| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > telgsumfz0 | Structured version Visualization version GIF version | ||
| Description: Telescoping finite group sum ranging over nonnegative integers, using implicit substitution, analogous to telfsum 15822. (Contributed by AV, 23-Nov-2019.) |
| Ref | Expression |
|---|---|
| telgsumfz0.k | ⊢ 𝐾 = (Base‘𝐺) |
| telgsumfz0.g | ⊢ (𝜑 → 𝐺 ∈ Abel) |
| telgsumfz0.m | ⊢ − = (-g‘𝐺) |
| telgsumfz0.s | ⊢ (𝜑 → 𝑆 ∈ ℕ0) |
| telgsumfz0.f | ⊢ (𝜑 → ∀𝑘 ∈ (0...(𝑆 + 1))𝐴 ∈ 𝐾) |
| telgsumfz0.a | ⊢ (𝑘 = 𝑖 → 𝐴 = 𝐵) |
| telgsumfz0.c | ⊢ (𝑘 = (𝑖 + 1) → 𝐴 = 𝐶) |
| telgsumfz0.d | ⊢ (𝑘 = 0 → 𝐴 = 𝐷) |
| telgsumfz0.e | ⊢ (𝑘 = (𝑆 + 1) → 𝐴 = 𝐸) |
| Ref | Expression |
|---|---|
| telgsumfz0 | ⊢ (𝜑 → (𝐺 Σg (𝑖 ∈ (0...𝑆) ↦ (𝐵 − 𝐶))) = (𝐷 − 𝐸)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 484 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑖 ∈ (0...𝑆)) → 𝑖 ∈ (0...𝑆)) | |
| 2 | telgsumfz0.a | . . . . . . . 8 ⊢ (𝑘 = 𝑖 → 𝐴 = 𝐵) | |
| 3 | 2 | adantl 481 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑖 ∈ (0...𝑆)) ∧ 𝑘 = 𝑖) → 𝐴 = 𝐵) |
| 4 | 1, 3 | csbied 3915 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑖 ∈ (0...𝑆)) → ⦋𝑖 / 𝑘⦌𝐴 = 𝐵) |
| 5 | 4 | eqcomd 2740 | . . . . 5 ⊢ ((𝜑 ∧ 𝑖 ∈ (0...𝑆)) → 𝐵 = ⦋𝑖 / 𝑘⦌𝐴) |
| 6 | ovexd 7448 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑖 ∈ (0...𝑆)) → (𝑖 + 1) ∈ V) | |
| 7 | telgsumfz0.c | . . . . . . . 8 ⊢ (𝑘 = (𝑖 + 1) → 𝐴 = 𝐶) | |
| 8 | 7 | adantl 481 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑖 ∈ (0...𝑆)) ∧ 𝑘 = (𝑖 + 1)) → 𝐴 = 𝐶) |
| 9 | 6, 8 | csbied 3915 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑖 ∈ (0...𝑆)) → ⦋(𝑖 + 1) / 𝑘⦌𝐴 = 𝐶) |
| 10 | 9 | eqcomd 2740 | . . . . 5 ⊢ ((𝜑 ∧ 𝑖 ∈ (0...𝑆)) → 𝐶 = ⦋(𝑖 + 1) / 𝑘⦌𝐴) |
| 11 | 5, 10 | oveq12d 7431 | . . . 4 ⊢ ((𝜑 ∧ 𝑖 ∈ (0...𝑆)) → (𝐵 − 𝐶) = (⦋𝑖 / 𝑘⦌𝐴 − ⦋(𝑖 + 1) / 𝑘⦌𝐴)) |
| 12 | 11 | mpteq2dva 5222 | . . 3 ⊢ (𝜑 → (𝑖 ∈ (0...𝑆) ↦ (𝐵 − 𝐶)) = (𝑖 ∈ (0...𝑆) ↦ (⦋𝑖 / 𝑘⦌𝐴 − ⦋(𝑖 + 1) / 𝑘⦌𝐴))) |
| 13 | 12 | oveq2d 7429 | . 2 ⊢ (𝜑 → (𝐺 Σg (𝑖 ∈ (0...𝑆) ↦ (𝐵 − 𝐶))) = (𝐺 Σg (𝑖 ∈ (0...𝑆) ↦ (⦋𝑖 / 𝑘⦌𝐴 − ⦋(𝑖 + 1) / 𝑘⦌𝐴)))) |
| 14 | telgsumfz0.k | . . 3 ⊢ 𝐾 = (Base‘𝐺) | |
| 15 | telgsumfz0.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ Abel) | |
| 16 | telgsumfz0.m | . . 3 ⊢ − = (-g‘𝐺) | |
| 17 | telgsumfz0.s | . . 3 ⊢ (𝜑 → 𝑆 ∈ ℕ0) | |
| 18 | telgsumfz0.f | . . 3 ⊢ (𝜑 → ∀𝑘 ∈ (0...(𝑆 + 1))𝐴 ∈ 𝐾) | |
| 19 | 14, 15, 16, 17, 18 | telgsumfz0s 19977 | . 2 ⊢ (𝜑 → (𝐺 Σg (𝑖 ∈ (0...𝑆) ↦ (⦋𝑖 / 𝑘⦌𝐴 − ⦋(𝑖 + 1) / 𝑘⦌𝐴))) = (⦋0 / 𝑘⦌𝐴 − ⦋(𝑆 + 1) / 𝑘⦌𝐴)) |
| 20 | c0ex 11237 | . . . . 5 ⊢ 0 ∈ V | |
| 21 | 20 | a1i 11 | . . . 4 ⊢ (𝜑 → 0 ∈ V) |
| 22 | telgsumfz0.d | . . . . 5 ⊢ (𝑘 = 0 → 𝐴 = 𝐷) | |
| 23 | 22 | adantl 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 = 0) → 𝐴 = 𝐷) |
| 24 | 21, 23 | csbied 3915 | . . 3 ⊢ (𝜑 → ⦋0 / 𝑘⦌𝐴 = 𝐷) |
| 25 | ovexd 7448 | . . . 4 ⊢ (𝜑 → (𝑆 + 1) ∈ V) | |
| 26 | telgsumfz0.e | . . . . 5 ⊢ (𝑘 = (𝑆 + 1) → 𝐴 = 𝐸) | |
| 27 | 26 | adantl 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 = (𝑆 + 1)) → 𝐴 = 𝐸) |
| 28 | 25, 27 | csbied 3915 | . . 3 ⊢ (𝜑 → ⦋(𝑆 + 1) / 𝑘⦌𝐴 = 𝐸) |
| 29 | 24, 28 | oveq12d 7431 | . 2 ⊢ (𝜑 → (⦋0 / 𝑘⦌𝐴 − ⦋(𝑆 + 1) / 𝑘⦌𝐴) = (𝐷 − 𝐸)) |
| 30 | 13, 19, 29 | 3eqtrd 2773 | 1 ⊢ (𝜑 → (𝐺 Σg (𝑖 ∈ (0...𝑆) ↦ (𝐵 − 𝐶))) = (𝐷 − 𝐸)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ∀wral 3050 Vcvv 3463 ⦋csb 3879 ↦ cmpt 5205 ‘cfv 6541 (class class class)co 7413 0cc0 11137 1c1 11138 + caddc 11140 ℕ0cn0 12509 ...cfz 13529 Basecbs 17229 Σg cgsu 17456 -gcsg 18922 Abelcabl 19767 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 ax-cnex 11193 ax-resscn 11194 ax-1cn 11195 ax-icn 11196 ax-addcl 11197 ax-addrcl 11198 ax-mulcl 11199 ax-mulrcl 11200 ax-mulcom 11201 ax-addass 11202 ax-mulass 11203 ax-distr 11204 ax-i2m1 11205 ax-1ne0 11206 ax-1rid 11207 ax-rnegex 11208 ax-rrecex 11209 ax-cnre 11210 ax-pre-lttri 11211 ax-pre-lttrn 11212 ax-pre-ltadd 11213 ax-pre-mulgt0 11214 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-int 4927 df-iun 4973 df-iin 4974 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-se 5618 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-isom 6550 df-riota 7370 df-ov 7416 df-oprab 7417 df-mpo 7418 df-of 7679 df-om 7870 df-1st 7996 df-2nd 7997 df-supp 8168 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-rdg 8432 df-1o 8488 df-2o 8489 df-er 8727 df-en 8968 df-dom 8969 df-sdom 8970 df-fin 8971 df-fsupp 9384 df-oi 9532 df-card 9961 df-pnf 11279 df-mnf 11280 df-xr 11281 df-ltxr 11282 df-le 11283 df-sub 11476 df-neg 11477 df-nn 12249 df-2 12311 df-n0 12510 df-z 12597 df-uz 12861 df-fz 13530 df-fzo 13677 df-seq 14025 df-hash 14352 df-sets 17183 df-slot 17201 df-ndx 17213 df-base 17230 df-ress 17253 df-plusg 17286 df-0g 17457 df-gsum 17458 df-mre 17600 df-mrc 17601 df-acs 17603 df-mgm 18622 df-sgrp 18701 df-mnd 18717 df-submnd 18766 df-grp 18923 df-minusg 18924 df-sbg 18925 df-mulg 19055 df-cntz 19304 df-cmn 19768 df-abl 19769 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |