MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  telgsum Structured version   Visualization version   GIF version

Theorem telgsum 19912
Description: Telescoping finitely supported group sum ranging over nonnegative integers, using implicit substitution. (Contributed by AV, 31-Dec-2019.)
Hypotheses
Ref Expression
telgsum.b 𝐵 = (Base‘𝐺)
telgsum.g (𝜑𝐺 ∈ Abel)
telgsum.m = (-g𝐺)
telgsum.0 0 = (0g𝐺)
telgsum.f (𝜑 → ∀𝑘 ∈ ℕ0 𝐴𝐵)
telgsum.s (𝜑𝑆 ∈ ℕ0)
telgsum.u (𝜑 → ∀𝑘 ∈ ℕ0 (𝑆 < 𝑘𝐴 = 0 ))
telgsum.c (𝑘 = 𝑖𝐴 = 𝐶)
telgsum.d (𝑘 = (𝑖 + 1) → 𝐴 = 𝐷)
telgsum.e (𝑘 = 0 → 𝐴 = 𝐸)
Assertion
Ref Expression
telgsum (𝜑 → (𝐺 Σg (𝑖 ∈ ℕ0 ↦ (𝐶 𝐷))) = 𝐸)
Distinct variable groups:   𝐴,𝑖   𝐵,𝑖,𝑘   𝐶,𝑘   𝐷,𝑘   𝑘,𝐸   𝑖,𝐺   𝑆,𝑖,𝑘   𝜑,𝑖,𝑘   0 ,𝑖,𝑘   ,𝑖
Allowed substitution hints:   𝐴(𝑘)   𝐶(𝑖)   𝐷(𝑖)   𝐸(𝑖)   𝐺(𝑘)   (𝑘)

Proof of Theorem telgsum
StepHypRef Expression
1 simpr 484 . . . . . . 7 ((𝜑𝑖 ∈ ℕ0) → 𝑖 ∈ ℕ0)
2 telgsum.c . . . . . . . 8 (𝑘 = 𝑖𝐴 = 𝐶)
32adantl 481 . . . . . . 7 (((𝜑𝑖 ∈ ℕ0) ∧ 𝑘 = 𝑖) → 𝐴 = 𝐶)
41, 3csbied 3926 . . . . . 6 ((𝜑𝑖 ∈ ℕ0) → 𝑖 / 𝑘𝐴 = 𝐶)
54eqcomd 2732 . . . . 5 ((𝜑𝑖 ∈ ℕ0) → 𝐶 = 𝑖 / 𝑘𝐴)
6 peano2nn0 12513 . . . . . . . 8 (𝑖 ∈ ℕ0 → (𝑖 + 1) ∈ ℕ0)
76adantl 481 . . . . . . 7 ((𝜑𝑖 ∈ ℕ0) → (𝑖 + 1) ∈ ℕ0)
8 telgsum.d . . . . . . . 8 (𝑘 = (𝑖 + 1) → 𝐴 = 𝐷)
98adantl 481 . . . . . . 7 (((𝜑𝑖 ∈ ℕ0) ∧ 𝑘 = (𝑖 + 1)) → 𝐴 = 𝐷)
107, 9csbied 3926 . . . . . 6 ((𝜑𝑖 ∈ ℕ0) → (𝑖 + 1) / 𝑘𝐴 = 𝐷)
1110eqcomd 2732 . . . . 5 ((𝜑𝑖 ∈ ℕ0) → 𝐷 = (𝑖 + 1) / 𝑘𝐴)
125, 11oveq12d 7422 . . . 4 ((𝜑𝑖 ∈ ℕ0) → (𝐶 𝐷) = (𝑖 / 𝑘𝐴 (𝑖 + 1) / 𝑘𝐴))
1312mpteq2dva 5241 . . 3 (𝜑 → (𝑖 ∈ ℕ0 ↦ (𝐶 𝐷)) = (𝑖 ∈ ℕ0 ↦ (𝑖 / 𝑘𝐴 (𝑖 + 1) / 𝑘𝐴)))
1413oveq2d 7420 . 2 (𝜑 → (𝐺 Σg (𝑖 ∈ ℕ0 ↦ (𝐶 𝐷))) = (𝐺 Σg (𝑖 ∈ ℕ0 ↦ (𝑖 / 𝑘𝐴 (𝑖 + 1) / 𝑘𝐴))))
15 telgsum.b . . 3 𝐵 = (Base‘𝐺)
16 telgsum.g . . 3 (𝜑𝐺 ∈ Abel)
17 telgsum.m . . 3 = (-g𝐺)
18 telgsum.0 . . 3 0 = (0g𝐺)
19 telgsum.f . . 3 (𝜑 → ∀𝑘 ∈ ℕ0 𝐴𝐵)
20 telgsum.s . . 3 (𝜑𝑆 ∈ ℕ0)
21 telgsum.u . . 3 (𝜑 → ∀𝑘 ∈ ℕ0 (𝑆 < 𝑘𝐴 = 0 ))
2215, 16, 17, 18, 19, 20, 21telgsums 19911 . 2 (𝜑 → (𝐺 Σg (𝑖 ∈ ℕ0 ↦ (𝑖 / 𝑘𝐴 (𝑖 + 1) / 𝑘𝐴))) = 0 / 𝑘𝐴)
23 c0ex 11209 . . . 4 0 ∈ V
2423a1i 11 . . 3 (𝜑 → 0 ∈ V)
25 telgsum.e . . . 4 (𝑘 = 0 → 𝐴 = 𝐸)
2625adantl 481 . . 3 ((𝜑𝑘 = 0) → 𝐴 = 𝐸)
2724, 26csbied 3926 . 2 (𝜑0 / 𝑘𝐴 = 𝐸)
2814, 22, 273eqtrd 2770 1 (𝜑 → (𝐺 Σg (𝑖 ∈ ℕ0 ↦ (𝐶 𝐷))) = 𝐸)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1533  wcel 2098  wral 3055  Vcvv 3468  csb 3888   class class class wbr 5141  cmpt 5224  cfv 6536  (class class class)co 7404  0cc0 11109  1c1 11110   + caddc 11112   < clt 11249  0cn0 12473  Basecbs 17151  0gc0g 17392   Σg cgsu 17393  -gcsg 18863  Abelcabl 19699
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7721  ax-cnex 11165  ax-resscn 11166  ax-1cn 11167  ax-icn 11168  ax-addcl 11169  ax-addrcl 11170  ax-mulcl 11171  ax-mulrcl 11172  ax-mulcom 11173  ax-addass 11174  ax-mulass 11175  ax-distr 11176  ax-i2m1 11177  ax-1ne0 11178  ax-1rid 11179  ax-rnegex 11180  ax-rrecex 11181  ax-cnre 11182  ax-pre-lttri 11183  ax-pre-lttrn 11184  ax-pre-ltadd 11185  ax-pre-mulgt0 11186
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-nel 3041  df-ral 3056  df-rex 3065  df-rmo 3370  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-pss 3962  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-int 4944  df-iun 4992  df-iin 4993  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-se 5625  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6293  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6488  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-isom 6545  df-riota 7360  df-ov 7407  df-oprab 7408  df-mpo 7409  df-of 7666  df-om 7852  df-1st 7971  df-2nd 7972  df-supp 8144  df-frecs 8264  df-wrecs 8295  df-recs 8369  df-rdg 8408  df-1o 8464  df-er 8702  df-map 8821  df-en 8939  df-dom 8940  df-sdom 8941  df-fin 8942  df-fsupp 9361  df-oi 9504  df-card 9933  df-pnf 11251  df-mnf 11252  df-xr 11253  df-ltxr 11254  df-le 11255  df-sub 11447  df-neg 11448  df-nn 12214  df-2 12276  df-n0 12474  df-z 12560  df-uz 12824  df-fz 13488  df-fzo 13631  df-seq 13970  df-hash 14294  df-sets 17104  df-slot 17122  df-ndx 17134  df-base 17152  df-ress 17181  df-plusg 17217  df-0g 17394  df-gsum 17395  df-mre 17537  df-mrc 17538  df-acs 17540  df-mgm 18571  df-sgrp 18650  df-mnd 18666  df-submnd 18712  df-grp 18864  df-minusg 18865  df-sbg 18866  df-mulg 18994  df-cntz 19231  df-cmn 19700  df-abl 19701
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator