![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > odcl2 | Structured version Visualization version GIF version |
Description: The order of an element of a finite group is finite. (Contributed by Mario Carneiro, 14-Jan-2015.) |
Ref | Expression |
---|---|
odcl2.1 | ⊢ 𝑋 = (Base‘𝐺) |
odcl2.2 | ⊢ 𝑂 = (od‘𝐺) |
Ref | Expression |
---|---|
odcl2 | ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝐴 ∈ 𝑋) → (𝑂‘𝐴) ∈ ℕ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | odcl2.1 | . . . . . . . . 9 ⊢ 𝑋 = (Base‘𝐺) | |
2 | odcl2.2 | . . . . . . . . 9 ⊢ 𝑂 = (od‘𝐺) | |
3 | 1, 2 | odcl 18307 | . . . . . . . 8 ⊢ (𝐴 ∈ 𝑋 → (𝑂‘𝐴) ∈ ℕ0) |
4 | 3 | adantl 475 | . . . . . . 7 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → (𝑂‘𝐴) ∈ ℕ0) |
5 | elnn0 11621 | . . . . . . 7 ⊢ ((𝑂‘𝐴) ∈ ℕ0 ↔ ((𝑂‘𝐴) ∈ ℕ ∨ (𝑂‘𝐴) = 0)) | |
6 | 4, 5 | sylib 210 | . . . . . 6 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → ((𝑂‘𝐴) ∈ ℕ ∨ (𝑂‘𝐴) = 0)) |
7 | 6 | ord 897 | . . . . 5 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → (¬ (𝑂‘𝐴) ∈ ℕ → (𝑂‘𝐴) = 0)) |
8 | eqid 2826 | . . . . . . . 8 ⊢ (.g‘𝐺) = (.g‘𝐺) | |
9 | eqid 2826 | . . . . . . . 8 ⊢ (𝑥 ∈ ℤ ↦ (𝑥(.g‘𝐺)𝐴)) = (𝑥 ∈ ℤ ↦ (𝑥(.g‘𝐺)𝐴)) | |
10 | 1, 2, 8, 9 | odinf 18332 | . . . . . . 7 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ (𝑂‘𝐴) = 0) → ¬ ran (𝑥 ∈ ℤ ↦ (𝑥(.g‘𝐺)𝐴)) ∈ Fin) |
11 | 1, 2, 8, 9 | odf1 18331 | . . . . . . . . 9 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → ((𝑂‘𝐴) = 0 ↔ (𝑥 ∈ ℤ ↦ (𝑥(.g‘𝐺)𝐴)):ℤ–1-1→𝑋)) |
12 | 11 | biimp3a 1599 | . . . . . . . 8 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ (𝑂‘𝐴) = 0) → (𝑥 ∈ ℤ ↦ (𝑥(.g‘𝐺)𝐴)):ℤ–1-1→𝑋) |
13 | f1f 6339 | . . . . . . . 8 ⊢ ((𝑥 ∈ ℤ ↦ (𝑥(.g‘𝐺)𝐴)):ℤ–1-1→𝑋 → (𝑥 ∈ ℤ ↦ (𝑥(.g‘𝐺)𝐴)):ℤ⟶𝑋) | |
14 | frn 6285 | . . . . . . . 8 ⊢ ((𝑥 ∈ ℤ ↦ (𝑥(.g‘𝐺)𝐴)):ℤ⟶𝑋 → ran (𝑥 ∈ ℤ ↦ (𝑥(.g‘𝐺)𝐴)) ⊆ 𝑋) | |
15 | ssfi 8450 | . . . . . . . . 9 ⊢ ((𝑋 ∈ Fin ∧ ran (𝑥 ∈ ℤ ↦ (𝑥(.g‘𝐺)𝐴)) ⊆ 𝑋) → ran (𝑥 ∈ ℤ ↦ (𝑥(.g‘𝐺)𝐴)) ∈ Fin) | |
16 | 15 | expcom 404 | . . . . . . . 8 ⊢ (ran (𝑥 ∈ ℤ ↦ (𝑥(.g‘𝐺)𝐴)) ⊆ 𝑋 → (𝑋 ∈ Fin → ran (𝑥 ∈ ℤ ↦ (𝑥(.g‘𝐺)𝐴)) ∈ Fin)) |
17 | 12, 13, 14, 16 | 4syl 19 | . . . . . . 7 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ (𝑂‘𝐴) = 0) → (𝑋 ∈ Fin → ran (𝑥 ∈ ℤ ↦ (𝑥(.g‘𝐺)𝐴)) ∈ Fin)) |
18 | 10, 17 | mtod 190 | . . . . . 6 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ (𝑂‘𝐴) = 0) → ¬ 𝑋 ∈ Fin) |
19 | 18 | 3expia 1156 | . . . . 5 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → ((𝑂‘𝐴) = 0 → ¬ 𝑋 ∈ Fin)) |
20 | 7, 19 | syld 47 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → (¬ (𝑂‘𝐴) ∈ ℕ → ¬ 𝑋 ∈ Fin)) |
21 | 20 | con4d 115 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → (𝑋 ∈ Fin → (𝑂‘𝐴) ∈ ℕ)) |
22 | 21 | 3impia 1151 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑋 ∈ Fin) → (𝑂‘𝐴) ∈ ℕ) |
23 | 22 | 3com23 1162 | 1 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝐴 ∈ 𝑋) → (𝑂‘𝐴) ∈ ℕ) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 386 ∨ wo 880 ∧ w3a 1113 = wceq 1658 ∈ wcel 2166 ⊆ wss 3799 ↦ cmpt 4953 ran crn 5344 ⟶wf 6120 –1-1→wf1 6121 ‘cfv 6124 (class class class)co 6906 Fincfn 8223 0cc0 10253 ℕcn 11351 ℕ0cn0 11619 ℤcz 11705 Basecbs 16223 Grpcgrp 17777 .gcmg 17895 odcod 18296 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-8 2168 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-13 2391 ax-ext 2804 ax-rep 4995 ax-sep 5006 ax-nul 5014 ax-pow 5066 ax-pr 5128 ax-un 7210 ax-inf2 8816 ax-cnex 10309 ax-resscn 10310 ax-1cn 10311 ax-icn 10312 ax-addcl 10313 ax-addrcl 10314 ax-mulcl 10315 ax-mulrcl 10316 ax-mulcom 10317 ax-addass 10318 ax-mulass 10319 ax-distr 10320 ax-i2m1 10321 ax-1ne0 10322 ax-1rid 10323 ax-rnegex 10324 ax-rrecex 10325 ax-cnre 10326 ax-pre-lttri 10327 ax-pre-lttrn 10328 ax-pre-ltadd 10329 ax-pre-mulgt0 10330 ax-pre-sup 10331 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-3or 1114 df-3an 1115 df-tru 1662 df-ex 1881 df-nf 1885 df-sb 2070 df-mo 2606 df-eu 2641 df-clab 2813 df-cleq 2819 df-clel 2822 df-nfc 2959 df-ne 3001 df-nel 3104 df-ral 3123 df-rex 3124 df-reu 3125 df-rmo 3126 df-rab 3127 df-v 3417 df-sbc 3664 df-csb 3759 df-dif 3802 df-un 3804 df-in 3806 df-ss 3813 df-pss 3815 df-nul 4146 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-tp 4403 df-op 4405 df-uni 4660 df-int 4699 df-iun 4743 df-br 4875 df-opab 4937 df-mpt 4954 df-tr 4977 df-id 5251 df-eprel 5256 df-po 5264 df-so 5265 df-fr 5302 df-se 5303 df-we 5304 df-xp 5349 df-rel 5350 df-cnv 5351 df-co 5352 df-dm 5353 df-rn 5354 df-res 5355 df-ima 5356 df-pred 5921 df-ord 5967 df-on 5968 df-lim 5969 df-suc 5970 df-iota 6087 df-fun 6126 df-fn 6127 df-f 6128 df-f1 6129 df-fo 6130 df-f1o 6131 df-fv 6132 df-isom 6133 df-riota 6867 df-ov 6909 df-oprab 6910 df-mpt2 6911 df-om 7328 df-1st 7429 df-2nd 7430 df-wrecs 7673 df-recs 7735 df-rdg 7773 df-1o 7827 df-oadd 7831 df-omul 7832 df-er 8010 df-map 8125 df-en 8224 df-dom 8225 df-sdom 8226 df-fin 8227 df-sup 8618 df-inf 8619 df-oi 8685 df-card 9079 df-acn 9082 df-pnf 10394 df-mnf 10395 df-xr 10396 df-ltxr 10397 df-le 10398 df-sub 10588 df-neg 10589 df-div 11011 df-nn 11352 df-2 11415 df-3 11416 df-n0 11620 df-z 11706 df-uz 11970 df-rp 12114 df-fz 12621 df-fl 12889 df-mod 12965 df-seq 13097 df-exp 13156 df-cj 14217 df-re 14218 df-im 14219 df-sqrt 14353 df-abs 14354 df-dvds 15359 df-0g 16456 df-mgm 17596 df-sgrp 17638 df-mnd 17649 df-grp 17780 df-minusg 17781 df-sbg 17782 df-mulg 17896 df-od 18300 |
This theorem is referenced by: gexcl2 18356 pgpfi1 18362 odcau 18371 prmcyg 18649 lt6abl 18650 dchrptlem1 25403 dchrptlem2 25404 |
Copyright terms: Public domain | W3C validator |