MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  odcl2 Structured version   Visualization version   GIF version

Theorem odcl2 19463
Description: The order of an element of a finite group is finite. (Contributed by Mario Carneiro, 14-Jan-2015.)
Hypotheses
Ref Expression
odcl2.1 𝑋 = (Base‘𝐺)
odcl2.2 𝑂 = (od‘𝐺)
Assertion
Ref Expression
odcl2 ((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝐴𝑋) → (𝑂𝐴) ∈ ℕ)

Proof of Theorem odcl2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 odcl2.1 . . . . . . . . 9 𝑋 = (Base‘𝐺)
2 odcl2.2 . . . . . . . . 9 𝑂 = (od‘𝐺)
31, 2odcl 19434 . . . . . . . 8 (𝐴𝑋 → (𝑂𝐴) ∈ ℕ0)
43adantl 481 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → (𝑂𝐴) ∈ ℕ0)
5 elnn0 12405 . . . . . . 7 ((𝑂𝐴) ∈ ℕ0 ↔ ((𝑂𝐴) ∈ ℕ ∨ (𝑂𝐴) = 0))
64, 5sylib 218 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → ((𝑂𝐴) ∈ ℕ ∨ (𝑂𝐴) = 0))
76ord 864 . . . . 5 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → (¬ (𝑂𝐴) ∈ ℕ → (𝑂𝐴) = 0))
8 eqid 2729 . . . . . . . 8 (.g𝐺) = (.g𝐺)
9 eqid 2729 . . . . . . . 8 (𝑥 ∈ ℤ ↦ (𝑥(.g𝐺)𝐴)) = (𝑥 ∈ ℤ ↦ (𝑥(.g𝐺)𝐴))
101, 2, 8, 9odinf 19461 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) = 0) → ¬ ran (𝑥 ∈ ℤ ↦ (𝑥(.g𝐺)𝐴)) ∈ Fin)
111, 2, 8, 9odf1 19460 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → ((𝑂𝐴) = 0 ↔ (𝑥 ∈ ℤ ↦ (𝑥(.g𝐺)𝐴)):ℤ–1-1𝑋))
1211biimp3a 1471 . . . . . . . 8 ((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) = 0) → (𝑥 ∈ ℤ ↦ (𝑥(.g𝐺)𝐴)):ℤ–1-1𝑋)
13 f1f 6724 . . . . . . . 8 ((𝑥 ∈ ℤ ↦ (𝑥(.g𝐺)𝐴)):ℤ–1-1𝑋 → (𝑥 ∈ ℤ ↦ (𝑥(.g𝐺)𝐴)):ℤ⟶𝑋)
14 frn 6663 . . . . . . . 8 ((𝑥 ∈ ℤ ↦ (𝑥(.g𝐺)𝐴)):ℤ⟶𝑋 → ran (𝑥 ∈ ℤ ↦ (𝑥(.g𝐺)𝐴)) ⊆ 𝑋)
15 ssfi 9097 . . . . . . . . 9 ((𝑋 ∈ Fin ∧ ran (𝑥 ∈ ℤ ↦ (𝑥(.g𝐺)𝐴)) ⊆ 𝑋) → ran (𝑥 ∈ ℤ ↦ (𝑥(.g𝐺)𝐴)) ∈ Fin)
1615expcom 413 . . . . . . . 8 (ran (𝑥 ∈ ℤ ↦ (𝑥(.g𝐺)𝐴)) ⊆ 𝑋 → (𝑋 ∈ Fin → ran (𝑥 ∈ ℤ ↦ (𝑥(.g𝐺)𝐴)) ∈ Fin))
1712, 13, 14, 164syl 19 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) = 0) → (𝑋 ∈ Fin → ran (𝑥 ∈ ℤ ↦ (𝑥(.g𝐺)𝐴)) ∈ Fin))
1810, 17mtod 198 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) = 0) → ¬ 𝑋 ∈ Fin)
19183expia 1121 . . . . 5 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → ((𝑂𝐴) = 0 → ¬ 𝑋 ∈ Fin))
207, 19syld 47 . . . 4 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → (¬ (𝑂𝐴) ∈ ℕ → ¬ 𝑋 ∈ Fin))
2120con4d 115 . . 3 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → (𝑋 ∈ Fin → (𝑂𝐴) ∈ ℕ))
22213impia 1117 . 2 ((𝐺 ∈ Grp ∧ 𝐴𝑋𝑋 ∈ Fin) → (𝑂𝐴) ∈ ℕ)
23223com23 1126 1 ((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝐴𝑋) → (𝑂𝐴) ∈ ℕ)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  wss 3905  cmpt 5176  ran crn 5624  wf 6482  1-1wf1 6483  cfv 6486  (class class class)co 7353  Fincfn 8879  0cc0 11028  cn 12147  0cn0 12403  cz 12490  Basecbs 17139  Grpcgrp 18831  .gcmg 18965  odcod 19422
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-inf2 9556  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-oadd 8399  df-omul 8400  df-er 8632  df-map 8762  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-sup 9351  df-inf 9352  df-oi 9421  df-card 9854  df-acn 9857  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11368  df-neg 11369  df-div 11797  df-nn 12148  df-2 12210  df-3 12211  df-n0 12404  df-z 12491  df-uz 12755  df-rp 12913  df-fz 13430  df-fl 13715  df-mod 13793  df-seq 13928  df-exp 13988  df-cj 15025  df-re 15026  df-im 15027  df-sqrt 15161  df-abs 15162  df-dvds 16183  df-0g 17364  df-mgm 18533  df-sgrp 18612  df-mnd 18628  df-grp 18834  df-minusg 18835  df-sbg 18836  df-mulg 18966  df-od 19426
This theorem is referenced by:  gexcl2  19487  pgpfi1  19493  odcau  19502  prmcyg  19792  lt6abl  19793  dchrptlem1  27192  dchrptlem2  27193  grpods  42187  unitscyglem1  42188  finsubmsubg  42503
  Copyright terms: Public domain W3C validator