MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  telgsum Structured version   Visualization version   GIF version

Theorem telgsum 18877
Description: Telescoping finitely supported group sum ranging over nonnegative integers, using implicit substitution. (Contributed by AV, 31-Dec-2019.)
Hypotheses
Ref Expression
telgsum.b 𝐵 = (Base‘𝐺)
telgsum.g (𝜑𝐺 ∈ Abel)
telgsum.m = (-g𝐺)
telgsum.0 0 = (0g𝐺)
telgsum.f (𝜑 → ∀𝑘 ∈ ℕ0 𝐴𝐵)
telgsum.s (𝜑𝑆 ∈ ℕ0)
telgsum.u (𝜑 → ∀𝑘 ∈ ℕ0 (𝑆 < 𝑘𝐴 = 0 ))
telgsum.c (𝑘 = 𝑖𝐴 = 𝐶)
telgsum.d (𝑘 = (𝑖 + 1) → 𝐴 = 𝐷)
telgsum.e (𝑘 = 0 → 𝐴 = 𝐸)
Assertion
Ref Expression
telgsum (𝜑 → (𝐺 Σg (𝑖 ∈ ℕ0 ↦ (𝐶 𝐷))) = 𝐸)
Distinct variable groups:   𝐴,𝑖   𝐵,𝑖,𝑘   𝐶,𝑘   𝐷,𝑘   𝑘,𝐸   𝑖,𝐺   𝑆,𝑖,𝑘   𝜑,𝑖,𝑘   0 ,𝑖,𝑘   ,𝑖
Allowed substitution hints:   𝐴(𝑘)   𝐶(𝑖)   𝐷(𝑖)   𝐸(𝑖)   𝐺(𝑘)   (𝑘)

Proof of Theorem telgsum
StepHypRef Expression
1 simpr 477 . . . . . . 7 ((𝜑𝑖 ∈ ℕ0) → 𝑖 ∈ ℕ0)
2 telgsum.c . . . . . . . 8 (𝑘 = 𝑖𝐴 = 𝐶)
32adantl 474 . . . . . . 7 (((𝜑𝑖 ∈ ℕ0) ∧ 𝑘 = 𝑖) → 𝐴 = 𝐶)
41, 3csbied 3810 . . . . . 6 ((𝜑𝑖 ∈ ℕ0) → 𝑖 / 𝑘𝐴 = 𝐶)
54eqcomd 2779 . . . . 5 ((𝜑𝑖 ∈ ℕ0) → 𝐶 = 𝑖 / 𝑘𝐴)
6 peano2nn0 11748 . . . . . . . 8 (𝑖 ∈ ℕ0 → (𝑖 + 1) ∈ ℕ0)
76adantl 474 . . . . . . 7 ((𝜑𝑖 ∈ ℕ0) → (𝑖 + 1) ∈ ℕ0)
8 telgsum.d . . . . . . . 8 (𝑘 = (𝑖 + 1) → 𝐴 = 𝐷)
98adantl 474 . . . . . . 7 (((𝜑𝑖 ∈ ℕ0) ∧ 𝑘 = (𝑖 + 1)) → 𝐴 = 𝐷)
107, 9csbied 3810 . . . . . 6 ((𝜑𝑖 ∈ ℕ0) → (𝑖 + 1) / 𝑘𝐴 = 𝐷)
1110eqcomd 2779 . . . . 5 ((𝜑𝑖 ∈ ℕ0) → 𝐷 = (𝑖 + 1) / 𝑘𝐴)
125, 11oveq12d 6993 . . . 4 ((𝜑𝑖 ∈ ℕ0) → (𝐶 𝐷) = (𝑖 / 𝑘𝐴 (𝑖 + 1) / 𝑘𝐴))
1312mpteq2dva 5019 . . 3 (𝜑 → (𝑖 ∈ ℕ0 ↦ (𝐶 𝐷)) = (𝑖 ∈ ℕ0 ↦ (𝑖 / 𝑘𝐴 (𝑖 + 1) / 𝑘𝐴)))
1413oveq2d 6991 . 2 (𝜑 → (𝐺 Σg (𝑖 ∈ ℕ0 ↦ (𝐶 𝐷))) = (𝐺 Σg (𝑖 ∈ ℕ0 ↦ (𝑖 / 𝑘𝐴 (𝑖 + 1) / 𝑘𝐴))))
15 telgsum.b . . 3 𝐵 = (Base‘𝐺)
16 telgsum.g . . 3 (𝜑𝐺 ∈ Abel)
17 telgsum.m . . 3 = (-g𝐺)
18 telgsum.0 . . 3 0 = (0g𝐺)
19 telgsum.f . . 3 (𝜑 → ∀𝑘 ∈ ℕ0 𝐴𝐵)
20 telgsum.s . . 3 (𝜑𝑆 ∈ ℕ0)
21 telgsum.u . . 3 (𝜑 → ∀𝑘 ∈ ℕ0 (𝑆 < 𝑘𝐴 = 0 ))
2215, 16, 17, 18, 19, 20, 21telgsums 18876 . 2 (𝜑 → (𝐺 Σg (𝑖 ∈ ℕ0 ↦ (𝑖 / 𝑘𝐴 (𝑖 + 1) / 𝑘𝐴))) = 0 / 𝑘𝐴)
23 c0ex 10432 . . . 4 0 ∈ V
2423a1i 11 . . 3 (𝜑 → 0 ∈ V)
25 telgsum.e . . . 4 (𝑘 = 0 → 𝐴 = 𝐸)
2625adantl 474 . . 3 ((𝜑𝑘 = 0) → 𝐴 = 𝐸)
2724, 26csbied 3810 . 2 (𝜑0 / 𝑘𝐴 = 𝐸)
2814, 22, 273eqtrd 2813 1 (𝜑 → (𝐺 Σg (𝑖 ∈ ℕ0 ↦ (𝐶 𝐷))) = 𝐸)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 387   = wceq 1508  wcel 2051  wral 3083  Vcvv 3410  csb 3781   class class class wbr 4926  cmpt 5005  cfv 6186  (class class class)co 6975  0cc0 10334  1c1 10335   + caddc 10337   < clt 10473  0cn0 11706  Basecbs 16338  0gc0g 16568   Σg cgsu 16569  -gcsg 17906  Abelcabl 18680
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1759  ax-4 1773  ax-5 1870  ax-6 1929  ax-7 1966  ax-8 2053  ax-9 2060  ax-10 2080  ax-11 2094  ax-12 2107  ax-13 2302  ax-ext 2745  ax-rep 5046  ax-sep 5057  ax-nul 5064  ax-pow 5116  ax-pr 5183  ax-un 7278  ax-cnex 10390  ax-resscn 10391  ax-1cn 10392  ax-icn 10393  ax-addcl 10394  ax-addrcl 10395  ax-mulcl 10396  ax-mulrcl 10397  ax-mulcom 10398  ax-addass 10399  ax-mulass 10400  ax-distr 10401  ax-i2m1 10402  ax-1ne0 10403  ax-1rid 10404  ax-rnegex 10405  ax-rrecex 10406  ax-cnre 10407  ax-pre-lttri 10408  ax-pre-lttrn 10409  ax-pre-ltadd 10410  ax-pre-mulgt0 10411
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 835  df-3or 1070  df-3an 1071  df-tru 1511  df-fal 1521  df-ex 1744  df-nf 1748  df-sb 2017  df-mo 2548  df-eu 2585  df-clab 2754  df-cleq 2766  df-clel 2841  df-nfc 2913  df-ne 2963  df-nel 3069  df-ral 3088  df-rex 3089  df-reu 3090  df-rmo 3091  df-rab 3092  df-v 3412  df-sbc 3677  df-csb 3782  df-dif 3827  df-un 3829  df-in 3831  df-ss 3838  df-pss 3840  df-nul 4174  df-if 4346  df-pw 4419  df-sn 4437  df-pr 4439  df-tp 4441  df-op 4443  df-uni 4710  df-int 4747  df-iun 4791  df-iin 4792  df-br 4927  df-opab 4989  df-mpt 5006  df-tr 5028  df-id 5309  df-eprel 5314  df-po 5323  df-so 5324  df-fr 5363  df-se 5364  df-we 5365  df-xp 5410  df-rel 5411  df-cnv 5412  df-co 5413  df-dm 5414  df-rn 5415  df-res 5416  df-ima 5417  df-pred 5984  df-ord 6030  df-on 6031  df-lim 6032  df-suc 6033  df-iota 6150  df-fun 6188  df-fn 6189  df-f 6190  df-f1 6191  df-fo 6192  df-f1o 6193  df-fv 6194  df-isom 6195  df-riota 6936  df-ov 6978  df-oprab 6979  df-mpo 6980  df-of 7226  df-om 7396  df-1st 7500  df-2nd 7501  df-supp 7633  df-wrecs 7749  df-recs 7811  df-rdg 7849  df-1o 7904  df-oadd 7908  df-er 8088  df-map 8207  df-en 8306  df-dom 8307  df-sdom 8308  df-fin 8309  df-fsupp 8628  df-oi 8768  df-card 9161  df-pnf 10475  df-mnf 10476  df-xr 10477  df-ltxr 10478  df-le 10479  df-sub 10671  df-neg 10672  df-nn 11439  df-2 11502  df-n0 11707  df-z 11793  df-uz 12058  df-fz 12708  df-fzo 12849  df-seq 13184  df-hash 13505  df-ndx 16341  df-slot 16342  df-base 16344  df-sets 16345  df-ress 16346  df-plusg 16433  df-0g 16570  df-gsum 16571  df-mre 16728  df-mrc 16729  df-acs 16731  df-mgm 17723  df-sgrp 17765  df-mnd 17776  df-submnd 17817  df-grp 17907  df-minusg 17908  df-sbg 17909  df-mulg 18025  df-cntz 18231  df-cmn 18681  df-abl 18682
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator