| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > hashbnd | Structured version Visualization version GIF version | ||
| Description: If 𝐴 has size bounded by an integer 𝐵, then 𝐴 is finite. (Contributed by Mario Carneiro, 14-Jun-2015.) |
| Ref | Expression |
|---|---|
| hashbnd | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ ℕ0 ∧ (♯‘𝐴) ≤ 𝐵) → 𝐴 ∈ Fin) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn0re 12451 | . . . . . . 7 ⊢ (𝐵 ∈ ℕ0 → 𝐵 ∈ ℝ) | |
| 2 | ltpnf 13080 | . . . . . . . 8 ⊢ (𝐵 ∈ ℝ → 𝐵 < +∞) | |
| 3 | rexr 11220 | . . . . . . . . 9 ⊢ (𝐵 ∈ ℝ → 𝐵 ∈ ℝ*) | |
| 4 | pnfxr 11228 | . . . . . . . . 9 ⊢ +∞ ∈ ℝ* | |
| 5 | xrltnle 11241 | . . . . . . . . 9 ⊢ ((𝐵 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (𝐵 < +∞ ↔ ¬ +∞ ≤ 𝐵)) | |
| 6 | 3, 4, 5 | sylancl 586 | . . . . . . . 8 ⊢ (𝐵 ∈ ℝ → (𝐵 < +∞ ↔ ¬ +∞ ≤ 𝐵)) |
| 7 | 2, 6 | mpbid 232 | . . . . . . 7 ⊢ (𝐵 ∈ ℝ → ¬ +∞ ≤ 𝐵) |
| 8 | 1, 7 | syl 17 | . . . . . 6 ⊢ (𝐵 ∈ ℕ0 → ¬ +∞ ≤ 𝐵) |
| 9 | hashinf 14300 | . . . . . . . 8 ⊢ ((𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ Fin) → (♯‘𝐴) = +∞) | |
| 10 | 9 | breq1d 5117 | . . . . . . 7 ⊢ ((𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ Fin) → ((♯‘𝐴) ≤ 𝐵 ↔ +∞ ≤ 𝐵)) |
| 11 | 10 | notbid 318 | . . . . . 6 ⊢ ((𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ Fin) → (¬ (♯‘𝐴) ≤ 𝐵 ↔ ¬ +∞ ≤ 𝐵)) |
| 12 | 8, 11 | syl5ibrcom 247 | . . . . 5 ⊢ (𝐵 ∈ ℕ0 → ((𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ Fin) → ¬ (♯‘𝐴) ≤ 𝐵)) |
| 13 | 12 | expdimp 452 | . . . 4 ⊢ ((𝐵 ∈ ℕ0 ∧ 𝐴 ∈ 𝑉) → (¬ 𝐴 ∈ Fin → ¬ (♯‘𝐴) ≤ 𝐵)) |
| 14 | 13 | ancoms 458 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ ℕ0) → (¬ 𝐴 ∈ Fin → ¬ (♯‘𝐴) ≤ 𝐵)) |
| 15 | 14 | con4d 115 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ ℕ0) → ((♯‘𝐴) ≤ 𝐵 → 𝐴 ∈ Fin)) |
| 16 | 15 | 3impia 1117 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ ℕ0 ∧ (♯‘𝐴) ≤ 𝐵) → 𝐴 ∈ Fin) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2109 class class class wbr 5107 ‘cfv 6511 Fincfn 8918 ℝcr 11067 +∞cpnf 11205 ℝ*cxr 11207 < clt 11208 ≤ cle 11209 ℕ0cn0 12442 ♯chash 14295 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-card 9892 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-n0 12443 df-z 12530 df-uz 12794 df-hash 14296 |
| This theorem is referenced by: 0ringnnzr 20434 fta1glem2 26074 fta1blem 26076 lgsqrlem4 27260 fusgredgfi 29252 aks6d1c2lem4 42115 idomsubgmo 43182 pgrple2abl 48353 |
| Copyright terms: Public domain | W3C validator |