![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > telgsumfz0 | Structured version Visualization version GIF version |
Description: Telescoping finite group sum ranging over nonnegative integers, using implicit substitution, analogous to telfsum 15836. (Contributed by AV, 23-Nov-2019.) |
Ref | Expression |
---|---|
telgsumfz0.k | ⊢ 𝐾 = (Base‘𝐺) |
telgsumfz0.g | ⊢ (𝜑 → 𝐺 ∈ Abel) |
telgsumfz0.m | ⊢ − = (-g‘𝐺) |
telgsumfz0.s | ⊢ (𝜑 → 𝑆 ∈ ℕ0) |
telgsumfz0.f | ⊢ (𝜑 → ∀𝑘 ∈ (0...(𝑆 + 1))𝐴 ∈ 𝐾) |
telgsumfz0.a | ⊢ (𝑘 = 𝑖 → 𝐴 = 𝐵) |
telgsumfz0.c | ⊢ (𝑘 = (𝑖 + 1) → 𝐴 = 𝐶) |
telgsumfz0.d | ⊢ (𝑘 = 0 → 𝐴 = 𝐷) |
telgsumfz0.e | ⊢ (𝑘 = (𝑆 + 1) → 𝐴 = 𝐸) |
Ref | Expression |
---|---|
telgsumfz0 | ⊢ (𝜑 → (𝐺 Σg (𝑖 ∈ (0...𝑆) ↦ (𝐵 − 𝐶))) = (𝐷 − 𝐸)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 484 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑖 ∈ (0...𝑆)) → 𝑖 ∈ (0...𝑆)) | |
2 | telgsumfz0.a | . . . . . . . 8 ⊢ (𝑘 = 𝑖 → 𝐴 = 𝐵) | |
3 | 2 | adantl 481 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑖 ∈ (0...𝑆)) ∧ 𝑘 = 𝑖) → 𝐴 = 𝐵) |
4 | 1, 3 | csbied 3945 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑖 ∈ (0...𝑆)) → ⦋𝑖 / 𝑘⦌𝐴 = 𝐵) |
5 | 4 | eqcomd 2740 | . . . . 5 ⊢ ((𝜑 ∧ 𝑖 ∈ (0...𝑆)) → 𝐵 = ⦋𝑖 / 𝑘⦌𝐴) |
6 | ovexd 7465 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑖 ∈ (0...𝑆)) → (𝑖 + 1) ∈ V) | |
7 | telgsumfz0.c | . . . . . . . 8 ⊢ (𝑘 = (𝑖 + 1) → 𝐴 = 𝐶) | |
8 | 7 | adantl 481 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑖 ∈ (0...𝑆)) ∧ 𝑘 = (𝑖 + 1)) → 𝐴 = 𝐶) |
9 | 6, 8 | csbied 3945 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑖 ∈ (0...𝑆)) → ⦋(𝑖 + 1) / 𝑘⦌𝐴 = 𝐶) |
10 | 9 | eqcomd 2740 | . . . . 5 ⊢ ((𝜑 ∧ 𝑖 ∈ (0...𝑆)) → 𝐶 = ⦋(𝑖 + 1) / 𝑘⦌𝐴) |
11 | 5, 10 | oveq12d 7448 | . . . 4 ⊢ ((𝜑 ∧ 𝑖 ∈ (0...𝑆)) → (𝐵 − 𝐶) = (⦋𝑖 / 𝑘⦌𝐴 − ⦋(𝑖 + 1) / 𝑘⦌𝐴)) |
12 | 11 | mpteq2dva 5247 | . . 3 ⊢ (𝜑 → (𝑖 ∈ (0...𝑆) ↦ (𝐵 − 𝐶)) = (𝑖 ∈ (0...𝑆) ↦ (⦋𝑖 / 𝑘⦌𝐴 − ⦋(𝑖 + 1) / 𝑘⦌𝐴))) |
13 | 12 | oveq2d 7446 | . 2 ⊢ (𝜑 → (𝐺 Σg (𝑖 ∈ (0...𝑆) ↦ (𝐵 − 𝐶))) = (𝐺 Σg (𝑖 ∈ (0...𝑆) ↦ (⦋𝑖 / 𝑘⦌𝐴 − ⦋(𝑖 + 1) / 𝑘⦌𝐴)))) |
14 | telgsumfz0.k | . . 3 ⊢ 𝐾 = (Base‘𝐺) | |
15 | telgsumfz0.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ Abel) | |
16 | telgsumfz0.m | . . 3 ⊢ − = (-g‘𝐺) | |
17 | telgsumfz0.s | . . 3 ⊢ (𝜑 → 𝑆 ∈ ℕ0) | |
18 | telgsumfz0.f | . . 3 ⊢ (𝜑 → ∀𝑘 ∈ (0...(𝑆 + 1))𝐴 ∈ 𝐾) | |
19 | 14, 15, 16, 17, 18 | telgsumfz0s 20023 | . 2 ⊢ (𝜑 → (𝐺 Σg (𝑖 ∈ (0...𝑆) ↦ (⦋𝑖 / 𝑘⦌𝐴 − ⦋(𝑖 + 1) / 𝑘⦌𝐴))) = (⦋0 / 𝑘⦌𝐴 − ⦋(𝑆 + 1) / 𝑘⦌𝐴)) |
20 | c0ex 11252 | . . . . 5 ⊢ 0 ∈ V | |
21 | 20 | a1i 11 | . . . 4 ⊢ (𝜑 → 0 ∈ V) |
22 | telgsumfz0.d | . . . . 5 ⊢ (𝑘 = 0 → 𝐴 = 𝐷) | |
23 | 22 | adantl 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 = 0) → 𝐴 = 𝐷) |
24 | 21, 23 | csbied 3945 | . . 3 ⊢ (𝜑 → ⦋0 / 𝑘⦌𝐴 = 𝐷) |
25 | ovexd 7465 | . . . 4 ⊢ (𝜑 → (𝑆 + 1) ∈ V) | |
26 | telgsumfz0.e | . . . . 5 ⊢ (𝑘 = (𝑆 + 1) → 𝐴 = 𝐸) | |
27 | 26 | adantl 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 = (𝑆 + 1)) → 𝐴 = 𝐸) |
28 | 25, 27 | csbied 3945 | . . 3 ⊢ (𝜑 → ⦋(𝑆 + 1) / 𝑘⦌𝐴 = 𝐸) |
29 | 24, 28 | oveq12d 7448 | . 2 ⊢ (𝜑 → (⦋0 / 𝑘⦌𝐴 − ⦋(𝑆 + 1) / 𝑘⦌𝐴) = (𝐷 − 𝐸)) |
30 | 13, 19, 29 | 3eqtrd 2778 | 1 ⊢ (𝜑 → (𝐺 Σg (𝑖 ∈ (0...𝑆) ↦ (𝐵 − 𝐶))) = (𝐷 − 𝐸)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1536 ∈ wcel 2105 ∀wral 3058 Vcvv 3477 ⦋csb 3907 ↦ cmpt 5230 ‘cfv 6562 (class class class)co 7430 0cc0 11152 1c1 11153 + caddc 11155 ℕ0cn0 12523 ...cfz 13543 Basecbs 17244 Σg cgsu 17486 -gcsg 18965 Abelcabl 19813 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-rep 5284 ax-sep 5301 ax-nul 5311 ax-pow 5370 ax-pr 5437 ax-un 7753 ax-cnex 11208 ax-resscn 11209 ax-1cn 11210 ax-icn 11211 ax-addcl 11212 ax-addrcl 11213 ax-mulcl 11214 ax-mulrcl 11215 ax-mulcom 11216 ax-addass 11217 ax-mulass 11218 ax-distr 11219 ax-i2m1 11220 ax-1ne0 11221 ax-1rid 11222 ax-rnegex 11223 ax-rrecex 11224 ax-cnre 11225 ax-pre-lttri 11226 ax-pre-lttrn 11227 ax-pre-ltadd 11228 ax-pre-mulgt0 11229 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3377 df-reu 3378 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-pss 3982 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-int 4951 df-iun 4997 df-iin 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5582 df-eprel 5588 df-po 5596 df-so 5597 df-fr 5640 df-se 5641 df-we 5642 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-pred 6322 df-ord 6388 df-on 6389 df-lim 6390 df-suc 6391 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-f1 6567 df-fo 6568 df-f1o 6569 df-fv 6570 df-isom 6571 df-riota 7387 df-ov 7433 df-oprab 7434 df-mpo 7435 df-of 7696 df-om 7887 df-1st 8012 df-2nd 8013 df-supp 8184 df-frecs 8304 df-wrecs 8335 df-recs 8409 df-rdg 8448 df-1o 8504 df-2o 8505 df-er 8743 df-en 8984 df-dom 8985 df-sdom 8986 df-fin 8987 df-fsupp 9399 df-oi 9547 df-card 9976 df-pnf 11294 df-mnf 11295 df-xr 11296 df-ltxr 11297 df-le 11298 df-sub 11491 df-neg 11492 df-nn 12264 df-2 12326 df-n0 12524 df-z 12611 df-uz 12876 df-fz 13544 df-fzo 13691 df-seq 14039 df-hash 14366 df-sets 17197 df-slot 17215 df-ndx 17227 df-base 17245 df-ress 17274 df-plusg 17310 df-0g 17487 df-gsum 17488 df-mre 17630 df-mrc 17631 df-acs 17633 df-mgm 18665 df-sgrp 18744 df-mnd 18760 df-submnd 18809 df-grp 18966 df-minusg 18967 df-sbg 18968 df-mulg 19098 df-cntz 19347 df-cmn 19814 df-abl 19815 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |