . . . . . . 9 ((-1 ∈ ℤ ∧ ((𝑃 − 1) / 2) ∈ ℕ0) → (-1↑((𝑃 − 1) / 2)) ∈ ℤ)
51, 3, 4sylancr 583 . . . . . . . 8 (𝑃 ∈ (ℙ ∖ {2}) → (-1↑((𝑃 − 1) / 2)) ∈ ℤ)
65peano2zd 11812 . . . . . . 7 (𝑃 ∈ (ℙ ∖ {2}) → ((-1↑((𝑃 − 1) / 2)) + 1) ∈ ℤ)
7 eldifi 3958 . . . . . . . 8 (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ∈ ℙ)
8 prmnn 15759 . . . . . . . 8 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
97, 8syl 17 . . . . . . 7 (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ∈ ℕ)
106, 9zmodcld 12985 . . . . . 6 (𝑃 ∈ (ℙ ∖ {2}) → (((-1↑((𝑃 − 1) / 2)) + 1) mod 𝑃) ∈ ℕ0)
1110nn0cnd 11679 . . . . 5 (𝑃 ∈ (ℙ ∖ {2}) → (((-1↑((𝑃 − 1) / 2)) + 1) mod 𝑃) ∈ ℂ)
12 1cnd 10350 . . . . 5 (𝑃 ∈ (ℙ ∖ {2}) → 1 ∈ ℂ)
1311, 12, 12subaddd 10730 . . . 4 (𝑃 ∈ (ℙ ∖ {2}) → (((((-1↑((𝑃 − 1) / 2)) + 1) mod 𝑃) − 1) = 1 ↔ (1 + 1) = (((-1↑((𝑃 − 1) / 2)) + 1) mod 𝑃)))
14 2re 11424 . . . . . . . 8 2 ∈ ℝ
1514a1i 11 . . . . . . 7 (𝑃 ∈ (ℙ ∖ {2}) → 2 ∈ ℝ)
169nnrpd 12153 . . . . . . 7 (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ∈ ℝ+)
17 0le2 11459 . . . . . . . 8 0 ≤ 2
1817a1i 11 . . . . . . 7 (𝑃 ∈ (ℙ ∖ {2}) → 0 ≤ 2)
19 eldifsni 4539 . . . . . . . 8 (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ≠ 2)
209nnred 11366 . . . . . . . . 9 (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ∈ ℝ)
21 prmuz2 15779 . . . . . . . . . . 11 (𝑃 ∈ ℙ → 𝑃 ∈ (ℤ‘2))
227, 21syl 17 . . . . . . . . . 10 (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ∈ (ℤ‘2))
23 eluzle 11980 . . . . . . . . . 10 (𝑃 ∈ (ℤ‘2) → 2 ≤ 𝑃)
2422, 23syl 17 . . . . . . . . 9 (𝑃 ∈ (ℙ ∖ {2}) → 2 ≤ 𝑃)
2515, 20, 24leltned 10508 . . . . . . . 8 (𝑃 ∈ (ℙ ∖ {2}) → (2 < 𝑃𝑃 ≠ 2))
2619, 25mpbird 249 . . . . . . 7 (𝑃 ∈ (ℙ ∖ {2}) → 2 < 𝑃)
27 modid 12989 . . . . . . 7 (((2 ∈ ℝ ∧ 𝑃 ∈ ℝ+) ∧ (0 ≤ 2 ∧ 2 < 𝑃)) → (2 mod 𝑃) = 2)
2815, 16, 18, 26, 27syl22anc 874 . . . . . 6 (𝑃 ∈ (ℙ ∖ {2}) → (2 mod 𝑃) = 2)
29 df-2 11413 . . . . . 6 2 = (1 + 1)
3028, 29syl6eq 2876 . . . . 5 (𝑃 ∈ (ℙ ∖ {2}) → (2 mod 𝑃) = (1 + 1))
3130eqeq1d 2826 . . . 4 (𝑃 ∈ (ℙ ∖ {2}) → ((2 mod 𝑃) = (((-1↑((𝑃 − 1) / 2)) + 1) mod 𝑃) ↔ (1 + 1) = (((-1↑((𝑃 − 1) / 2)) + 1) mod 𝑃)))
3219neneqd 3003 . . . . . . . . . . 11 (𝑃 ∈ (ℙ ∖ {2}) → ¬ 𝑃 = 2)
33 2prm 15776 . . . . . . . . . . . 12 2 ∈ ℙ
34 dvdsprm 15785 . . . . . . . . . . . 12 ((𝑃 ∈ (ℤ‘2) ∧ 2 ∈ ℙ) → (𝑃 ∥ 2 ↔ 𝑃 = 2))
3522, 33, 34sylancl 582 . . . . . . . . . . 11 (𝑃 ∈ (ℙ ∖ {2}) → (𝑃 ∥ 2 ↔ 𝑃 = 2))
3632, 35mtbird 317 . . . . . . . . . 10 (𝑃 ∈ (ℙ ∖ {2}) → ¬ 𝑃 ∥ 2)
3736adantr 474 . . . . . . . . 9 ((𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 2 ∥ ((𝑃 − 1) / 2)) → ¬ 𝑃 ∥ 2)
38 1cnd 10350 . . . . . . . . . . . . . . . 16 ((𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 2 ∥ ((𝑃 − 1) / 2)) → 1 ∈ ℂ)
392adantr 474 . . . . . . . . . . . . . . . 16 ((𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 2 ∥ ((𝑃 − 1) / 2)) → ((𝑃 − 1) / 2) ∈ ℕ)
40 simpr 479 . . . . . . . . . . . . . . . 16 ((𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 2 ∥ ((𝑃 − 1) / 2)) → ¬ 2 ∥ ((𝑃 − 1) / 2))
41 oexpneg 15442 . . . . . . . . . . . . . . . 16 ((1 ∈ ℂ ∧ ((𝑃 − 1) / 2) ∈ ℕ ∧ ¬ 2 ∥ ((𝑃 − 1) / 2)) → (-1↑((𝑃 − 1) / 2)) = -(1↑((𝑃 − 1) / 2)))
4238, 39, 40, 41syl3anc 1496 . . . . . . . . . . . . . . 15 ((𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 2 ∥ ((𝑃 − 1) / 2)) → (-1↑((𝑃 − 1) / 2)) = -(1↑((𝑃 − 1) / 2)))
4339nnzd 11808 . . . . . . . . . . . . . . . . 17 ((𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 2 ∥ ((𝑃 − 1) / 2)) → ((𝑃 − 1) / 2) ∈ ℤ)
44 1exp 13182 . . . . . . . . . . . . . . . . 17 (((𝑃 − 1) / 2) ∈ ℤ → (1↑((𝑃 − 1) / 2)) = 1)
4543, 44syl 17 . . . . . . . . . . . . . . . 16 ((𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 2 ∥ ((𝑃 − 1) / 2)) → (1↑((𝑃 − 1) / 2)) = 1)
4645negeqd 10594 . . . . . . . . . . . . . . 15 ((𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 2 ∥ ((𝑃 − 1) / 2)) → -(1↑((𝑃 − 1) / 2)) = -1)
4742, 46eqtrd 2860 . . . . . . . . . . . . . 14 ((𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 2 ∥ ((𝑃 − 1) / 2)) → (-1↑((𝑃 − 1) / 2)) = -1)
4847oveq1d 6919 . . . . . . . . . . . . 13 ((𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 2 ∥ ((𝑃 − 1) / 2)) → ((-1↑((𝑃 − 1) / 2)) + 1) = (-1 + 1))
49 ax-1cn 10309 . . . . . . . . . . . . . 14 1 ∈ ℂ
50 neg1cn 11471 . . . . . . . . . . . . . 14 -1 ∈ ℂ
51 1pneg1e0 11476 . . . . . . . . . . . . . 14 (1 + -1) = 0
5249, 50, 51addcomli 10546 . . . . . . . . . . . . 13 (-1 + 1) = 0
5348, 52syl6eq 2876 . . . . . . . . . . . 12 ((𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 2 ∥ ((𝑃 − 1) / 2)) → ((-1↑((𝑃 − 1) / 2)) + 1) = 0)
5453oveq2d 6920 . . . . . . . . . . 11 ((𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 2 ∥ ((𝑃 − 1) / 2)) → (2 − ((-1↑((𝑃 − 1) / 2)) + 1)) = (2 − 0))
55 2cn 11425 . . . . . . . . . . . 12 2 ∈ ℂ
5655subid1i 10673 . . . . . . . . . . 11 (2 − 0) = 2
5754, 56syl6eq 2876 . . . . . . . . . 10 ((𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 2 ∥ ((𝑃 − 1) / 2)) → (2 − ((-1↑((𝑃 − 1) / 2)) + 1)) = 2)
5857breq2d 4884 . . . . . . . . 9 ((𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 2 ∥ ((𝑃 − 1) / 2)) → (𝑃 ∥ (2 − ((-1↑((𝑃 − 1) / 2)) + 1)) ↔ 𝑃 ∥ 2))
5937, 58mtbird 317 . . . . . . . 8 ((𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 2 ∥ ((𝑃 − 1) / 2)) → ¬ 𝑃 ∥ (2 − ((-1↑((𝑃 − 1) / 2)) + 1)))
6059ex 403 . . . . . . 7 (𝑃 ∈ (ℙ ∖ {2}) → (¬ 2 ∥ ((𝑃 − 1) / 2) → ¬ 𝑃 ∥ (2 − ((-1↑((𝑃 − 1) / 2)) + 1))))
6160con4d 115 . . . . . 6 (𝑃 ∈ (ℙ ∖ {2}) → (𝑃 ∥ (2 − ((-1↑((𝑃 − 1) / 2)) + 1)) → 2 ∥ ((𝑃 − 1) / 2)))
62 2z 11736 . . . . . . . 8 2 ∈ ℤ
6362a1i 11 . . . . . . 7 (𝑃 ∈ (ℙ ∖ {2}) → 2 ∈ ℤ)
64 moddvds 15367 . . . . . . 7 ((𝑃 ∈ ℕ ∧ 2 ∈ ℤ ∧ ((-1↑((𝑃 − 1) / 2)) + 1) ∈ ℤ) → ((2 mod 𝑃) = (((-1↑((𝑃 − 1) / 2)) + 1) mod 𝑃) ↔ 𝑃 ∥ (2 − ((-1↑((𝑃 − 1) / 2)) + 1))))
659, 63, 6, 64syl3anc 1496 . . . . . 6 (𝑃 ∈ (ℙ ∖ {2}) → ((2 mod 𝑃) = (((-1↑((𝑃 − 1) / 2)) + 1) mod 𝑃) ↔ 𝑃 ∥ (2 − ((-1↑((𝑃 − 1) / 2)) + 1))))
66 4z 11738 . . . . . . . . . 10 4 ∈ ℤ
6766a1i 11 . . . . . . . . 9 (𝑃 ∈ (ℙ ∖ {2}) → 4 ∈ ℤ)
68 4ne0 11465 . . . . . . . . . 10 4 ≠ 0
6968a1i 11 . . . . . . . . 9 (𝑃 ∈ (ℙ ∖ {2}) → 4 ≠ 0)
70 nnm1nn0 11660 . . . . . . . . . . 11 (𝑃 ∈ ℕ → (𝑃 − 1) ∈ ℕ0)
719, 70syl 17 . . . . . . . . . 10 (𝑃 ∈ (ℙ ∖ {2}) → (𝑃 − 1) ∈ ℕ0)
7271nn0zd 11807 . . . . . . . . 9 (𝑃 ∈ (ℙ ∖ {2}) → (𝑃 − 1) ∈ ℤ)
73 dvdsval2 15359 . . . . . . . . 9 ((4 ∈ ℤ ∧ 4 ≠ 0 ∧ (𝑃 − 1) ∈ ℤ) → (4 ∥ (𝑃 − 1) ↔ ((𝑃 − 1) / 4) ∈ ℤ))
7467, 69, 72, 73syl3anc 1496 . . . . . . . 8 (𝑃 ∈ (ℙ ∖ {2}) → (4 ∥ (𝑃 − 1) ↔ ((𝑃 − 1) / 4) ∈ ℤ))
7571nn0cnd 11679 . . . . . . . . . . 11 (𝑃 ∈ (ℙ ∖ {2}) → (𝑃 − 1) ∈ ℂ)
7655a1i 11 . . . . . . . . . . 11 (𝑃 ∈ (ℙ ∖ {2}) → 2 ∈ ℂ)
77 2ne0 11461 . . . . . . . . . . . 12 2 ≠ 0
7877a1i 11 . . . . . . . . . . 11 (𝑃 ∈ (ℙ ∖ {2}) → 2 ≠ 0)
7975, 76, 76, 78, 78divdiv1d 11157 . . . . . . . . . 10 (𝑃 ∈ (ℙ ∖ {2}) → (((𝑃 − 1) / 2) / 2) = ((𝑃 − 1) / (2 · 2)))
80 2t2e4 11521 . . . . . . . . . . 11 (2 · 2) = 4
8180oveq2i 6915 . . . . . . . . . 10 ((𝑃 − 1) / (2 · 2)) = ((𝑃 − 1) / 4)
8279, 81syl6eq 2876 . . . . . . . . 9 (𝑃 ∈ (ℙ ∖ {2}) → (((𝑃 − 1) / 2) / 2) = ((𝑃 − 1) / 4))
8382eleq1d 2890 . . . . . . . 8 (𝑃 ∈ (ℙ ∖ {2}) → ((((𝑃 − 1) / 2) / 2) ∈ ℤ ↔ ((𝑃 − 1) / 4) ∈ ℤ))
8474, 83bitr4d 274 . . . . . . 7 (𝑃 ∈ (ℙ ∖ {2}) → (4 ∥ (𝑃 − 1) ↔ (((𝑃 − 1) / 2) / 2) ∈ ℤ))
852nnzd 11808 . . . . . . . 8 (𝑃 ∈ (ℙ ∖ {2}) → ((𝑃 − 1) / 2) ∈ ℤ)
86 dvdsval2 15359 . . . . . . . 8 ((2 ∈ ℤ ∧ 2 ≠ 0 ∧ ((𝑃 − 1) / 2) ∈ ℤ) → (2 ∥ ((𝑃 − 1) / 2) ↔ (((𝑃 − 1) / 2) / 2) ∈ ℤ))
8763, 78, 85, 86syl3anc 1496 . . . . . . 7 (𝑃 ∈ (ℙ ∖ {2}) → (2 ∥ ((𝑃 − 1) / 2) ↔ (((𝑃 − 1) / 2) / 2) ∈ ℤ))
8884, 87bitr4d 274 . . . . . 6 (𝑃 ∈ (ℙ ∖ {2}) → (4 ∥ (𝑃 − 1) ↔ 2 ∥ ((𝑃 − 1) / 2)))
8961, 65, 883imtr4d 286 . . . . 5 (𝑃 ∈ (ℙ ∖ {2}) → ((2 mod 𝑃) = (((-1↑((𝑃 − 1) / 2)) + 1) mod 𝑃) → 4 ∥ (𝑃 − 1)))
9050a1i 11 . . . . . . . . . . 11 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 4 ∥ (𝑃 − 1)) → -1 ∈ ℂ)
91 neg1ne0 11473 . . . . . . . . . . . 12 -1 ≠ 0
9291a1i 11 . . . . . . . . . . 11 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 4 ∥ (𝑃 − 1)) → -1 ≠ 0)
9362a1i 11 . . . . . . . . . . 11 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 4 ∥ (𝑃 − 1)) → 2 ∈ ℤ)
9484biimpa 470 . . . . . . . . . . 11 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 4 ∥ (𝑃 − 1)) → (((𝑃 − 1) / 2) / 2) ∈ ℤ)
95 expmulz 13199 . . . . . . . . . . 11 (((-1 ∈ ℂ ∧ -1 ≠ 0) ∧ (2 ∈ ℤ ∧ (((𝑃 − 1) / 2) / 2) ∈ ℤ)) → (-1↑(2 · (((𝑃 − 1) / 2) / 2))) = ((-1↑2)↑(((𝑃 − 1) / 2) / 2)))
9690, 92, 93, 94, 95syl22anc 874 . . . . . . . . . 10 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 4 ∥ (𝑃 − 1)) → (-1↑(2 · (((𝑃 − 1) / 2) / 2))) = ((-1↑2)↑(((𝑃 − 1) / 2) / 2)))
972nncnd 11367 . . . . . . . . . . . . 13 (𝑃 ∈ (ℙ ∖ {2}) → ((𝑃 − 1) / 2) ∈ ℂ)
9897, 76, 78divcan2d 11128 . . . . . . . . . . . 12 (𝑃 ∈ (ℙ ∖ {2}) → (2 · (((𝑃 − 1) / 2) / 2)) = ((𝑃 − 1) / 2))
9998adantr 474 . . . . . . . . . . 11 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 4 ∥ (𝑃 − 1)) → (2 · (((𝑃 − 1) / 2) / 2)) = ((𝑃 − 1) / 2))
10099oveq2d 6920 . . . . . . . . . 10 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 4 ∥ (𝑃 − 1)) → (-1↑(2 · (((𝑃 − 1) / 2) / 2))) = (-1↑((𝑃 − 1) / 2)))
101 neg1sqe1 13252 . . . . . . . . . . . 12 (-1↑2) = 1
102101oveq1i 6914 . . . . . . . . . . 11 ((-1↑2)↑(((𝑃 − 1) / 2) / 2)) = (1↑(((𝑃 − 1) / 2) / 2))
103 1exp 13182 . . . . . . . . . . . 12 ((((𝑃 − 1) / 2) / 2) ∈ ℤ → (1↑(((𝑃 − 1) / 2) / 2)) = 1)
10494, 103syl 17 . . . . . . . . . . 11 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 4 ∥ (𝑃 − 1)) → (1↑(((𝑃 − 1) / 2) / 2)) = 1)
105102, 104syl5eq 2872 . . . . . . . . . 10 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 4 ∥ (𝑃 − 1)) → ((-1↑2)↑(((𝑃 − 1) / 2) / 2)) = 1)
10696, 100, 1053eqtr3d 2868 . . . . . . . . 9 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 4 ∥ (𝑃 − 1)) → (-1↑((𝑃 − 1) / 2)) = 1)
107106oveq1d 6919 . . . . . . . 8 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 4 ∥ (𝑃 − 1)) → ((-1↑((𝑃 − 1) / 2)) + 1) = (1 + 1))
108107, 29syl6reqr 2879 . . . . . . 7 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 4 ∥ (𝑃 − 1)) → 2 = ((-1↑((𝑃 − 1) / 2)) + 1))
109108oveq1d 6919 . . . . . 6 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 4 ∥ (𝑃 − 1)) → (2 mod 𝑃) = (((-1↑((𝑃 − 1) / 2)) + 1) mod 𝑃))
110109ex 403 . . . . 5 (𝑃 ∈ (ℙ ∖ {2}) → (4 ∥ (𝑃 − 1) → (2 mod 𝑃) = (((-1↑((𝑃 − 1) / 2)) + 1) mod 𝑃)))
11189, 110impbid 204 . . . 4 (𝑃 ∈ (ℙ ∖ {2}) → ((2 mod 𝑃) = (((-1↑((𝑃 − 1) / 2)) + 1) mod 𝑃) ↔ 4 ∥ (𝑃 − 1)))
11213, 31, 1113bitr2d 299 . . 3 (𝑃 ∈ (ℙ ∖ {2}) → (((((-1↑((𝑃 − 1) / 2)) + 1) mod 𝑃) − 1) = 1 ↔ 4 ∥ (𝑃 − 1)))
113 lgsval3 25452 . . . . 5 ((-1 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (-1 /L 𝑃) = ((((-1↑((𝑃 − 1) / 2)) + 1) mod 𝑃) − 1))
1141, 113mpan 683 . . . 4 (𝑃 ∈ (ℙ ∖ {2}) → (-1 /L 𝑃) = ((((-1↑((𝑃 − 1) / 2)) + 1) mod 𝑃) − 1))
115114eqeq1d 2826 . . 3 (𝑃 ∈ (ℙ ∖ {2}) → ((-1 /L 𝑃) = 1 ↔ ((((-1↑((𝑃 − 1) / 2)) + 1) mod 𝑃) − 1) = 1))
116 4nn 11434 . . . . 5 4 ∈ ℕ
117116a1i 11 . . . 4 (𝑃 ∈ (ℙ ∖ {2}) → 4 ∈ ℕ)
118 prmz 15760 . . . . 5 (𝑃 ∈ ℙ → 𝑃 ∈ ℤ)
1197, 118syl 17 . . . 4 (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ∈ ℤ)
120 1zzd 11735 . . . 4 (𝑃 ∈ (ℙ ∖ {2}) → 1 ∈ ℤ)
121 moddvds 15367 . . . 4 ((4 ∈ ℕ ∧ 𝑃 ∈ ℤ ∧ 1 ∈ ℤ) → ((𝑃 mod 4) = (1 mod 4) ↔ 4 ∥ (𝑃 − 1)))
122117, 119, 120, 121syl3anc 1496 . . 3 (𝑃 ∈ (ℙ ∖ {2}) → ((𝑃 mod 4) = (1 mod 4) ↔ 4 ∥ (𝑃 − 1)))
123112, 115, 1223bitr4d 303 . 2 (𝑃 ∈ (ℙ ∖ {2}) → ((-1 /L 𝑃) = 1 ↔ (𝑃 mod 4) = (1 mod 4)))
124 1re 10355 . . . 4 1 ∈ ℝ
125 nnrp 12124 . . . . 5 (4 ∈ ℕ → 4 ∈ ℝ+)
126116, 125ax-mp 5 . . . 4 4 ∈ ℝ+
127 0le1 10874 . . . 4 0 ≤ 1
128 1lt4 11533 . . . 4 1 < 4
129 modid 12989 . . . 4 (((1 ∈ ℝ ∧ 4 ∈ ℝ+) ∧ (0 ≤ 1 ∧ 1 < 4)) → (1 mod 4) = 1)
130124, 126, 127, 128, 129mp4an 686 . . 3 (1 mod 4) = 1
131130eqeq2i 2836 . 2 ((𝑃 mod 4) = (1 mod 4) ↔ (𝑃 mod 4) = 1)
132123, 131syl6bb 279 1 (𝑃 ∈ (ℙ ∖ {2}) → ((-1 /L 𝑃) = 1 ↔ (𝑃 mod 4) = 1))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 198  wa 386   = wceq 1658  wcel 2166  wne 2998  cdif 3794  {csn 4396   class class class wbr 4872  cfv 6122  (class class class)co 6904  cc 10249  cr 10250  0cc0 10251  1c1 10252   + caddc 10254   · cmul 10256   < clt 10390  cle 10391  cmin 10584  -cneg 10585   / cdiv 11008  cn 11349  2c2 11405  4c4 11407  0cn0 11617  cz 11703  cuz 11967  +crp 12111   mod cmo 12962  cexp 13153  cdvds 15356  cprime 15756   /L clgs 25431
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-8 2168  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2390  ax-ext 2802  ax-rep 4993  ax-sep 5004  ax-nul 5012  ax-pow 5064  ax-pr 5126  ax-un 7208  ax-cnex 10307  ax-resscn 10308  ax-1cn 10309  ax-icn 10310  ax-addcl 10311  ax-addrcl 10312  ax-mulcl 10313  ax-mulrcl 10314  ax-mulcom 10315  ax-addass 10316  ax-mulass 10317  ax-distr 10318  ax-i2m1 10319  ax-1ne0 10320  ax-1rid 10321  ax-rnegex 10322  ax-rrecex 10323  ax-cnre 10324  ax-pre-lttri 10325  ax-pre-lttrn 10326  ax-pre-ltadd 10327  ax-pre-mulgt0 10328  ax-pre-sup 10329
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3or 1114  df-3an 1115  df-tru 1662  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2604  df-eu 2639  df-clab 2811  df-cleq 2817  df-clel 2820  df-nfc 2957  df-ne 2999  df-nel 3102  df-ral 3121  df-rex 3122  df-reu 3123  df-rmo 3124  df-rab 3125  df-v 3415  df-sbc 3662  df-csb 3757  df-dif 3800  df-un 3802  df-in 3804  df-ss 3811  df-pss 3813  df-nul 4144  df-if 4306  df-pw 4379  df-sn 4397  df-pr 4399  df-tp 4401  df-op 4403  df-uni 4658  df-int 4697  df-iun 4741  df-br 4873  df-opab 4935  df-mpt 4952  df-tr 4975  df-id 5249  df-eprel 5254  df-po 5262  df-so 5263  df-fr 5300  df-we 5302  df-xp 5347  df-rel 5348  df-cnv 5349  df-co 5350  df-dm 5351  df-rn 5352  df-res 5353  df-ima 5354  df-pred 5919  df-ord 5965  df-on 5966  df-lim 5967  df-suc 5968  df-iota 6085  df-fun 6124  df-fn 6125  df-f 6126  df-f1 6127  df-fo 6128  df-f1o 6129  df-fv 6130  df-riota 6865  df-ov 6907  df-oprab 6908  df-mpt2 6909  df-om 7326  df-1st 7427  df-2nd 7428  df-wrecs 7671  df-recs 7733  df-rdg 7771  df-1o 7825  df-2o 7826  df-oadd 7829  df-er 8008  df-map 8123  df-en 8222  df-dom 8223  df-sdom 8224  df-fin 8225  df-sup 8616  df-inf 8617  df-card 9077  df-cda 9304  df-pnf 10392  df-mnf 10393  df-xr 10394  df-ltxr 10395  df-le 10396  df-sub 10586  df-neg 10587  df-div 11009  df-nn 11350  df-2 11413  df-3 11414  df-4 11415  df-n0 11618  df-xnn0 11690  df-z 11704  df-uz 11968  df-q 12071  df-rp 12112  df-fz 12619  df-fzo 12760  df-fl 12887  df-mod 12963  df-seq 13095  df-exp 13154  df-hash 13410  df-cj 14215  df-re 14216  df-im 14217  df-sqrt 14351  df-abs 14352  df-dvds 15357  df-gcd 15589  df-prm 15757  df-phi 15841  df-pc 15912  df-lgs 25432
This theorem is referenced by:  2sqlem11  25566  2sqblem  25568
  Copyright terms: Public domain W3C validator