![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > telgsum | Structured version Visualization version GIF version |
Description: Telescoping finitely supported group sum ranging over nonnegative integers, using implicit substitution. (Contributed by AV, 31-Dec-2019.) |
Ref | Expression |
---|---|
telgsum.b | ⊢ 𝐵 = (Base‘𝐺) |
telgsum.g | ⊢ (𝜑 → 𝐺 ∈ Abel) |
telgsum.m | ⊢ − = (-g‘𝐺) |
telgsum.0 | ⊢ 0 = (0g‘𝐺) |
telgsum.f | ⊢ (𝜑 → ∀𝑘 ∈ ℕ0 𝐴 ∈ 𝐵) |
telgsum.s | ⊢ (𝜑 → 𝑆 ∈ ℕ0) |
telgsum.u | ⊢ (𝜑 → ∀𝑘 ∈ ℕ0 (𝑆 < 𝑘 → 𝐴 = 0 )) |
telgsum.c | ⊢ (𝑘 = 𝑖 → 𝐴 = 𝐶) |
telgsum.d | ⊢ (𝑘 = (𝑖 + 1) → 𝐴 = 𝐷) |
telgsum.e | ⊢ (𝑘 = 0 → 𝐴 = 𝐸) |
Ref | Expression |
---|---|
telgsum | ⊢ (𝜑 → (𝐺 Σg (𝑖 ∈ ℕ0 ↦ (𝐶 − 𝐷))) = 𝐸) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 477 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑖 ∈ ℕ0) → 𝑖 ∈ ℕ0) | |
2 | telgsum.c | . . . . . . . 8 ⊢ (𝑘 = 𝑖 → 𝐴 = 𝐶) | |
3 | 2 | adantl 474 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑖 ∈ ℕ0) ∧ 𝑘 = 𝑖) → 𝐴 = 𝐶) |
4 | 1, 3 | csbied 3810 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑖 ∈ ℕ0) → ⦋𝑖 / 𝑘⦌𝐴 = 𝐶) |
5 | 4 | eqcomd 2779 | . . . . 5 ⊢ ((𝜑 ∧ 𝑖 ∈ ℕ0) → 𝐶 = ⦋𝑖 / 𝑘⦌𝐴) |
6 | peano2nn0 11748 | . . . . . . . 8 ⊢ (𝑖 ∈ ℕ0 → (𝑖 + 1) ∈ ℕ0) | |
7 | 6 | adantl 474 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑖 ∈ ℕ0) → (𝑖 + 1) ∈ ℕ0) |
8 | telgsum.d | . . . . . . . 8 ⊢ (𝑘 = (𝑖 + 1) → 𝐴 = 𝐷) | |
9 | 8 | adantl 474 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑖 ∈ ℕ0) ∧ 𝑘 = (𝑖 + 1)) → 𝐴 = 𝐷) |
10 | 7, 9 | csbied 3810 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑖 ∈ ℕ0) → ⦋(𝑖 + 1) / 𝑘⦌𝐴 = 𝐷) |
11 | 10 | eqcomd 2779 | . . . . 5 ⊢ ((𝜑 ∧ 𝑖 ∈ ℕ0) → 𝐷 = ⦋(𝑖 + 1) / 𝑘⦌𝐴) |
12 | 5, 11 | oveq12d 6993 | . . . 4 ⊢ ((𝜑 ∧ 𝑖 ∈ ℕ0) → (𝐶 − 𝐷) = (⦋𝑖 / 𝑘⦌𝐴 − ⦋(𝑖 + 1) / 𝑘⦌𝐴)) |
13 | 12 | mpteq2dva 5019 | . . 3 ⊢ (𝜑 → (𝑖 ∈ ℕ0 ↦ (𝐶 − 𝐷)) = (𝑖 ∈ ℕ0 ↦ (⦋𝑖 / 𝑘⦌𝐴 − ⦋(𝑖 + 1) / 𝑘⦌𝐴))) |
14 | 13 | oveq2d 6991 | . 2 ⊢ (𝜑 → (𝐺 Σg (𝑖 ∈ ℕ0 ↦ (𝐶 − 𝐷))) = (𝐺 Σg (𝑖 ∈ ℕ0 ↦ (⦋𝑖 / 𝑘⦌𝐴 − ⦋(𝑖 + 1) / 𝑘⦌𝐴)))) |
15 | telgsum.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
16 | telgsum.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ Abel) | |
17 | telgsum.m | . . 3 ⊢ − = (-g‘𝐺) | |
18 | telgsum.0 | . . 3 ⊢ 0 = (0g‘𝐺) | |
19 | telgsum.f | . . 3 ⊢ (𝜑 → ∀𝑘 ∈ ℕ0 𝐴 ∈ 𝐵) | |
20 | telgsum.s | . . 3 ⊢ (𝜑 → 𝑆 ∈ ℕ0) | |
21 | telgsum.u | . . 3 ⊢ (𝜑 → ∀𝑘 ∈ ℕ0 (𝑆 < 𝑘 → 𝐴 = 0 )) | |
22 | 15, 16, 17, 18, 19, 20, 21 | telgsums 18876 | . 2 ⊢ (𝜑 → (𝐺 Σg (𝑖 ∈ ℕ0 ↦ (⦋𝑖 / 𝑘⦌𝐴 − ⦋(𝑖 + 1) / 𝑘⦌𝐴))) = ⦋0 / 𝑘⦌𝐴) |
23 | c0ex 10432 | . . . 4 ⊢ 0 ∈ V | |
24 | 23 | a1i 11 | . . 3 ⊢ (𝜑 → 0 ∈ V) |
25 | telgsum.e | . . . 4 ⊢ (𝑘 = 0 → 𝐴 = 𝐸) | |
26 | 25 | adantl 474 | . . 3 ⊢ ((𝜑 ∧ 𝑘 = 0) → 𝐴 = 𝐸) |
27 | 24, 26 | csbied 3810 | . 2 ⊢ (𝜑 → ⦋0 / 𝑘⦌𝐴 = 𝐸) |
28 | 14, 22, 27 | 3eqtrd 2813 | 1 ⊢ (𝜑 → (𝐺 Σg (𝑖 ∈ ℕ0 ↦ (𝐶 − 𝐷))) = 𝐸) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 387 = wceq 1508 ∈ wcel 2051 ∀wral 3083 Vcvv 3410 ⦋csb 3781 class class class wbr 4926 ↦ cmpt 5005 ‘cfv 6186 (class class class)co 6975 0cc0 10334 1c1 10335 + caddc 10337 < clt 10473 ℕ0cn0 11706 Basecbs 16338 0gc0g 16568 Σg cgsu 16569 -gcsg 17906 Abelcabl 18680 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1759 ax-4 1773 ax-5 1870 ax-6 1929 ax-7 1966 ax-8 2053 ax-9 2060 ax-10 2080 ax-11 2094 ax-12 2107 ax-13 2302 ax-ext 2745 ax-rep 5046 ax-sep 5057 ax-nul 5064 ax-pow 5116 ax-pr 5183 ax-un 7278 ax-cnex 10390 ax-resscn 10391 ax-1cn 10392 ax-icn 10393 ax-addcl 10394 ax-addrcl 10395 ax-mulcl 10396 ax-mulrcl 10397 ax-mulcom 10398 ax-addass 10399 ax-mulass 10400 ax-distr 10401 ax-i2m1 10402 ax-1ne0 10403 ax-1rid 10404 ax-rnegex 10405 ax-rrecex 10406 ax-cnre 10407 ax-pre-lttri 10408 ax-pre-lttrn 10409 ax-pre-ltadd 10410 ax-pre-mulgt0 10411 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 835 df-3or 1070 df-3an 1071 df-tru 1511 df-fal 1521 df-ex 1744 df-nf 1748 df-sb 2017 df-mo 2548 df-eu 2585 df-clab 2754 df-cleq 2766 df-clel 2841 df-nfc 2913 df-ne 2963 df-nel 3069 df-ral 3088 df-rex 3089 df-reu 3090 df-rmo 3091 df-rab 3092 df-v 3412 df-sbc 3677 df-csb 3782 df-dif 3827 df-un 3829 df-in 3831 df-ss 3838 df-pss 3840 df-nul 4174 df-if 4346 df-pw 4419 df-sn 4437 df-pr 4439 df-tp 4441 df-op 4443 df-uni 4710 df-int 4747 df-iun 4791 df-iin 4792 df-br 4927 df-opab 4989 df-mpt 5006 df-tr 5028 df-id 5309 df-eprel 5314 df-po 5323 df-so 5324 df-fr 5363 df-se 5364 df-we 5365 df-xp 5410 df-rel 5411 df-cnv 5412 df-co 5413 df-dm 5414 df-rn 5415 df-res 5416 df-ima 5417 df-pred 5984 df-ord 6030 df-on 6031 df-lim 6032 df-suc 6033 df-iota 6150 df-fun 6188 df-fn 6189 df-f 6190 df-f1 6191 df-fo 6192 df-f1o 6193 df-fv 6194 df-isom 6195 df-riota 6936 df-ov 6978 df-oprab 6979 df-mpo 6980 df-of 7226 df-om 7396 df-1st 7500 df-2nd 7501 df-supp 7633 df-wrecs 7749 df-recs 7811 df-rdg 7849 df-1o 7904 df-oadd 7908 df-er 8088 df-map 8207 df-en 8306 df-dom 8307 df-sdom 8308 df-fin 8309 df-fsupp 8628 df-oi 8768 df-card 9161 df-pnf 10475 df-mnf 10476 df-xr 10477 df-ltxr 10478 df-le 10479 df-sub 10671 df-neg 10672 df-nn 11439 df-2 11502 df-n0 11707 df-z 11793 df-uz 12058 df-fz 12708 df-fzo 12849 df-seq 13184 df-hash 13505 df-ndx 16341 df-slot 16342 df-base 16344 df-sets 16345 df-ress 16346 df-plusg 16433 df-0g 16570 df-gsum 16571 df-mre 16728 df-mrc 16729 df-acs 16731 df-mgm 17723 df-sgrp 17765 df-mnd 17776 df-submnd 17817 df-grp 17907 df-minusg 17908 df-sbg 17909 df-mulg 18025 df-cntz 18231 df-cmn 18681 df-abl 18682 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |