Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  telgsumfz0 Structured version   Visualization version   GIF version

Theorem telgsumfz0 19112
 Description: Telescoping finite group sum ranging over nonnegative integers, using implicit substitution, analogous to telfsum 15159. (Contributed by AV, 23-Nov-2019.)
Hypotheses
Ref Expression
telgsumfz0.k 𝐾 = (Base‘𝐺)
telgsumfz0.g (𝜑𝐺 ∈ Abel)
telgsumfz0.m = (-g𝐺)
telgsumfz0.s (𝜑𝑆 ∈ ℕ0)
telgsumfz0.f (𝜑 → ∀𝑘 ∈ (0...(𝑆 + 1))𝐴𝐾)
telgsumfz0.a (𝑘 = 𝑖𝐴 = 𝐵)
telgsumfz0.c (𝑘 = (𝑖 + 1) → 𝐴 = 𝐶)
telgsumfz0.d (𝑘 = 0 → 𝐴 = 𝐷)
telgsumfz0.e (𝑘 = (𝑆 + 1) → 𝐴 = 𝐸)
Assertion
Ref Expression
telgsumfz0 (𝜑 → (𝐺 Σg (𝑖 ∈ (0...𝑆) ↦ (𝐵 𝐶))) = (𝐷 𝐸))
Distinct variable groups:   𝐴,𝑖   𝐵,𝑘   𝐶,𝑘   𝐷,𝑘   𝑘,𝐸   𝑖,𝐺   𝑖,𝐾,𝑘   𝑆,𝑖,𝑘   ,𝑖   𝜑,𝑖,𝑘
Allowed substitution hints:   𝐴(𝑘)   𝐵(𝑖)   𝐶(𝑖)   𝐷(𝑖)   𝐸(𝑖)   𝐺(𝑘)   (𝑘)

Proof of Theorem telgsumfz0
StepHypRef Expression
1 simpr 488 . . . . . . 7 ((𝜑𝑖 ∈ (0...𝑆)) → 𝑖 ∈ (0...𝑆))
2 telgsumfz0.a . . . . . . . 8 (𝑘 = 𝑖𝐴 = 𝐵)
32adantl 485 . . . . . . 7 (((𝜑𝑖 ∈ (0...𝑆)) ∧ 𝑘 = 𝑖) → 𝐴 = 𝐵)
41, 3csbied 3902 . . . . . 6 ((𝜑𝑖 ∈ (0...𝑆)) → 𝑖 / 𝑘𝐴 = 𝐵)
54eqcomd 2830 . . . . 5 ((𝜑𝑖 ∈ (0...𝑆)) → 𝐵 = 𝑖 / 𝑘𝐴)
6 ovexd 7184 . . . . . . 7 ((𝜑𝑖 ∈ (0...𝑆)) → (𝑖 + 1) ∈ V)
7 telgsumfz0.c . . . . . . . 8 (𝑘 = (𝑖 + 1) → 𝐴 = 𝐶)
87adantl 485 . . . . . . 7 (((𝜑𝑖 ∈ (0...𝑆)) ∧ 𝑘 = (𝑖 + 1)) → 𝐴 = 𝐶)
96, 8csbied 3902 . . . . . 6 ((𝜑𝑖 ∈ (0...𝑆)) → (𝑖 + 1) / 𝑘𝐴 = 𝐶)
109eqcomd 2830 . . . . 5 ((𝜑𝑖 ∈ (0...𝑆)) → 𝐶 = (𝑖 + 1) / 𝑘𝐴)
115, 10oveq12d 7167 . . . 4 ((𝜑𝑖 ∈ (0...𝑆)) → (𝐵 𝐶) = (𝑖 / 𝑘𝐴 (𝑖 + 1) / 𝑘𝐴))
1211mpteq2dva 5147 . . 3 (𝜑 → (𝑖 ∈ (0...𝑆) ↦ (𝐵 𝐶)) = (𝑖 ∈ (0...𝑆) ↦ (𝑖 / 𝑘𝐴 (𝑖 + 1) / 𝑘𝐴)))
1312oveq2d 7165 . 2 (𝜑 → (𝐺 Σg (𝑖 ∈ (0...𝑆) ↦ (𝐵 𝐶))) = (𝐺 Σg (𝑖 ∈ (0...𝑆) ↦ (𝑖 / 𝑘𝐴 (𝑖 + 1) / 𝑘𝐴))))
14 telgsumfz0.k . . 3 𝐾 = (Base‘𝐺)
15 telgsumfz0.g . . 3 (𝜑𝐺 ∈ Abel)
16 telgsumfz0.m . . 3 = (-g𝐺)
17 telgsumfz0.s . . 3 (𝜑𝑆 ∈ ℕ0)
18 telgsumfz0.f . . 3 (𝜑 → ∀𝑘 ∈ (0...(𝑆 + 1))𝐴𝐾)
1914, 15, 16, 17, 18telgsumfz0s 19111 . 2 (𝜑 → (𝐺 Σg (𝑖 ∈ (0...𝑆) ↦ (𝑖 / 𝑘𝐴 (𝑖 + 1) / 𝑘𝐴))) = (0 / 𝑘𝐴 (𝑆 + 1) / 𝑘𝐴))
20 c0ex 10633 . . . . 5 0 ∈ V
2120a1i 11 . . . 4 (𝜑 → 0 ∈ V)
22 telgsumfz0.d . . . . 5 (𝑘 = 0 → 𝐴 = 𝐷)
2322adantl 485 . . . 4 ((𝜑𝑘 = 0) → 𝐴 = 𝐷)
2421, 23csbied 3902 . . 3 (𝜑0 / 𝑘𝐴 = 𝐷)
25 ovexd 7184 . . . 4 (𝜑 → (𝑆 + 1) ∈ V)
26 telgsumfz0.e . . . . 5 (𝑘 = (𝑆 + 1) → 𝐴 = 𝐸)
2726adantl 485 . . . 4 ((𝜑𝑘 = (𝑆 + 1)) → 𝐴 = 𝐸)
2825, 27csbied 3902 . . 3 (𝜑(𝑆 + 1) / 𝑘𝐴 = 𝐸)
2924, 28oveq12d 7167 . 2 (𝜑 → (0 / 𝑘𝐴 (𝑆 + 1) / 𝑘𝐴) = (𝐷 𝐸))
3013, 19, 293eqtrd 2863 1 (𝜑 → (𝐺 Σg (𝑖 ∈ (0...𝑆) ↦ (𝐵 𝐶))) = (𝐷 𝐸))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   = wceq 1538   ∈ wcel 2115  ∀wral 3133  Vcvv 3480  ⦋csb 3866   ↦ cmpt 5132  ‘cfv 6343  (class class class)co 7149  0cc0 10535  1c1 10536   + caddc 10538  ℕ0cn0 11894  ...cfz 12894  Basecbs 16483   Σg cgsu 16714  -gcsg 18105  Abelcabl 18907 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5176  ax-sep 5189  ax-nul 5196  ax-pow 5253  ax-pr 5317  ax-un 7455  ax-cnex 10591  ax-resscn 10592  ax-1cn 10593  ax-icn 10594  ax-addcl 10595  ax-addrcl 10596  ax-mulcl 10597  ax-mulrcl 10598  ax-mulcom 10599  ax-addass 10600  ax-mulass 10601  ax-distr 10602  ax-i2m1 10603  ax-1ne0 10604  ax-1rid 10605  ax-rnegex 10606  ax-rrecex 10607  ax-cnre 10608  ax-pre-lttri 10609  ax-pre-lttrn 10610  ax-pre-ltadd 10611  ax-pre-mulgt0 10612 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-nel 3119  df-ral 3138  df-rex 3139  df-reu 3140  df-rmo 3141  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-pss 3938  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-tp 4555  df-op 4557  df-uni 4825  df-int 4863  df-iun 4907  df-iin 4908  df-br 5053  df-opab 5115  df-mpt 5133  df-tr 5159  df-id 5447  df-eprel 5452  df-po 5461  df-so 5462  df-fr 5501  df-se 5502  df-we 5503  df-xp 5548  df-rel 5549  df-cnv 5550  df-co 5551  df-dm 5552  df-rn 5553  df-res 5554  df-ima 5555  df-pred 6135  df-ord 6181  df-on 6182  df-lim 6183  df-suc 6184  df-iota 6302  df-fun 6345  df-fn 6346  df-f 6347  df-f1 6348  df-fo 6349  df-f1o 6350  df-fv 6351  df-isom 6352  df-riota 7107  df-ov 7152  df-oprab 7153  df-mpo 7154  df-of 7403  df-om 7575  df-1st 7684  df-2nd 7685  df-supp 7827  df-wrecs 7943  df-recs 8004  df-rdg 8042  df-1o 8098  df-oadd 8102  df-er 8285  df-en 8506  df-dom 8507  df-sdom 8508  df-fin 8509  df-fsupp 8831  df-oi 8971  df-card 9365  df-pnf 10675  df-mnf 10676  df-xr 10677  df-ltxr 10678  df-le 10679  df-sub 10870  df-neg 10871  df-nn 11635  df-2 11697  df-n0 11895  df-z 11979  df-uz 12241  df-fz 12895  df-fzo 13038  df-seq 13374  df-hash 13696  df-ndx 16486  df-slot 16487  df-base 16489  df-sets 16490  df-ress 16491  df-plusg 16578  df-0g 16715  df-gsum 16716  df-mre 16857  df-mrc 16858  df-acs 16860  df-mgm 17852  df-sgrp 17901  df-mnd 17912  df-submnd 17957  df-grp 18106  df-minusg 18107  df-sbg 18108  df-mulg 18225  df-cntz 18447  df-cmn 18908  df-abl 18909 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator