MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hashbnd Structured version   Visualization version   GIF version

Theorem hashbnd 14261
Description: If 𝐴 has size bounded by an integer 𝐵, then 𝐴 is finite. (Contributed by Mario Carneiro, 14-Jun-2015.)
Assertion
Ref Expression
hashbnd ((𝐴𝑉𝐵 ∈ ℕ0 ∧ (♯‘𝐴) ≤ 𝐵) → 𝐴 ∈ Fin)

Proof of Theorem hashbnd
StepHypRef Expression
1 nn0re 12411 . . . . . . 7 (𝐵 ∈ ℕ0𝐵 ∈ ℝ)
2 ltpnf 13040 . . . . . . . 8 (𝐵 ∈ ℝ → 𝐵 < +∞)
3 rexr 11180 . . . . . . . . 9 (𝐵 ∈ ℝ → 𝐵 ∈ ℝ*)
4 pnfxr 11188 . . . . . . . . 9 +∞ ∈ ℝ*
5 xrltnle 11201 . . . . . . . . 9 ((𝐵 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (𝐵 < +∞ ↔ ¬ +∞ ≤ 𝐵))
63, 4, 5sylancl 586 . . . . . . . 8 (𝐵 ∈ ℝ → (𝐵 < +∞ ↔ ¬ +∞ ≤ 𝐵))
72, 6mpbid 232 . . . . . . 7 (𝐵 ∈ ℝ → ¬ +∞ ≤ 𝐵)
81, 7syl 17 . . . . . 6 (𝐵 ∈ ℕ0 → ¬ +∞ ≤ 𝐵)
9 hashinf 14260 . . . . . . . 8 ((𝐴𝑉 ∧ ¬ 𝐴 ∈ Fin) → (♯‘𝐴) = +∞)
109breq1d 5105 . . . . . . 7 ((𝐴𝑉 ∧ ¬ 𝐴 ∈ Fin) → ((♯‘𝐴) ≤ 𝐵 ↔ +∞ ≤ 𝐵))
1110notbid 318 . . . . . 6 ((𝐴𝑉 ∧ ¬ 𝐴 ∈ Fin) → (¬ (♯‘𝐴) ≤ 𝐵 ↔ ¬ +∞ ≤ 𝐵))
128, 11syl5ibrcom 247 . . . . 5 (𝐵 ∈ ℕ0 → ((𝐴𝑉 ∧ ¬ 𝐴 ∈ Fin) → ¬ (♯‘𝐴) ≤ 𝐵))
1312expdimp 452 . . . 4 ((𝐵 ∈ ℕ0𝐴𝑉) → (¬ 𝐴 ∈ Fin → ¬ (♯‘𝐴) ≤ 𝐵))
1413ancoms 458 . . 3 ((𝐴𝑉𝐵 ∈ ℕ0) → (¬ 𝐴 ∈ Fin → ¬ (♯‘𝐴) ≤ 𝐵))
1514con4d 115 . 2 ((𝐴𝑉𝐵 ∈ ℕ0) → ((♯‘𝐴) ≤ 𝐵𝐴 ∈ Fin))
16153impia 1117 1 ((𝐴𝑉𝐵 ∈ ℕ0 ∧ (♯‘𝐴) ≤ 𝐵) → 𝐴 ∈ Fin)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086  wcel 2109   class class class wbr 5095  cfv 6486  Fincfn 8879  cr 11027  +∞cpnf 11165  *cxr 11167   < clt 11168  cle 11169  0cn0 12402  chash 14255
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-card 9854  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-nn 12147  df-n0 12403  df-z 12490  df-uz 12754  df-hash 14256
This theorem is referenced by:  0ringnnzr  20428  fta1glem2  26090  fta1blem  26092  lgsqrlem4  27276  fusgredgfi  29288  aks6d1c2lem4  42100  idomsubgmo  43166  pgrple2abl  48350
  Copyright terms: Public domain W3C validator