| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > odcl2 | Structured version Visualization version GIF version | ||
| Description: The order of an element of a finite group is finite. (Contributed by Mario Carneiro, 14-Jan-2015.) |
| Ref | Expression |
|---|---|
| odcl2.1 | ⊢ 𝑋 = (Base‘𝐺) |
| odcl2.2 | ⊢ 𝑂 = (od‘𝐺) |
| Ref | Expression |
|---|---|
| odcl2 | ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝐴 ∈ 𝑋) → (𝑂‘𝐴) ∈ ℕ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | odcl2.1 | . . . . . . . . 9 ⊢ 𝑋 = (Base‘𝐺) | |
| 2 | odcl2.2 | . . . . . . . . 9 ⊢ 𝑂 = (od‘𝐺) | |
| 3 | 1, 2 | odcl 19473 | . . . . . . . 8 ⊢ (𝐴 ∈ 𝑋 → (𝑂‘𝐴) ∈ ℕ0) |
| 4 | 3 | adantl 481 | . . . . . . 7 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → (𝑂‘𝐴) ∈ ℕ0) |
| 5 | elnn0 12451 | . . . . . . 7 ⊢ ((𝑂‘𝐴) ∈ ℕ0 ↔ ((𝑂‘𝐴) ∈ ℕ ∨ (𝑂‘𝐴) = 0)) | |
| 6 | 4, 5 | sylib 218 | . . . . . 6 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → ((𝑂‘𝐴) ∈ ℕ ∨ (𝑂‘𝐴) = 0)) |
| 7 | 6 | ord 864 | . . . . 5 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → (¬ (𝑂‘𝐴) ∈ ℕ → (𝑂‘𝐴) = 0)) |
| 8 | eqid 2730 | . . . . . . . 8 ⊢ (.g‘𝐺) = (.g‘𝐺) | |
| 9 | eqid 2730 | . . . . . . . 8 ⊢ (𝑥 ∈ ℤ ↦ (𝑥(.g‘𝐺)𝐴)) = (𝑥 ∈ ℤ ↦ (𝑥(.g‘𝐺)𝐴)) | |
| 10 | 1, 2, 8, 9 | odinf 19500 | . . . . . . 7 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ (𝑂‘𝐴) = 0) → ¬ ran (𝑥 ∈ ℤ ↦ (𝑥(.g‘𝐺)𝐴)) ∈ Fin) |
| 11 | 1, 2, 8, 9 | odf1 19499 | . . . . . . . . 9 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → ((𝑂‘𝐴) = 0 ↔ (𝑥 ∈ ℤ ↦ (𝑥(.g‘𝐺)𝐴)):ℤ–1-1→𝑋)) |
| 12 | 11 | biimp3a 1471 | . . . . . . . 8 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ (𝑂‘𝐴) = 0) → (𝑥 ∈ ℤ ↦ (𝑥(.g‘𝐺)𝐴)):ℤ–1-1→𝑋) |
| 13 | f1f 6759 | . . . . . . . 8 ⊢ ((𝑥 ∈ ℤ ↦ (𝑥(.g‘𝐺)𝐴)):ℤ–1-1→𝑋 → (𝑥 ∈ ℤ ↦ (𝑥(.g‘𝐺)𝐴)):ℤ⟶𝑋) | |
| 14 | frn 6698 | . . . . . . . 8 ⊢ ((𝑥 ∈ ℤ ↦ (𝑥(.g‘𝐺)𝐴)):ℤ⟶𝑋 → ran (𝑥 ∈ ℤ ↦ (𝑥(.g‘𝐺)𝐴)) ⊆ 𝑋) | |
| 15 | ssfi 9143 | . . . . . . . . 9 ⊢ ((𝑋 ∈ Fin ∧ ran (𝑥 ∈ ℤ ↦ (𝑥(.g‘𝐺)𝐴)) ⊆ 𝑋) → ran (𝑥 ∈ ℤ ↦ (𝑥(.g‘𝐺)𝐴)) ∈ Fin) | |
| 16 | 15 | expcom 413 | . . . . . . . 8 ⊢ (ran (𝑥 ∈ ℤ ↦ (𝑥(.g‘𝐺)𝐴)) ⊆ 𝑋 → (𝑋 ∈ Fin → ran (𝑥 ∈ ℤ ↦ (𝑥(.g‘𝐺)𝐴)) ∈ Fin)) |
| 17 | 12, 13, 14, 16 | 4syl 19 | . . . . . . 7 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ (𝑂‘𝐴) = 0) → (𝑋 ∈ Fin → ran (𝑥 ∈ ℤ ↦ (𝑥(.g‘𝐺)𝐴)) ∈ Fin)) |
| 18 | 10, 17 | mtod 198 | . . . . . 6 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ (𝑂‘𝐴) = 0) → ¬ 𝑋 ∈ Fin) |
| 19 | 18 | 3expia 1121 | . . . . 5 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → ((𝑂‘𝐴) = 0 → ¬ 𝑋 ∈ Fin)) |
| 20 | 7, 19 | syld 47 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → (¬ (𝑂‘𝐴) ∈ ℕ → ¬ 𝑋 ∈ Fin)) |
| 21 | 20 | con4d 115 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → (𝑋 ∈ Fin → (𝑂‘𝐴) ∈ ℕ)) |
| 22 | 21 | 3impia 1117 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑋 ∈ Fin) → (𝑂‘𝐴) ∈ ℕ) |
| 23 | 22 | 3com23 1126 | 1 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝐴 ∈ 𝑋) → (𝑂‘𝐴) ∈ ℕ) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∨ wo 847 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ⊆ wss 3917 ↦ cmpt 5191 ran crn 5642 ⟶wf 6510 –1-1→wf1 6511 ‘cfv 6514 (class class class)co 7390 Fincfn 8921 0cc0 11075 ℕcn 12193 ℕ0cn0 12449 ℤcz 12536 Basecbs 17186 Grpcgrp 18872 .gcmg 19006 odcod 19461 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-inf2 9601 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 ax-pre-sup 11153 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-se 5595 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-isom 6523 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-oadd 8441 df-omul 8442 df-er 8674 df-map 8804 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-sup 9400 df-inf 9401 df-oi 9470 df-card 9899 df-acn 9902 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-div 11843 df-nn 12194 df-2 12256 df-3 12257 df-n0 12450 df-z 12537 df-uz 12801 df-rp 12959 df-fz 13476 df-fl 13761 df-mod 13839 df-seq 13974 df-exp 14034 df-cj 15072 df-re 15073 df-im 15074 df-sqrt 15208 df-abs 15209 df-dvds 16230 df-0g 17411 df-mgm 18574 df-sgrp 18653 df-mnd 18669 df-grp 18875 df-minusg 18876 df-sbg 18877 df-mulg 19007 df-od 19465 |
| This theorem is referenced by: gexcl2 19526 pgpfi1 19532 odcau 19541 prmcyg 19831 lt6abl 19832 dchrptlem1 27182 dchrptlem2 27183 grpods 42189 unitscyglem1 42190 finsubmsubg 42505 |
| Copyright terms: Public domain | W3C validator |