| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > odcl2 | Structured version Visualization version GIF version | ||
| Description: The order of an element of a finite group is finite. (Contributed by Mario Carneiro, 14-Jan-2015.) |
| Ref | Expression |
|---|---|
| odcl2.1 | ⊢ 𝑋 = (Base‘𝐺) |
| odcl2.2 | ⊢ 𝑂 = (od‘𝐺) |
| Ref | Expression |
|---|---|
| odcl2 | ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝐴 ∈ 𝑋) → (𝑂‘𝐴) ∈ ℕ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | odcl2.1 | . . . . . . . . 9 ⊢ 𝑋 = (Base‘𝐺) | |
| 2 | odcl2.2 | . . . . . . . . 9 ⊢ 𝑂 = (od‘𝐺) | |
| 3 | 1, 2 | odcl 19517 | . . . . . . . 8 ⊢ (𝐴 ∈ 𝑋 → (𝑂‘𝐴) ∈ ℕ0) |
| 4 | 3 | adantl 481 | . . . . . . 7 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → (𝑂‘𝐴) ∈ ℕ0) |
| 5 | elnn0 12503 | . . . . . . 7 ⊢ ((𝑂‘𝐴) ∈ ℕ0 ↔ ((𝑂‘𝐴) ∈ ℕ ∨ (𝑂‘𝐴) = 0)) | |
| 6 | 4, 5 | sylib 218 | . . . . . 6 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → ((𝑂‘𝐴) ∈ ℕ ∨ (𝑂‘𝐴) = 0)) |
| 7 | 6 | ord 864 | . . . . 5 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → (¬ (𝑂‘𝐴) ∈ ℕ → (𝑂‘𝐴) = 0)) |
| 8 | eqid 2735 | . . . . . . . 8 ⊢ (.g‘𝐺) = (.g‘𝐺) | |
| 9 | eqid 2735 | . . . . . . . 8 ⊢ (𝑥 ∈ ℤ ↦ (𝑥(.g‘𝐺)𝐴)) = (𝑥 ∈ ℤ ↦ (𝑥(.g‘𝐺)𝐴)) | |
| 10 | 1, 2, 8, 9 | odinf 19544 | . . . . . . 7 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ (𝑂‘𝐴) = 0) → ¬ ran (𝑥 ∈ ℤ ↦ (𝑥(.g‘𝐺)𝐴)) ∈ Fin) |
| 11 | 1, 2, 8, 9 | odf1 19543 | . . . . . . . . 9 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → ((𝑂‘𝐴) = 0 ↔ (𝑥 ∈ ℤ ↦ (𝑥(.g‘𝐺)𝐴)):ℤ–1-1→𝑋)) |
| 12 | 11 | biimp3a 1471 | . . . . . . . 8 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ (𝑂‘𝐴) = 0) → (𝑥 ∈ ℤ ↦ (𝑥(.g‘𝐺)𝐴)):ℤ–1-1→𝑋) |
| 13 | f1f 6774 | . . . . . . . 8 ⊢ ((𝑥 ∈ ℤ ↦ (𝑥(.g‘𝐺)𝐴)):ℤ–1-1→𝑋 → (𝑥 ∈ ℤ ↦ (𝑥(.g‘𝐺)𝐴)):ℤ⟶𝑋) | |
| 14 | frn 6713 | . . . . . . . 8 ⊢ ((𝑥 ∈ ℤ ↦ (𝑥(.g‘𝐺)𝐴)):ℤ⟶𝑋 → ran (𝑥 ∈ ℤ ↦ (𝑥(.g‘𝐺)𝐴)) ⊆ 𝑋) | |
| 15 | ssfi 9187 | . . . . . . . . 9 ⊢ ((𝑋 ∈ Fin ∧ ran (𝑥 ∈ ℤ ↦ (𝑥(.g‘𝐺)𝐴)) ⊆ 𝑋) → ran (𝑥 ∈ ℤ ↦ (𝑥(.g‘𝐺)𝐴)) ∈ Fin) | |
| 16 | 15 | expcom 413 | . . . . . . . 8 ⊢ (ran (𝑥 ∈ ℤ ↦ (𝑥(.g‘𝐺)𝐴)) ⊆ 𝑋 → (𝑋 ∈ Fin → ran (𝑥 ∈ ℤ ↦ (𝑥(.g‘𝐺)𝐴)) ∈ Fin)) |
| 17 | 12, 13, 14, 16 | 4syl 19 | . . . . . . 7 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ (𝑂‘𝐴) = 0) → (𝑋 ∈ Fin → ran (𝑥 ∈ ℤ ↦ (𝑥(.g‘𝐺)𝐴)) ∈ Fin)) |
| 18 | 10, 17 | mtod 198 | . . . . . 6 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ (𝑂‘𝐴) = 0) → ¬ 𝑋 ∈ Fin) |
| 19 | 18 | 3expia 1121 | . . . . 5 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → ((𝑂‘𝐴) = 0 → ¬ 𝑋 ∈ Fin)) |
| 20 | 7, 19 | syld 47 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → (¬ (𝑂‘𝐴) ∈ ℕ → ¬ 𝑋 ∈ Fin)) |
| 21 | 20 | con4d 115 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → (𝑋 ∈ Fin → (𝑂‘𝐴) ∈ ℕ)) |
| 22 | 21 | 3impia 1117 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑋 ∈ Fin) → (𝑂‘𝐴) ∈ ℕ) |
| 23 | 22 | 3com23 1126 | 1 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝐴 ∈ 𝑋) → (𝑂‘𝐴) ∈ ℕ) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∨ wo 847 ∧ w3a 1086 = wceq 1540 ∈ wcel 2108 ⊆ wss 3926 ↦ cmpt 5201 ran crn 5655 ⟶wf 6527 –1-1→wf1 6528 ‘cfv 6531 (class class class)co 7405 Fincfn 8959 0cc0 11129 ℕcn 12240 ℕ0cn0 12501 ℤcz 12588 Basecbs 17228 Grpcgrp 18916 .gcmg 19050 odcod 19505 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-inf2 9655 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 ax-pre-sup 11207 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-se 5607 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-isom 6540 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-1st 7988 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-oadd 8484 df-omul 8485 df-er 8719 df-map 8842 df-en 8960 df-dom 8961 df-sdom 8962 df-fin 8963 df-sup 9454 df-inf 9455 df-oi 9524 df-card 9953 df-acn 9956 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-div 11895 df-nn 12241 df-2 12303 df-3 12304 df-n0 12502 df-z 12589 df-uz 12853 df-rp 13009 df-fz 13525 df-fl 13809 df-mod 13887 df-seq 14020 df-exp 14080 df-cj 15118 df-re 15119 df-im 15120 df-sqrt 15254 df-abs 15255 df-dvds 16273 df-0g 17455 df-mgm 18618 df-sgrp 18697 df-mnd 18713 df-grp 18919 df-minusg 18920 df-sbg 18921 df-mulg 19051 df-od 19509 |
| This theorem is referenced by: gexcl2 19570 pgpfi1 19576 odcau 19585 prmcyg 19875 lt6abl 19876 dchrptlem1 27227 dchrptlem2 27228 grpods 42207 unitscyglem1 42208 finsubmsubg 42533 |
| Copyright terms: Public domain | W3C validator |