MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  telgsum Structured version   Visualization version   GIF version

Theorem telgsum 19924
Description: Telescoping finitely supported group sum ranging over nonnegative integers, using implicit substitution. (Contributed by AV, 31-Dec-2019.)
Hypotheses
Ref Expression
telgsum.b 𝐵 = (Base‘𝐺)
telgsum.g (𝜑𝐺 ∈ Abel)
telgsum.m = (-g𝐺)
telgsum.0 0 = (0g𝐺)
telgsum.f (𝜑 → ∀𝑘 ∈ ℕ0 𝐴𝐵)
telgsum.s (𝜑𝑆 ∈ ℕ0)
telgsum.u (𝜑 → ∀𝑘 ∈ ℕ0 (𝑆 < 𝑘𝐴 = 0 ))
telgsum.c (𝑘 = 𝑖𝐴 = 𝐶)
telgsum.d (𝑘 = (𝑖 + 1) → 𝐴 = 𝐷)
telgsum.e (𝑘 = 0 → 𝐴 = 𝐸)
Assertion
Ref Expression
telgsum (𝜑 → (𝐺 Σg (𝑖 ∈ ℕ0 ↦ (𝐶 𝐷))) = 𝐸)
Distinct variable groups:   𝐴,𝑖   𝐵,𝑖,𝑘   𝐶,𝑘   𝐷,𝑘   𝑘,𝐸   𝑖,𝐺   𝑆,𝑖,𝑘   𝜑,𝑖,𝑘   0 ,𝑖,𝑘   ,𝑖
Allowed substitution hints:   𝐴(𝑘)   𝐶(𝑖)   𝐷(𝑖)   𝐸(𝑖)   𝐺(𝑘)   (𝑘)

Proof of Theorem telgsum
StepHypRef Expression
1 simpr 484 . . . . . . 7 ((𝜑𝑖 ∈ ℕ0) → 𝑖 ∈ ℕ0)
2 telgsum.c . . . . . . . 8 (𝑘 = 𝑖𝐴 = 𝐶)
32adantl 481 . . . . . . 7 (((𝜑𝑖 ∈ ℕ0) ∧ 𝑘 = 𝑖) → 𝐴 = 𝐶)
41, 3csbied 3898 . . . . . 6 ((𝜑𝑖 ∈ ℕ0) → 𝑖 / 𝑘𝐴 = 𝐶)
54eqcomd 2735 . . . . 5 ((𝜑𝑖 ∈ ℕ0) → 𝐶 = 𝑖 / 𝑘𝐴)
6 peano2nn0 12482 . . . . . . . 8 (𝑖 ∈ ℕ0 → (𝑖 + 1) ∈ ℕ0)
76adantl 481 . . . . . . 7 ((𝜑𝑖 ∈ ℕ0) → (𝑖 + 1) ∈ ℕ0)
8 telgsum.d . . . . . . . 8 (𝑘 = (𝑖 + 1) → 𝐴 = 𝐷)
98adantl 481 . . . . . . 7 (((𝜑𝑖 ∈ ℕ0) ∧ 𝑘 = (𝑖 + 1)) → 𝐴 = 𝐷)
107, 9csbied 3898 . . . . . 6 ((𝜑𝑖 ∈ ℕ0) → (𝑖 + 1) / 𝑘𝐴 = 𝐷)
1110eqcomd 2735 . . . . 5 ((𝜑𝑖 ∈ ℕ0) → 𝐷 = (𝑖 + 1) / 𝑘𝐴)
125, 11oveq12d 7405 . . . 4 ((𝜑𝑖 ∈ ℕ0) → (𝐶 𝐷) = (𝑖 / 𝑘𝐴 (𝑖 + 1) / 𝑘𝐴))
1312mpteq2dva 5200 . . 3 (𝜑 → (𝑖 ∈ ℕ0 ↦ (𝐶 𝐷)) = (𝑖 ∈ ℕ0 ↦ (𝑖 / 𝑘𝐴 (𝑖 + 1) / 𝑘𝐴)))
1413oveq2d 7403 . 2 (𝜑 → (𝐺 Σg (𝑖 ∈ ℕ0 ↦ (𝐶 𝐷))) = (𝐺 Σg (𝑖 ∈ ℕ0 ↦ (𝑖 / 𝑘𝐴 (𝑖 + 1) / 𝑘𝐴))))
15 telgsum.b . . 3 𝐵 = (Base‘𝐺)
16 telgsum.g . . 3 (𝜑𝐺 ∈ Abel)
17 telgsum.m . . 3 = (-g𝐺)
18 telgsum.0 . . 3 0 = (0g𝐺)
19 telgsum.f . . 3 (𝜑 → ∀𝑘 ∈ ℕ0 𝐴𝐵)
20 telgsum.s . . 3 (𝜑𝑆 ∈ ℕ0)
21 telgsum.u . . 3 (𝜑 → ∀𝑘 ∈ ℕ0 (𝑆 < 𝑘𝐴 = 0 ))
2215, 16, 17, 18, 19, 20, 21telgsums 19923 . 2 (𝜑 → (𝐺 Σg (𝑖 ∈ ℕ0 ↦ (𝑖 / 𝑘𝐴 (𝑖 + 1) / 𝑘𝐴))) = 0 / 𝑘𝐴)
23 c0ex 11168 . . . 4 0 ∈ V
2423a1i 11 . . 3 (𝜑 → 0 ∈ V)
25 telgsum.e . . . 4 (𝑘 = 0 → 𝐴 = 𝐸)
2625adantl 481 . . 3 ((𝜑𝑘 = 0) → 𝐴 = 𝐸)
2724, 26csbied 3898 . 2 (𝜑0 / 𝑘𝐴 = 𝐸)
2814, 22, 273eqtrd 2768 1 (𝜑 → (𝐺 Σg (𝑖 ∈ ℕ0 ↦ (𝐶 𝐷))) = 𝐸)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3044  Vcvv 3447  csb 3862   class class class wbr 5107  cmpt 5188  cfv 6511  (class class class)co 7387  0cc0 11068  1c1 11069   + caddc 11071   < clt 11208  0cn0 12442  Basecbs 17179  0gc0g 17402   Σg cgsu 17403  -gcsg 18867  Abelcabl 19711
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-er 8671  df-map 8801  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fsupp 9313  df-oi 9463  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-n0 12443  df-z 12530  df-uz 12794  df-fz 13469  df-fzo 13616  df-seq 13967  df-hash 14296  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-0g 17404  df-gsum 17405  df-mre 17547  df-mrc 17548  df-acs 17550  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-submnd 18711  df-grp 18868  df-minusg 18869  df-sbg 18870  df-mulg 19000  df-cntz 19249  df-cmn 19712  df-abl 19713
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator