MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  telgsumfz0 Structured version   Visualization version   GIF version

Theorem telgsumfz0 19902
Description: Telescoping finite group sum ranging over nonnegative integers, using implicit substitution, analogous to telfsum 15747. (Contributed by AV, 23-Nov-2019.)
Hypotheses
Ref Expression
telgsumfz0.k 𝐾 = (Base‘𝐺)
telgsumfz0.g (𝜑𝐺 ∈ Abel)
telgsumfz0.m = (-g𝐺)
telgsumfz0.s (𝜑𝑆 ∈ ℕ0)
telgsumfz0.f (𝜑 → ∀𝑘 ∈ (0...(𝑆 + 1))𝐴𝐾)
telgsumfz0.a (𝑘 = 𝑖𝐴 = 𝐵)
telgsumfz0.c (𝑘 = (𝑖 + 1) → 𝐴 = 𝐶)
telgsumfz0.d (𝑘 = 0 → 𝐴 = 𝐷)
telgsumfz0.e (𝑘 = (𝑆 + 1) → 𝐴 = 𝐸)
Assertion
Ref Expression
telgsumfz0 (𝜑 → (𝐺 Σg (𝑖 ∈ (0...𝑆) ↦ (𝐵 𝐶))) = (𝐷 𝐸))
Distinct variable groups:   𝐴,𝑖   𝐵,𝑘   𝐶,𝑘   𝐷,𝑘   𝑘,𝐸   𝑖,𝐺   𝑖,𝐾,𝑘   𝑆,𝑖,𝑘   ,𝑖   𝜑,𝑖,𝑘
Allowed substitution hints:   𝐴(𝑘)   𝐵(𝑖)   𝐶(𝑖)   𝐷(𝑖)   𝐸(𝑖)   𝐺(𝑘)   (𝑘)

Proof of Theorem telgsumfz0
StepHypRef Expression
1 simpr 484 . . . . . . 7 ((𝜑𝑖 ∈ (0...𝑆)) → 𝑖 ∈ (0...𝑆))
2 telgsumfz0.a . . . . . . . 8 (𝑘 = 𝑖𝐴 = 𝐵)
32adantl 481 . . . . . . 7 (((𝜑𝑖 ∈ (0...𝑆)) ∧ 𝑘 = 𝑖) → 𝐴 = 𝐵)
41, 3csbied 3923 . . . . . 6 ((𝜑𝑖 ∈ (0...𝑆)) → 𝑖 / 𝑘𝐴 = 𝐵)
54eqcomd 2730 . . . . 5 ((𝜑𝑖 ∈ (0...𝑆)) → 𝐵 = 𝑖 / 𝑘𝐴)
6 ovexd 7436 . . . . . . 7 ((𝜑𝑖 ∈ (0...𝑆)) → (𝑖 + 1) ∈ V)
7 telgsumfz0.c . . . . . . . 8 (𝑘 = (𝑖 + 1) → 𝐴 = 𝐶)
87adantl 481 . . . . . . 7 (((𝜑𝑖 ∈ (0...𝑆)) ∧ 𝑘 = (𝑖 + 1)) → 𝐴 = 𝐶)
96, 8csbied 3923 . . . . . 6 ((𝜑𝑖 ∈ (0...𝑆)) → (𝑖 + 1) / 𝑘𝐴 = 𝐶)
109eqcomd 2730 . . . . 5 ((𝜑𝑖 ∈ (0...𝑆)) → 𝐶 = (𝑖 + 1) / 𝑘𝐴)
115, 10oveq12d 7419 . . . 4 ((𝜑𝑖 ∈ (0...𝑆)) → (𝐵 𝐶) = (𝑖 / 𝑘𝐴 (𝑖 + 1) / 𝑘𝐴))
1211mpteq2dva 5238 . . 3 (𝜑 → (𝑖 ∈ (0...𝑆) ↦ (𝐵 𝐶)) = (𝑖 ∈ (0...𝑆) ↦ (𝑖 / 𝑘𝐴 (𝑖 + 1) / 𝑘𝐴)))
1312oveq2d 7417 . 2 (𝜑 → (𝐺 Σg (𝑖 ∈ (0...𝑆) ↦ (𝐵 𝐶))) = (𝐺 Σg (𝑖 ∈ (0...𝑆) ↦ (𝑖 / 𝑘𝐴 (𝑖 + 1) / 𝑘𝐴))))
14 telgsumfz0.k . . 3 𝐾 = (Base‘𝐺)
15 telgsumfz0.g . . 3 (𝜑𝐺 ∈ Abel)
16 telgsumfz0.m . . 3 = (-g𝐺)
17 telgsumfz0.s . . 3 (𝜑𝑆 ∈ ℕ0)
18 telgsumfz0.f . . 3 (𝜑 → ∀𝑘 ∈ (0...(𝑆 + 1))𝐴𝐾)
1914, 15, 16, 17, 18telgsumfz0s 19901 . 2 (𝜑 → (𝐺 Σg (𝑖 ∈ (0...𝑆) ↦ (𝑖 / 𝑘𝐴 (𝑖 + 1) / 𝑘𝐴))) = (0 / 𝑘𝐴 (𝑆 + 1) / 𝑘𝐴))
20 c0ex 11205 . . . . 5 0 ∈ V
2120a1i 11 . . . 4 (𝜑 → 0 ∈ V)
22 telgsumfz0.d . . . . 5 (𝑘 = 0 → 𝐴 = 𝐷)
2322adantl 481 . . . 4 ((𝜑𝑘 = 0) → 𝐴 = 𝐷)
2421, 23csbied 3923 . . 3 (𝜑0 / 𝑘𝐴 = 𝐷)
25 ovexd 7436 . . . 4 (𝜑 → (𝑆 + 1) ∈ V)
26 telgsumfz0.e . . . . 5 (𝑘 = (𝑆 + 1) → 𝐴 = 𝐸)
2726adantl 481 . . . 4 ((𝜑𝑘 = (𝑆 + 1)) → 𝐴 = 𝐸)
2825, 27csbied 3923 . . 3 (𝜑(𝑆 + 1) / 𝑘𝐴 = 𝐸)
2924, 28oveq12d 7419 . 2 (𝜑 → (0 / 𝑘𝐴 (𝑆 + 1) / 𝑘𝐴) = (𝐷 𝐸))
3013, 19, 293eqtrd 2768 1 (𝜑 → (𝐺 Σg (𝑖 ∈ (0...𝑆) ↦ (𝐵 𝐶))) = (𝐷 𝐸))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1533  wcel 2098  wral 3053  Vcvv 3466  csb 3885  cmpt 5221  cfv 6533  (class class class)co 7401  0cc0 11106  1c1 11107   + caddc 11109  0cn0 12469  ...cfz 13481  Basecbs 17143   Σg cgsu 17385  -gcsg 18855  Abelcabl 19691
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5275  ax-sep 5289  ax-nul 5296  ax-pow 5353  ax-pr 5417  ax-un 7718  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-nel 3039  df-ral 3054  df-rex 3063  df-rmo 3368  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-pss 3959  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-int 4941  df-iun 4989  df-iin 4990  df-br 5139  df-opab 5201  df-mpt 5222  df-tr 5256  df-id 5564  df-eprel 5570  df-po 5578  df-so 5579  df-fr 5621  df-se 5622  df-we 5623  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-pred 6290  df-ord 6357  df-on 6358  df-lim 6359  df-suc 6360  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-isom 6542  df-riota 7357  df-ov 7404  df-oprab 7405  df-mpo 7406  df-of 7663  df-om 7849  df-1st 7968  df-2nd 7969  df-supp 8141  df-frecs 8261  df-wrecs 8292  df-recs 8366  df-rdg 8405  df-1o 8461  df-er 8699  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-fsupp 9358  df-oi 9501  df-card 9930  df-pnf 11247  df-mnf 11248  df-xr 11249  df-ltxr 11250  df-le 11251  df-sub 11443  df-neg 11444  df-nn 12210  df-2 12272  df-n0 12470  df-z 12556  df-uz 12820  df-fz 13482  df-fzo 13625  df-seq 13964  df-hash 14288  df-sets 17096  df-slot 17114  df-ndx 17126  df-base 17144  df-ress 17173  df-plusg 17209  df-0g 17386  df-gsum 17387  df-mre 17529  df-mrc 17530  df-acs 17532  df-mgm 18563  df-sgrp 18642  df-mnd 18658  df-submnd 18704  df-grp 18856  df-minusg 18857  df-sbg 18858  df-mulg 18986  df-cntz 19223  df-cmn 19692  df-abl 19693
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator