| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > hashbnd | Structured version Visualization version GIF version | ||
| Description: If 𝐴 has size bounded by an integer 𝐵, then 𝐴 is finite. (Contributed by Mario Carneiro, 14-Jun-2015.) |
| Ref | Expression |
|---|---|
| hashbnd | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ ℕ0 ∧ (♯‘𝐴) ≤ 𝐵) → 𝐴 ∈ Fin) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn0re 12411 | . . . . . . 7 ⊢ (𝐵 ∈ ℕ0 → 𝐵 ∈ ℝ) | |
| 2 | ltpnf 13040 | . . . . . . . 8 ⊢ (𝐵 ∈ ℝ → 𝐵 < +∞) | |
| 3 | rexr 11180 | . . . . . . . . 9 ⊢ (𝐵 ∈ ℝ → 𝐵 ∈ ℝ*) | |
| 4 | pnfxr 11188 | . . . . . . . . 9 ⊢ +∞ ∈ ℝ* | |
| 5 | xrltnle 11201 | . . . . . . . . 9 ⊢ ((𝐵 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (𝐵 < +∞ ↔ ¬ +∞ ≤ 𝐵)) | |
| 6 | 3, 4, 5 | sylancl 586 | . . . . . . . 8 ⊢ (𝐵 ∈ ℝ → (𝐵 < +∞ ↔ ¬ +∞ ≤ 𝐵)) |
| 7 | 2, 6 | mpbid 232 | . . . . . . 7 ⊢ (𝐵 ∈ ℝ → ¬ +∞ ≤ 𝐵) |
| 8 | 1, 7 | syl 17 | . . . . . 6 ⊢ (𝐵 ∈ ℕ0 → ¬ +∞ ≤ 𝐵) |
| 9 | hashinf 14260 | . . . . . . . 8 ⊢ ((𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ Fin) → (♯‘𝐴) = +∞) | |
| 10 | 9 | breq1d 5105 | . . . . . . 7 ⊢ ((𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ Fin) → ((♯‘𝐴) ≤ 𝐵 ↔ +∞ ≤ 𝐵)) |
| 11 | 10 | notbid 318 | . . . . . 6 ⊢ ((𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ Fin) → (¬ (♯‘𝐴) ≤ 𝐵 ↔ ¬ +∞ ≤ 𝐵)) |
| 12 | 8, 11 | syl5ibrcom 247 | . . . . 5 ⊢ (𝐵 ∈ ℕ0 → ((𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ Fin) → ¬ (♯‘𝐴) ≤ 𝐵)) |
| 13 | 12 | expdimp 452 | . . . 4 ⊢ ((𝐵 ∈ ℕ0 ∧ 𝐴 ∈ 𝑉) → (¬ 𝐴 ∈ Fin → ¬ (♯‘𝐴) ≤ 𝐵)) |
| 14 | 13 | ancoms 458 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ ℕ0) → (¬ 𝐴 ∈ Fin → ¬ (♯‘𝐴) ≤ 𝐵)) |
| 15 | 14 | con4d 115 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ ℕ0) → ((♯‘𝐴) ≤ 𝐵 → 𝐴 ∈ Fin)) |
| 16 | 15 | 3impia 1117 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ ℕ0 ∧ (♯‘𝐴) ≤ 𝐵) → 𝐴 ∈ Fin) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2109 class class class wbr 5095 ‘cfv 6486 Fincfn 8879 ℝcr 11027 +∞cpnf 11165 ℝ*cxr 11167 < clt 11168 ≤ cle 11169 ℕ0cn0 12402 ♯chash 14255 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-int 4900 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-card 9854 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-nn 12147 df-n0 12403 df-z 12490 df-uz 12754 df-hash 14256 |
| This theorem is referenced by: 0ringnnzr 20428 fta1glem2 26090 fta1blem 26092 lgsqrlem4 27276 fusgredgfi 29288 aks6d1c2lem4 42100 idomsubgmo 43166 pgrple2abl 48350 |
| Copyright terms: Public domain | W3C validator |