MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  telgsum Structured version   Visualization version   GIF version

Theorem telgsum 19873
Description: Telescoping finitely supported group sum ranging over nonnegative integers, using implicit substitution. (Contributed by AV, 31-Dec-2019.)
Hypotheses
Ref Expression
telgsum.b 𝐵 = (Base‘𝐺)
telgsum.g (𝜑𝐺 ∈ Abel)
telgsum.m = (-g𝐺)
telgsum.0 0 = (0g𝐺)
telgsum.f (𝜑 → ∀𝑘 ∈ ℕ0 𝐴𝐵)
telgsum.s (𝜑𝑆 ∈ ℕ0)
telgsum.u (𝜑 → ∀𝑘 ∈ ℕ0 (𝑆 < 𝑘𝐴 = 0 ))
telgsum.c (𝑘 = 𝑖𝐴 = 𝐶)
telgsum.d (𝑘 = (𝑖 + 1) → 𝐴 = 𝐷)
telgsum.e (𝑘 = 0 → 𝐴 = 𝐸)
Assertion
Ref Expression
telgsum (𝜑 → (𝐺 Σg (𝑖 ∈ ℕ0 ↦ (𝐶 𝐷))) = 𝐸)
Distinct variable groups:   𝐴,𝑖   𝐵,𝑖,𝑘   𝐶,𝑘   𝐷,𝑘   𝑘,𝐸   𝑖,𝐺   𝑆,𝑖,𝑘   𝜑,𝑖,𝑘   0 ,𝑖,𝑘   ,𝑖
Allowed substitution hints:   𝐴(𝑘)   𝐶(𝑖)   𝐷(𝑖)   𝐸(𝑖)   𝐺(𝑘)   (𝑘)

Proof of Theorem telgsum
StepHypRef Expression
1 simpr 484 . . . . . . 7 ((𝜑𝑖 ∈ ℕ0) → 𝑖 ∈ ℕ0)
2 telgsum.c . . . . . . . 8 (𝑘 = 𝑖𝐴 = 𝐶)
32adantl 481 . . . . . . 7 (((𝜑𝑖 ∈ ℕ0) ∧ 𝑘 = 𝑖) → 𝐴 = 𝐶)
41, 3csbied 3887 . . . . . 6 ((𝜑𝑖 ∈ ℕ0) → 𝑖 / 𝑘𝐴 = 𝐶)
54eqcomd 2735 . . . . 5 ((𝜑𝑖 ∈ ℕ0) → 𝐶 = 𝑖 / 𝑘𝐴)
6 peano2nn0 12424 . . . . . . . 8 (𝑖 ∈ ℕ0 → (𝑖 + 1) ∈ ℕ0)
76adantl 481 . . . . . . 7 ((𝜑𝑖 ∈ ℕ0) → (𝑖 + 1) ∈ ℕ0)
8 telgsum.d . . . . . . . 8 (𝑘 = (𝑖 + 1) → 𝐴 = 𝐷)
98adantl 481 . . . . . . 7 (((𝜑𝑖 ∈ ℕ0) ∧ 𝑘 = (𝑖 + 1)) → 𝐴 = 𝐷)
107, 9csbied 3887 . . . . . 6 ((𝜑𝑖 ∈ ℕ0) → (𝑖 + 1) / 𝑘𝐴 = 𝐷)
1110eqcomd 2735 . . . . 5 ((𝜑𝑖 ∈ ℕ0) → 𝐷 = (𝑖 + 1) / 𝑘𝐴)
125, 11oveq12d 7367 . . . 4 ((𝜑𝑖 ∈ ℕ0) → (𝐶 𝐷) = (𝑖 / 𝑘𝐴 (𝑖 + 1) / 𝑘𝐴))
1312mpteq2dva 5185 . . 3 (𝜑 → (𝑖 ∈ ℕ0 ↦ (𝐶 𝐷)) = (𝑖 ∈ ℕ0 ↦ (𝑖 / 𝑘𝐴 (𝑖 + 1) / 𝑘𝐴)))
1413oveq2d 7365 . 2 (𝜑 → (𝐺 Σg (𝑖 ∈ ℕ0 ↦ (𝐶 𝐷))) = (𝐺 Σg (𝑖 ∈ ℕ0 ↦ (𝑖 / 𝑘𝐴 (𝑖 + 1) / 𝑘𝐴))))
15 telgsum.b . . 3 𝐵 = (Base‘𝐺)
16 telgsum.g . . 3 (𝜑𝐺 ∈ Abel)
17 telgsum.m . . 3 = (-g𝐺)
18 telgsum.0 . . 3 0 = (0g𝐺)
19 telgsum.f . . 3 (𝜑 → ∀𝑘 ∈ ℕ0 𝐴𝐵)
20 telgsum.s . . 3 (𝜑𝑆 ∈ ℕ0)
21 telgsum.u . . 3 (𝜑 → ∀𝑘 ∈ ℕ0 (𝑆 < 𝑘𝐴 = 0 ))
2215, 16, 17, 18, 19, 20, 21telgsums 19872 . 2 (𝜑 → (𝐺 Σg (𝑖 ∈ ℕ0 ↦ (𝑖 / 𝑘𝐴 (𝑖 + 1) / 𝑘𝐴))) = 0 / 𝑘𝐴)
23 c0ex 11109 . . . 4 0 ∈ V
2423a1i 11 . . 3 (𝜑 → 0 ∈ V)
25 telgsum.e . . . 4 (𝑘 = 0 → 𝐴 = 𝐸)
2625adantl 481 . . 3 ((𝜑𝑘 = 0) → 𝐴 = 𝐸)
2724, 26csbied 3887 . 2 (𝜑0 / 𝑘𝐴 = 𝐸)
2814, 22, 273eqtrd 2768 1 (𝜑 → (𝐺 Σg (𝑖 ∈ ℕ0 ↦ (𝐶 𝐷))) = 𝐸)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3044  Vcvv 3436  csb 3851   class class class wbr 5092  cmpt 5173  cfv 6482  (class class class)co 7349  0cc0 11009  1c1 11010   + caddc 11012   < clt 11149  0cn0 12384  Basecbs 17120  0gc0g 17343   Σg cgsu 17344  -gcsg 18814  Abelcabl 19660
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-iin 4944  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-isom 6491  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-of 7613  df-om 7800  df-1st 7924  df-2nd 7925  df-supp 8094  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-2o 8389  df-er 8625  df-map 8755  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-fsupp 9252  df-oi 9402  df-card 9835  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-nn 12129  df-2 12191  df-n0 12385  df-z 12472  df-uz 12736  df-fz 13411  df-fzo 13558  df-seq 13909  df-hash 14238  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-0g 17345  df-gsum 17346  df-mre 17488  df-mrc 17489  df-acs 17491  df-mgm 18514  df-sgrp 18593  df-mnd 18609  df-submnd 18658  df-grp 18815  df-minusg 18816  df-sbg 18817  df-mulg 18947  df-cntz 19196  df-cmn 19661  df-abl 19662
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator