Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > odcl2 | Structured version Visualization version GIF version |
Description: The order of an element of a finite group is finite. (Contributed by Mario Carneiro, 14-Jan-2015.) |
Ref | Expression |
---|---|
odcl2.1 | ⊢ 𝑋 = (Base‘𝐺) |
odcl2.2 | ⊢ 𝑂 = (od‘𝐺) |
Ref | Expression |
---|---|
odcl2 | ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝐴 ∈ 𝑋) → (𝑂‘𝐴) ∈ ℕ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | odcl2.1 | . . . . . . . . 9 ⊢ 𝑋 = (Base‘𝐺) | |
2 | odcl2.2 | . . . . . . . . 9 ⊢ 𝑂 = (od‘𝐺) | |
3 | 1, 2 | odcl 19245 | . . . . . . . 8 ⊢ (𝐴 ∈ 𝑋 → (𝑂‘𝐴) ∈ ℕ0) |
4 | 3 | adantl 483 | . . . . . . 7 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → (𝑂‘𝐴) ∈ ℕ0) |
5 | elnn0 12345 | . . . . . . 7 ⊢ ((𝑂‘𝐴) ∈ ℕ0 ↔ ((𝑂‘𝐴) ∈ ℕ ∨ (𝑂‘𝐴) = 0)) | |
6 | 4, 5 | sylib 217 | . . . . . 6 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → ((𝑂‘𝐴) ∈ ℕ ∨ (𝑂‘𝐴) = 0)) |
7 | 6 | ord 862 | . . . . 5 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → (¬ (𝑂‘𝐴) ∈ ℕ → (𝑂‘𝐴) = 0)) |
8 | eqid 2737 | . . . . . . . 8 ⊢ (.g‘𝐺) = (.g‘𝐺) | |
9 | eqid 2737 | . . . . . . . 8 ⊢ (𝑥 ∈ ℤ ↦ (𝑥(.g‘𝐺)𝐴)) = (𝑥 ∈ ℤ ↦ (𝑥(.g‘𝐺)𝐴)) | |
10 | 1, 2, 8, 9 | odinf 19271 | . . . . . . 7 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ (𝑂‘𝐴) = 0) → ¬ ran (𝑥 ∈ ℤ ↦ (𝑥(.g‘𝐺)𝐴)) ∈ Fin) |
11 | 1, 2, 8, 9 | odf1 19270 | . . . . . . . . 9 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → ((𝑂‘𝐴) = 0 ↔ (𝑥 ∈ ℤ ↦ (𝑥(.g‘𝐺)𝐴)):ℤ–1-1→𝑋)) |
12 | 11 | biimp3a 1469 | . . . . . . . 8 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ (𝑂‘𝐴) = 0) → (𝑥 ∈ ℤ ↦ (𝑥(.g‘𝐺)𝐴)):ℤ–1-1→𝑋) |
13 | f1f 6730 | . . . . . . . 8 ⊢ ((𝑥 ∈ ℤ ↦ (𝑥(.g‘𝐺)𝐴)):ℤ–1-1→𝑋 → (𝑥 ∈ ℤ ↦ (𝑥(.g‘𝐺)𝐴)):ℤ⟶𝑋) | |
14 | frn 6667 | . . . . . . . 8 ⊢ ((𝑥 ∈ ℤ ↦ (𝑥(.g‘𝐺)𝐴)):ℤ⟶𝑋 → ran (𝑥 ∈ ℤ ↦ (𝑥(.g‘𝐺)𝐴)) ⊆ 𝑋) | |
15 | ssfi 9047 | . . . . . . . . 9 ⊢ ((𝑋 ∈ Fin ∧ ran (𝑥 ∈ ℤ ↦ (𝑥(.g‘𝐺)𝐴)) ⊆ 𝑋) → ran (𝑥 ∈ ℤ ↦ (𝑥(.g‘𝐺)𝐴)) ∈ Fin) | |
16 | 15 | expcom 415 | . . . . . . . 8 ⊢ (ran (𝑥 ∈ ℤ ↦ (𝑥(.g‘𝐺)𝐴)) ⊆ 𝑋 → (𝑋 ∈ Fin → ran (𝑥 ∈ ℤ ↦ (𝑥(.g‘𝐺)𝐴)) ∈ Fin)) |
17 | 12, 13, 14, 16 | 4syl 19 | . . . . . . 7 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ (𝑂‘𝐴) = 0) → (𝑋 ∈ Fin → ran (𝑥 ∈ ℤ ↦ (𝑥(.g‘𝐺)𝐴)) ∈ Fin)) |
18 | 10, 17 | mtod 197 | . . . . . 6 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ (𝑂‘𝐴) = 0) → ¬ 𝑋 ∈ Fin) |
19 | 18 | 3expia 1121 | . . . . 5 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → ((𝑂‘𝐴) = 0 → ¬ 𝑋 ∈ Fin)) |
20 | 7, 19 | syld 47 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → (¬ (𝑂‘𝐴) ∈ ℕ → ¬ 𝑋 ∈ Fin)) |
21 | 20 | con4d 115 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → (𝑋 ∈ Fin → (𝑂‘𝐴) ∈ ℕ)) |
22 | 21 | 3impia 1117 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑋 ∈ Fin) → (𝑂‘𝐴) ∈ ℕ) |
23 | 22 | 3com23 1126 | 1 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝐴 ∈ 𝑋) → (𝑂‘𝐴) ∈ ℕ) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 397 ∨ wo 845 ∧ w3a 1087 = wceq 1541 ∈ wcel 2106 ⊆ wss 3905 ↦ cmpt 5183 ran crn 5628 ⟶wf 6484 –1-1→wf1 6485 ‘cfv 6488 (class class class)co 7346 Fincfn 8813 0cc0 10981 ℕcn 12083 ℕ0cn0 12343 ℤcz 12429 Basecbs 17014 Grpcgrp 18678 .gcmg 18801 odcod 19233 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 ax-rep 5237 ax-sep 5251 ax-nul 5258 ax-pow 5315 ax-pr 5379 ax-un 7659 ax-inf2 9507 ax-cnex 11037 ax-resscn 11038 ax-1cn 11039 ax-icn 11040 ax-addcl 11041 ax-addrcl 11042 ax-mulcl 11043 ax-mulrcl 11044 ax-mulcom 11045 ax-addass 11046 ax-mulass 11047 ax-distr 11048 ax-i2m1 11049 ax-1ne0 11050 ax-1rid 11051 ax-rnegex 11052 ax-rrecex 11053 ax-cnre 11054 ax-pre-lttri 11055 ax-pre-lttrn 11056 ax-pre-ltadd 11057 ax-pre-mulgt0 11058 ax-pre-sup 11059 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3351 df-reu 3352 df-rab 3406 df-v 3445 df-sbc 3735 df-csb 3851 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3924 df-nul 4278 df-if 4482 df-pw 4557 df-sn 4582 df-pr 4584 df-op 4588 df-uni 4861 df-int 4903 df-iun 4951 df-br 5101 df-opab 5163 df-mpt 5184 df-tr 5218 df-id 5525 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5582 df-se 5583 df-we 5584 df-xp 5633 df-rel 5634 df-cnv 5635 df-co 5636 df-dm 5637 df-rn 5638 df-res 5639 df-ima 5640 df-pred 6246 df-ord 6313 df-on 6314 df-lim 6315 df-suc 6316 df-iota 6440 df-fun 6490 df-fn 6491 df-f 6492 df-f1 6493 df-fo 6494 df-f1o 6495 df-fv 6496 df-isom 6497 df-riota 7302 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7790 df-1st 7908 df-2nd 7909 df-frecs 8176 df-wrecs 8207 df-recs 8281 df-rdg 8320 df-1o 8376 df-oadd 8380 df-omul 8381 df-er 8578 df-map 8697 df-en 8814 df-dom 8815 df-sdom 8816 df-fin 8817 df-sup 9308 df-inf 9309 df-oi 9376 df-card 9805 df-acn 9808 df-pnf 11121 df-mnf 11122 df-xr 11123 df-ltxr 11124 df-le 11125 df-sub 11317 df-neg 11318 df-div 11743 df-nn 12084 df-2 12146 df-3 12147 df-n0 12344 df-z 12430 df-uz 12693 df-rp 12841 df-fz 13350 df-fl 13622 df-mod 13700 df-seq 13832 df-exp 13893 df-cj 14914 df-re 14915 df-im 14916 df-sqrt 15050 df-abs 15051 df-dvds 16068 df-0g 17254 df-mgm 18428 df-sgrp 18477 df-mnd 18488 df-grp 18681 df-minusg 18682 df-sbg 18683 df-mulg 18802 df-od 19237 |
This theorem is referenced by: gexcl2 19295 pgpfi1 19301 odcau 19310 prmcyg 19594 lt6abl 19595 dchrptlem1 26522 dchrptlem2 26523 |
Copyright terms: Public domain | W3C validator |