![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > telgsum | Structured version Visualization version GIF version |
Description: Telescoping finitely supported group sum ranging over nonnegative integers, using implicit substitution. (Contributed by AV, 31-Dec-2019.) |
Ref | Expression |
---|---|
telgsum.b | ⊢ 𝐵 = (Base‘𝐺) |
telgsum.g | ⊢ (𝜑 → 𝐺 ∈ Abel) |
telgsum.m | ⊢ − = (-g‘𝐺) |
telgsum.0 | ⊢ 0 = (0g‘𝐺) |
telgsum.f | ⊢ (𝜑 → ∀𝑘 ∈ ℕ0 𝐴 ∈ 𝐵) |
telgsum.s | ⊢ (𝜑 → 𝑆 ∈ ℕ0) |
telgsum.u | ⊢ (𝜑 → ∀𝑘 ∈ ℕ0 (𝑆 < 𝑘 → 𝐴 = 0 )) |
telgsum.c | ⊢ (𝑘 = 𝑖 → 𝐴 = 𝐶) |
telgsum.d | ⊢ (𝑘 = (𝑖 + 1) → 𝐴 = 𝐷) |
telgsum.e | ⊢ (𝑘 = 0 → 𝐴 = 𝐸) |
Ref | Expression |
---|---|
telgsum | ⊢ (𝜑 → (𝐺 Σg (𝑖 ∈ ℕ0 ↦ (𝐶 − 𝐷))) = 𝐸) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 486 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑖 ∈ ℕ0) → 𝑖 ∈ ℕ0) | |
2 | telgsum.c | . . . . . . . 8 ⊢ (𝑘 = 𝑖 → 𝐴 = 𝐶) | |
3 | 2 | adantl 483 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑖 ∈ ℕ0) ∧ 𝑘 = 𝑖) → 𝐴 = 𝐶) |
4 | 1, 3 | csbied 3897 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑖 ∈ ℕ0) → ⦋𝑖 / 𝑘⦌𝐴 = 𝐶) |
5 | 4 | eqcomd 2739 | . . . . 5 ⊢ ((𝜑 ∧ 𝑖 ∈ ℕ0) → 𝐶 = ⦋𝑖 / 𝑘⦌𝐴) |
6 | peano2nn0 12461 | . . . . . . . 8 ⊢ (𝑖 ∈ ℕ0 → (𝑖 + 1) ∈ ℕ0) | |
7 | 6 | adantl 483 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑖 ∈ ℕ0) → (𝑖 + 1) ∈ ℕ0) |
8 | telgsum.d | . . . . . . . 8 ⊢ (𝑘 = (𝑖 + 1) → 𝐴 = 𝐷) | |
9 | 8 | adantl 483 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑖 ∈ ℕ0) ∧ 𝑘 = (𝑖 + 1)) → 𝐴 = 𝐷) |
10 | 7, 9 | csbied 3897 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑖 ∈ ℕ0) → ⦋(𝑖 + 1) / 𝑘⦌𝐴 = 𝐷) |
11 | 10 | eqcomd 2739 | . . . . 5 ⊢ ((𝜑 ∧ 𝑖 ∈ ℕ0) → 𝐷 = ⦋(𝑖 + 1) / 𝑘⦌𝐴) |
12 | 5, 11 | oveq12d 7379 | . . . 4 ⊢ ((𝜑 ∧ 𝑖 ∈ ℕ0) → (𝐶 − 𝐷) = (⦋𝑖 / 𝑘⦌𝐴 − ⦋(𝑖 + 1) / 𝑘⦌𝐴)) |
13 | 12 | mpteq2dva 5209 | . . 3 ⊢ (𝜑 → (𝑖 ∈ ℕ0 ↦ (𝐶 − 𝐷)) = (𝑖 ∈ ℕ0 ↦ (⦋𝑖 / 𝑘⦌𝐴 − ⦋(𝑖 + 1) / 𝑘⦌𝐴))) |
14 | 13 | oveq2d 7377 | . 2 ⊢ (𝜑 → (𝐺 Σg (𝑖 ∈ ℕ0 ↦ (𝐶 − 𝐷))) = (𝐺 Σg (𝑖 ∈ ℕ0 ↦ (⦋𝑖 / 𝑘⦌𝐴 − ⦋(𝑖 + 1) / 𝑘⦌𝐴)))) |
15 | telgsum.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
16 | telgsum.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ Abel) | |
17 | telgsum.m | . . 3 ⊢ − = (-g‘𝐺) | |
18 | telgsum.0 | . . 3 ⊢ 0 = (0g‘𝐺) | |
19 | telgsum.f | . . 3 ⊢ (𝜑 → ∀𝑘 ∈ ℕ0 𝐴 ∈ 𝐵) | |
20 | telgsum.s | . . 3 ⊢ (𝜑 → 𝑆 ∈ ℕ0) | |
21 | telgsum.u | . . 3 ⊢ (𝜑 → ∀𝑘 ∈ ℕ0 (𝑆 < 𝑘 → 𝐴 = 0 )) | |
22 | 15, 16, 17, 18, 19, 20, 21 | telgsums 19778 | . 2 ⊢ (𝜑 → (𝐺 Σg (𝑖 ∈ ℕ0 ↦ (⦋𝑖 / 𝑘⦌𝐴 − ⦋(𝑖 + 1) / 𝑘⦌𝐴))) = ⦋0 / 𝑘⦌𝐴) |
23 | c0ex 11157 | . . . 4 ⊢ 0 ∈ V | |
24 | 23 | a1i 11 | . . 3 ⊢ (𝜑 → 0 ∈ V) |
25 | telgsum.e | . . . 4 ⊢ (𝑘 = 0 → 𝐴 = 𝐸) | |
26 | 25 | adantl 483 | . . 3 ⊢ ((𝜑 ∧ 𝑘 = 0) → 𝐴 = 𝐸) |
27 | 24, 26 | csbied 3897 | . 2 ⊢ (𝜑 → ⦋0 / 𝑘⦌𝐴 = 𝐸) |
28 | 14, 22, 27 | 3eqtrd 2777 | 1 ⊢ (𝜑 → (𝐺 Σg (𝑖 ∈ ℕ0 ↦ (𝐶 − 𝐷))) = 𝐸) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1542 ∈ wcel 2107 ∀wral 3061 Vcvv 3447 ⦋csb 3859 class class class wbr 5109 ↦ cmpt 5192 ‘cfv 6500 (class class class)co 7361 0cc0 11059 1c1 11060 + caddc 11062 < clt 11197 ℕ0cn0 12421 Basecbs 17091 0gc0g 17329 Σg cgsu 17330 -gcsg 18758 Abelcabl 19571 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5246 ax-sep 5260 ax-nul 5267 ax-pow 5324 ax-pr 5388 ax-un 7676 ax-cnex 11115 ax-resscn 11116 ax-1cn 11117 ax-icn 11118 ax-addcl 11119 ax-addrcl 11120 ax-mulcl 11121 ax-mulrcl 11122 ax-mulcom 11123 ax-addass 11124 ax-mulass 11125 ax-distr 11126 ax-i2m1 11127 ax-1ne0 11128 ax-1rid 11129 ax-rnegex 11130 ax-rrecex 11131 ax-cnre 11132 ax-pre-lttri 11133 ax-pre-lttrn 11134 ax-pre-ltadd 11135 ax-pre-mulgt0 11136 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3352 df-reu 3353 df-rab 3407 df-v 3449 df-sbc 3744 df-csb 3860 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3933 df-nul 4287 df-if 4491 df-pw 4566 df-sn 4591 df-pr 4593 df-op 4597 df-uni 4870 df-int 4912 df-iun 4960 df-iin 4961 df-br 5110 df-opab 5172 df-mpt 5193 df-tr 5227 df-id 5535 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5592 df-se 5593 df-we 5594 df-xp 5643 df-rel 5644 df-cnv 5645 df-co 5646 df-dm 5647 df-rn 5648 df-res 5649 df-ima 5650 df-pred 6257 df-ord 6324 df-on 6325 df-lim 6326 df-suc 6327 df-iota 6452 df-fun 6502 df-fn 6503 df-f 6504 df-f1 6505 df-fo 6506 df-f1o 6507 df-fv 6508 df-isom 6509 df-riota 7317 df-ov 7364 df-oprab 7365 df-mpo 7366 df-of 7621 df-om 7807 df-1st 7925 df-2nd 7926 df-supp 8097 df-frecs 8216 df-wrecs 8247 df-recs 8321 df-rdg 8360 df-1o 8416 df-er 8654 df-map 8773 df-en 8890 df-dom 8891 df-sdom 8892 df-fin 8893 df-fsupp 9312 df-oi 9454 df-card 9883 df-pnf 11199 df-mnf 11200 df-xr 11201 df-ltxr 11202 df-le 11203 df-sub 11395 df-neg 11396 df-nn 12162 df-2 12224 df-n0 12422 df-z 12508 df-uz 12772 df-fz 13434 df-fzo 13577 df-seq 13916 df-hash 14240 df-sets 17044 df-slot 17062 df-ndx 17074 df-base 17092 df-ress 17121 df-plusg 17154 df-0g 17331 df-gsum 17332 df-mre 17474 df-mrc 17475 df-acs 17477 df-mgm 18505 df-sgrp 18554 df-mnd 18565 df-submnd 18610 df-grp 18759 df-minusg 18760 df-sbg 18761 df-mulg 18881 df-cntz 19105 df-cmn 19572 df-abl 19573 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |