![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > hashbnd | Structured version Visualization version GIF version |
Description: If 𝐴 has size bounded by an integer 𝐵, then 𝐴 is finite. (Contributed by Mario Carneiro, 14-Jun-2015.) |
Ref | Expression |
---|---|
hashbnd | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ ℕ0 ∧ (♯‘𝐴) ≤ 𝐵) → 𝐴 ∈ Fin) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nn0re 11635 | . . . . . . 7 ⊢ (𝐵 ∈ ℕ0 → 𝐵 ∈ ℝ) | |
2 | ltpnf 12247 | . . . . . . . 8 ⊢ (𝐵 ∈ ℝ → 𝐵 < +∞) | |
3 | rexr 10409 | . . . . . . . . 9 ⊢ (𝐵 ∈ ℝ → 𝐵 ∈ ℝ*) | |
4 | pnfxr 10417 | . . . . . . . . 9 ⊢ +∞ ∈ ℝ* | |
5 | xrltnle 10431 | . . . . . . . . 9 ⊢ ((𝐵 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (𝐵 < +∞ ↔ ¬ +∞ ≤ 𝐵)) | |
6 | 3, 4, 5 | sylancl 580 | . . . . . . . 8 ⊢ (𝐵 ∈ ℝ → (𝐵 < +∞ ↔ ¬ +∞ ≤ 𝐵)) |
7 | 2, 6 | mpbid 224 | . . . . . . 7 ⊢ (𝐵 ∈ ℝ → ¬ +∞ ≤ 𝐵) |
8 | 1, 7 | syl 17 | . . . . . 6 ⊢ (𝐵 ∈ ℕ0 → ¬ +∞ ≤ 𝐵) |
9 | hashinf 13422 | . . . . . . . 8 ⊢ ((𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ Fin) → (♯‘𝐴) = +∞) | |
10 | 9 | breq1d 4885 | . . . . . . 7 ⊢ ((𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ Fin) → ((♯‘𝐴) ≤ 𝐵 ↔ +∞ ≤ 𝐵)) |
11 | 10 | notbid 310 | . . . . . 6 ⊢ ((𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ Fin) → (¬ (♯‘𝐴) ≤ 𝐵 ↔ ¬ +∞ ≤ 𝐵)) |
12 | 8, 11 | syl5ibrcom 239 | . . . . 5 ⊢ (𝐵 ∈ ℕ0 → ((𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ Fin) → ¬ (♯‘𝐴) ≤ 𝐵)) |
13 | 12 | expdimp 446 | . . . 4 ⊢ ((𝐵 ∈ ℕ0 ∧ 𝐴 ∈ 𝑉) → (¬ 𝐴 ∈ Fin → ¬ (♯‘𝐴) ≤ 𝐵)) |
14 | 13 | ancoms 452 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ ℕ0) → (¬ 𝐴 ∈ Fin → ¬ (♯‘𝐴) ≤ 𝐵)) |
15 | 14 | con4d 115 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ ℕ0) → ((♯‘𝐴) ≤ 𝐵 → 𝐴 ∈ Fin)) |
16 | 15 | 3impia 1149 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ ℕ0 ∧ (♯‘𝐴) ≤ 𝐵) → 𝐴 ∈ Fin) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 198 ∧ wa 386 ∧ w3a 1111 ∈ wcel 2164 class class class wbr 4875 ‘cfv 6127 Fincfn 8228 ℝcr 10258 +∞cpnf 10395 ℝ*cxr 10397 < clt 10398 ≤ cle 10399 ℕ0cn0 11625 ♯chash 13417 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1894 ax-4 1908 ax-5 2009 ax-6 2075 ax-7 2112 ax-8 2166 ax-9 2173 ax-10 2192 ax-11 2207 ax-12 2220 ax-13 2389 ax-ext 2803 ax-sep 5007 ax-nul 5015 ax-pow 5067 ax-pr 5129 ax-un 7214 ax-cnex 10315 ax-resscn 10316 ax-1cn 10317 ax-icn 10318 ax-addcl 10319 ax-addrcl 10320 ax-mulcl 10321 ax-mulrcl 10322 ax-mulcom 10323 ax-addass 10324 ax-mulass 10325 ax-distr 10326 ax-i2m1 10327 ax-1ne0 10328 ax-1rid 10329 ax-rnegex 10330 ax-rrecex 10331 ax-cnre 10332 ax-pre-lttri 10333 ax-pre-lttrn 10334 ax-pre-ltadd 10335 ax-pre-mulgt0 10336 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 879 df-3or 1112 df-3an 1113 df-tru 1660 df-ex 1879 df-nf 1883 df-sb 2068 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ne 3000 df-nel 3103 df-ral 3122 df-rex 3123 df-reu 3124 df-rab 3126 df-v 3416 df-sbc 3663 df-csb 3758 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-pss 3814 df-nul 4147 df-if 4309 df-pw 4382 df-sn 4400 df-pr 4402 df-tp 4404 df-op 4406 df-uni 4661 df-int 4700 df-iun 4744 df-br 4876 df-opab 4938 df-mpt 4955 df-tr 4978 df-id 5252 df-eprel 5257 df-po 5265 df-so 5266 df-fr 5305 df-we 5307 df-xp 5352 df-rel 5353 df-cnv 5354 df-co 5355 df-dm 5356 df-rn 5357 df-res 5358 df-ima 5359 df-pred 5924 df-ord 5970 df-on 5971 df-lim 5972 df-suc 5973 df-iota 6090 df-fun 6129 df-fn 6130 df-f 6131 df-f1 6132 df-fo 6133 df-f1o 6134 df-fv 6135 df-riota 6871 df-ov 6913 df-oprab 6914 df-mpt2 6915 df-om 7332 df-wrecs 7677 df-recs 7739 df-rdg 7777 df-er 8014 df-en 8229 df-dom 8230 df-sdom 8231 df-fin 8232 df-card 9085 df-pnf 10400 df-mnf 10401 df-xr 10402 df-ltxr 10403 df-le 10404 df-sub 10594 df-neg 10595 df-nn 11358 df-n0 11626 df-z 11712 df-uz 11976 df-hash 13418 |
This theorem is referenced by: 0ringnnzr 19637 fta1glem2 24332 fta1blem 24334 lgsqrlem4 25494 fusgredgfi 26629 idomsubgmo 38614 pgrple2abl 43007 |
Copyright terms: Public domain | W3C validator |