| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > telgsumfz0 | Structured version Visualization version GIF version | ||
| Description: Telescoping finite group sum ranging over nonnegative integers, using implicit substitution, analogous to telfsum 15777. (Contributed by AV, 23-Nov-2019.) |
| Ref | Expression |
|---|---|
| telgsumfz0.k | ⊢ 𝐾 = (Base‘𝐺) |
| telgsumfz0.g | ⊢ (𝜑 → 𝐺 ∈ Abel) |
| telgsumfz0.m | ⊢ − = (-g‘𝐺) |
| telgsumfz0.s | ⊢ (𝜑 → 𝑆 ∈ ℕ0) |
| telgsumfz0.f | ⊢ (𝜑 → ∀𝑘 ∈ (0...(𝑆 + 1))𝐴 ∈ 𝐾) |
| telgsumfz0.a | ⊢ (𝑘 = 𝑖 → 𝐴 = 𝐵) |
| telgsumfz0.c | ⊢ (𝑘 = (𝑖 + 1) → 𝐴 = 𝐶) |
| telgsumfz0.d | ⊢ (𝑘 = 0 → 𝐴 = 𝐷) |
| telgsumfz0.e | ⊢ (𝑘 = (𝑆 + 1) → 𝐴 = 𝐸) |
| Ref | Expression |
|---|---|
| telgsumfz0 | ⊢ (𝜑 → (𝐺 Σg (𝑖 ∈ (0...𝑆) ↦ (𝐵 − 𝐶))) = (𝐷 − 𝐸)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 484 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑖 ∈ (0...𝑆)) → 𝑖 ∈ (0...𝑆)) | |
| 2 | telgsumfz0.a | . . . . . . . 8 ⊢ (𝑘 = 𝑖 → 𝐴 = 𝐵) | |
| 3 | 2 | adantl 481 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑖 ∈ (0...𝑆)) ∧ 𝑘 = 𝑖) → 𝐴 = 𝐵) |
| 4 | 1, 3 | csbied 3901 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑖 ∈ (0...𝑆)) → ⦋𝑖 / 𝑘⦌𝐴 = 𝐵) |
| 5 | 4 | eqcomd 2736 | . . . . 5 ⊢ ((𝜑 ∧ 𝑖 ∈ (0...𝑆)) → 𝐵 = ⦋𝑖 / 𝑘⦌𝐴) |
| 6 | ovexd 7425 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑖 ∈ (0...𝑆)) → (𝑖 + 1) ∈ V) | |
| 7 | telgsumfz0.c | . . . . . . . 8 ⊢ (𝑘 = (𝑖 + 1) → 𝐴 = 𝐶) | |
| 8 | 7 | adantl 481 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑖 ∈ (0...𝑆)) ∧ 𝑘 = (𝑖 + 1)) → 𝐴 = 𝐶) |
| 9 | 6, 8 | csbied 3901 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑖 ∈ (0...𝑆)) → ⦋(𝑖 + 1) / 𝑘⦌𝐴 = 𝐶) |
| 10 | 9 | eqcomd 2736 | . . . . 5 ⊢ ((𝜑 ∧ 𝑖 ∈ (0...𝑆)) → 𝐶 = ⦋(𝑖 + 1) / 𝑘⦌𝐴) |
| 11 | 5, 10 | oveq12d 7408 | . . . 4 ⊢ ((𝜑 ∧ 𝑖 ∈ (0...𝑆)) → (𝐵 − 𝐶) = (⦋𝑖 / 𝑘⦌𝐴 − ⦋(𝑖 + 1) / 𝑘⦌𝐴)) |
| 12 | 11 | mpteq2dva 5203 | . . 3 ⊢ (𝜑 → (𝑖 ∈ (0...𝑆) ↦ (𝐵 − 𝐶)) = (𝑖 ∈ (0...𝑆) ↦ (⦋𝑖 / 𝑘⦌𝐴 − ⦋(𝑖 + 1) / 𝑘⦌𝐴))) |
| 13 | 12 | oveq2d 7406 | . 2 ⊢ (𝜑 → (𝐺 Σg (𝑖 ∈ (0...𝑆) ↦ (𝐵 − 𝐶))) = (𝐺 Σg (𝑖 ∈ (0...𝑆) ↦ (⦋𝑖 / 𝑘⦌𝐴 − ⦋(𝑖 + 1) / 𝑘⦌𝐴)))) |
| 14 | telgsumfz0.k | . . 3 ⊢ 𝐾 = (Base‘𝐺) | |
| 15 | telgsumfz0.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ Abel) | |
| 16 | telgsumfz0.m | . . 3 ⊢ − = (-g‘𝐺) | |
| 17 | telgsumfz0.s | . . 3 ⊢ (𝜑 → 𝑆 ∈ ℕ0) | |
| 18 | telgsumfz0.f | . . 3 ⊢ (𝜑 → ∀𝑘 ∈ (0...(𝑆 + 1))𝐴 ∈ 𝐾) | |
| 19 | 14, 15, 16, 17, 18 | telgsumfz0s 19928 | . 2 ⊢ (𝜑 → (𝐺 Σg (𝑖 ∈ (0...𝑆) ↦ (⦋𝑖 / 𝑘⦌𝐴 − ⦋(𝑖 + 1) / 𝑘⦌𝐴))) = (⦋0 / 𝑘⦌𝐴 − ⦋(𝑆 + 1) / 𝑘⦌𝐴)) |
| 20 | c0ex 11175 | . . . . 5 ⊢ 0 ∈ V | |
| 21 | 20 | a1i 11 | . . . 4 ⊢ (𝜑 → 0 ∈ V) |
| 22 | telgsumfz0.d | . . . . 5 ⊢ (𝑘 = 0 → 𝐴 = 𝐷) | |
| 23 | 22 | adantl 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 = 0) → 𝐴 = 𝐷) |
| 24 | 21, 23 | csbied 3901 | . . 3 ⊢ (𝜑 → ⦋0 / 𝑘⦌𝐴 = 𝐷) |
| 25 | ovexd 7425 | . . . 4 ⊢ (𝜑 → (𝑆 + 1) ∈ V) | |
| 26 | telgsumfz0.e | . . . . 5 ⊢ (𝑘 = (𝑆 + 1) → 𝐴 = 𝐸) | |
| 27 | 26 | adantl 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 = (𝑆 + 1)) → 𝐴 = 𝐸) |
| 28 | 25, 27 | csbied 3901 | . . 3 ⊢ (𝜑 → ⦋(𝑆 + 1) / 𝑘⦌𝐴 = 𝐸) |
| 29 | 24, 28 | oveq12d 7408 | . 2 ⊢ (𝜑 → (⦋0 / 𝑘⦌𝐴 − ⦋(𝑆 + 1) / 𝑘⦌𝐴) = (𝐷 − 𝐸)) |
| 30 | 13, 19, 29 | 3eqtrd 2769 | 1 ⊢ (𝜑 → (𝐺 Σg (𝑖 ∈ (0...𝑆) ↦ (𝐵 − 𝐶))) = (𝐷 − 𝐸)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3045 Vcvv 3450 ⦋csb 3865 ↦ cmpt 5191 ‘cfv 6514 (class class class)co 7390 0cc0 11075 1c1 11076 + caddc 11078 ℕ0cn0 12449 ...cfz 13475 Basecbs 17186 Σg cgsu 17410 -gcsg 18874 Abelcabl 19718 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-iin 4961 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-se 5595 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-isom 6523 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-of 7656 df-om 7846 df-1st 7971 df-2nd 7972 df-supp 8143 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-2o 8438 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-fsupp 9320 df-oi 9470 df-card 9899 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-nn 12194 df-2 12256 df-n0 12450 df-z 12537 df-uz 12801 df-fz 13476 df-fzo 13623 df-seq 13974 df-hash 14303 df-sets 17141 df-slot 17159 df-ndx 17171 df-base 17187 df-ress 17208 df-plusg 17240 df-0g 17411 df-gsum 17412 df-mre 17554 df-mrc 17555 df-acs 17557 df-mgm 18574 df-sgrp 18653 df-mnd 18669 df-submnd 18718 df-grp 18875 df-minusg 18876 df-sbg 18877 df-mulg 19007 df-cntz 19256 df-cmn 19719 df-abl 19720 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |